/usr/include/agg2/agg_basics.h is in libagg-dev 2.5+dfsg1-9.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 | //----------------------------------------------------------------------------
// Anti-Grain Geometry (AGG) - Version 2.5
// A high quality rendering engine for C++
// Copyright (C) 2002-2006 Maxim Shemanarev
// Contact: mcseem@antigrain.com
// mcseemagg@yahoo.com
// http://antigrain.com
//
// AGG is free software; you can redistribute it and/or
// modify it under the terms of the GNU General Public License
// as published by the Free Software Foundation; either version 2
// of the License, or (at your option) any later version.
//
// AGG is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with AGG; if not, write to the Free Software
// Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
// MA 02110-1301, USA.
//----------------------------------------------------------------------------
#ifndef AGG_BASICS_INCLUDED
#define AGG_BASICS_INCLUDED
#include <math.h>
#include "agg_config.h"
//---------------------------------------------------------AGG_CUSTOM_ALLOCATOR
#ifdef AGG_CUSTOM_ALLOCATOR
#include "agg_allocator.h"
#else
namespace agg
{
// The policy of all AGG containers and memory allocation strategy
// in general is that no allocated data requires explicit construction.
// It means that the allocator can be really simple; you can even
// replace new/delete to malloc/free. The constructors and destructors
// won't be called in this case, however everything will remain working.
// The second argument of deallocate() is the size of the allocated
// block. You can use this information if you wish.
//------------------------------------------------------------pod_allocator
template<class T> struct pod_allocator
{
static T* allocate(unsigned num) { return new T [num]; }
static void deallocate(T* ptr, unsigned) { delete [] ptr; }
};
// Single object allocator. It's also can be replaced with your custom
// allocator. The difference is that it can only allocate a single
// object and the constructor and destructor must be called.
// In AGG there is no need to allocate an array of objects with
// calling their constructors (only single ones). So that, if you
// replace these new/delete to malloc/free make sure that the in-place
// new is called and take care of calling the destructor too.
//------------------------------------------------------------obj_allocator
template<class T> struct obj_allocator
{
static T* allocate() { return new T; }
static void deallocate(T* ptr) { delete ptr; }
};
}
#endif
//-------------------------------------------------------- Default basic types
//
// If the compiler has different capacity of the basic types you can redefine
// them via the compiler command line or by generating agg_config.h that is
// empty by default.
//
#ifndef AGG_INT8
#define AGG_INT8 signed char
#endif
#ifndef AGG_INT8U
#define AGG_INT8U unsigned char
#endif
#ifndef AGG_INT16
#define AGG_INT16 short
#endif
#ifndef AGG_INT16U
#define AGG_INT16U unsigned short
#endif
#ifndef AGG_INT32
#define AGG_INT32 int
#endif
#ifndef AGG_INT32U
#define AGG_INT32U unsigned
#endif
#ifndef AGG_INT64
#if defined(_MSC_VER) || defined(__BORLANDC__)
#define AGG_INT64 signed __int64
#else
#define AGG_INT64 signed long long
#endif
#endif
#ifndef AGG_INT64U
#if defined(_MSC_VER) || defined(__BORLANDC__)
#define AGG_INT64U unsigned __int64
#else
#define AGG_INT64U unsigned long long
#endif
#endif
//------------------------------------------------ Some fixes for MS Visual C++
#if defined(_MSC_VER)
#pragma warning(disable:4786) // Identifier was truncated...
#endif
#if defined(_MSC_VER)
#define AGG_INLINE __forceinline
#else
#define AGG_INLINE inline
#endif
namespace agg
{
//-------------------------------------------------------------------------
typedef AGG_INT8 int8; //----int8
typedef AGG_INT8U int8u; //----int8u
typedef AGG_INT16 int16; //----int16
typedef AGG_INT16U int16u; //----int16u
typedef AGG_INT32 int32; //----int32
typedef AGG_INT32U int32u; //----int32u
typedef AGG_INT64 int64; //----int64
typedef AGG_INT64U int64u; //----int64u
#if defined(AGG_FISTP)
#pragma warning(push)
#pragma warning(disable : 4035) //Disable warning "no return value"
AGG_INLINE int iround(double v) //-------iround
{
int t;
__asm fld qword ptr [v]
__asm fistp dword ptr [t]
__asm mov eax, dword ptr [t]
}
AGG_INLINE unsigned uround(double v) //-------uround
{
unsigned t;
__asm fld qword ptr [v]
__asm fistp dword ptr [t]
__asm mov eax, dword ptr [t]
}
#pragma warning(pop)
AGG_INLINE unsigned ufloor(double v) //-------ufloor
{
return unsigned(floor(v));
}
AGG_INLINE unsigned uceil(double v) //--------uceil
{
return unsigned(ceil(v));
}
#elif defined(AGG_QIFIST)
AGG_INLINE int iround(double v)
{
return int(v);
}
AGG_INLINE int uround(double v)
{
return unsigned(v);
}
AGG_INLINE unsigned ufloor(double v)
{
return unsigned(floor(v));
}
AGG_INLINE unsigned uceil(double v)
{
return unsigned(ceil(v));
}
#else
AGG_INLINE int iround(double v)
{
return int((v < 0.0) ? v - 0.5 : v + 0.5);
}
AGG_INLINE int uround(double v)
{
return unsigned(v + 0.5);
}
AGG_INLINE unsigned ufloor(double v)
{
return unsigned(v);
}
AGG_INLINE unsigned uceil(double v)
{
return unsigned(ceil(v));
}
#endif
//---------------------------------------------------------------saturation
template<int Limit> struct saturation
{
AGG_INLINE static int iround(double v)
{
if(v < double(-Limit)) return -Limit;
if(v > double( Limit)) return Limit;
return agg::iround(v);
}
};
//------------------------------------------------------------------mul_one
template<unsigned Shift> struct mul_one
{
AGG_INLINE static unsigned mul(unsigned a, unsigned b)
{
register unsigned q = a * b + (1 << (Shift-1));
return (q + (q >> Shift)) >> Shift;
}
};
//-------------------------------------------------------------------------
typedef unsigned char cover_type; //----cover_type
enum cover_scale_e
{
cover_shift = 8, //----cover_shift
cover_size = 1 << cover_shift, //----cover_size
cover_mask = cover_size - 1, //----cover_mask
cover_none = 0, //----cover_none
cover_full = cover_mask //----cover_full
};
//----------------------------------------------------poly_subpixel_scale_e
// These constants determine the subpixel accuracy, to be more precise,
// the number of bits of the fractional part of the coordinates.
// The possible coordinate capacity in bits can be calculated by formula:
// sizeof(int) * 8 - poly_subpixel_shift, i.e, for 32-bit integers and
// 8-bits fractional part the capacity is 24 bits.
enum poly_subpixel_scale_e
{
poly_subpixel_shift = 8, //----poly_subpixel_shift
poly_subpixel_scale = 1<<poly_subpixel_shift, //----poly_subpixel_scale
poly_subpixel_mask = poly_subpixel_scale-1, //----poly_subpixel_mask
};
//----------------------------------------------------------filling_rule_e
enum filling_rule_e
{
fill_non_zero,
fill_even_odd
};
//-----------------------------------------------------------------------pi
const double pi = 3.14159265358979323846;
//------------------------------------------------------------------deg2rad
inline double deg2rad(double deg)
{
return deg * pi / 180.0;
}
//------------------------------------------------------------------rad2deg
inline double rad2deg(double rad)
{
return rad * 180.0 / pi;
}
//----------------------------------------------------------------rect_base
template<class T> struct rect_base
{
typedef T value_type;
typedef rect_base<T> self_type;
T x1, y1, x2, y2;
rect_base() {}
rect_base(T x1_, T y1_, T x2_, T y2_) :
x1(x1_), y1(y1_), x2(x2_), y2(y2_) {}
void init(T x1_, T y1_, T x2_, T y2_)
{
x1 = x1_; y1 = y1_; x2 = x2_; y2 = y2_;
}
const self_type& normalize()
{
T t;
if(x1 > x2) { t = x1; x1 = x2; x2 = t; }
if(y1 > y2) { t = y1; y1 = y2; y2 = t; }
return *this;
}
bool clip(const self_type& r)
{
if(x2 > r.x2) x2 = r.x2;
if(y2 > r.y2) y2 = r.y2;
if(x1 < r.x1) x1 = r.x1;
if(y1 < r.y1) y1 = r.y1;
return x1 <= x2 && y1 <= y2;
}
bool is_valid() const
{
return x1 <= x2 && y1 <= y2;
}
bool hit_test(T x, T y) const
{
return (x >= x1 && x <= x2 && y >= y1 && y <= y2);
}
};
//-----------------------------------------------------intersect_rectangles
template<class Rect>
inline Rect intersect_rectangles(const Rect& r1, const Rect& r2)
{
Rect r = r1;
// First process x2,y2 because the other order
// results in Internal Compiler Error under
// Microsoft Visual C++ .NET 2003 69462-335-0000007-18038 in
// case of "Maximize Speed" optimization option.
//-----------------
if(r.x2 > r2.x2) r.x2 = r2.x2;
if(r.y2 > r2.y2) r.y2 = r2.y2;
if(r.x1 < r2.x1) r.x1 = r2.x1;
if(r.y1 < r2.y1) r.y1 = r2.y1;
return r;
}
//---------------------------------------------------------unite_rectangles
template<class Rect>
inline Rect unite_rectangles(const Rect& r1, const Rect& r2)
{
Rect r = r1;
if(r.x2 < r2.x2) r.x2 = r2.x2;
if(r.y2 < r2.y2) r.y2 = r2.y2;
if(r.x1 > r2.x1) r.x1 = r2.x1;
if(r.y1 > r2.y1) r.y1 = r2.y1;
return r;
}
typedef rect_base<int> rect_i; //----rect_i
typedef rect_base<float> rect_f; //----rect_f
typedef rect_base<double> rect_d; //----rect_d
//---------------------------------------------------------path_commands_e
enum path_commands_e
{
path_cmd_stop = 0, //----path_cmd_stop
path_cmd_move_to = 1, //----path_cmd_move_to
path_cmd_line_to = 2, //----path_cmd_line_to
path_cmd_curve3 = 3, //----path_cmd_curve3
path_cmd_curve4 = 4, //----path_cmd_curve4
path_cmd_curveN = 5, //----path_cmd_curveN
path_cmd_catrom = 6, //----path_cmd_catrom
path_cmd_ubspline = 7, //----path_cmd_ubspline
path_cmd_end_poly = 0x0F, //----path_cmd_end_poly
path_cmd_mask = 0x0F //----path_cmd_mask
};
//------------------------------------------------------------path_flags_e
enum path_flags_e
{
path_flags_none = 0, //----path_flags_none
path_flags_ccw = 0x10, //----path_flags_ccw
path_flags_cw = 0x20, //----path_flags_cw
path_flags_close = 0x40, //----path_flags_close
path_flags_mask = 0xF0 //----path_flags_mask
};
//---------------------------------------------------------------is_vertex
inline bool is_vertex(unsigned c)
{
return c >= path_cmd_move_to && c < path_cmd_end_poly;
}
//--------------------------------------------------------------is_drawing
inline bool is_drawing(unsigned c)
{
return c >= path_cmd_line_to && c < path_cmd_end_poly;
}
//-----------------------------------------------------------------is_stop
inline bool is_stop(unsigned c)
{
return c == path_cmd_stop;
}
//--------------------------------------------------------------is_move_to
inline bool is_move_to(unsigned c)
{
return c == path_cmd_move_to;
}
//--------------------------------------------------------------is_line_to
inline bool is_line_to(unsigned c)
{
return c == path_cmd_line_to;
}
//----------------------------------------------------------------is_curve
inline bool is_curve(unsigned c)
{
return c == path_cmd_curve3 || c == path_cmd_curve4;
}
//---------------------------------------------------------------is_curve3
inline bool is_curve3(unsigned c)
{
return c == path_cmd_curve3;
}
//---------------------------------------------------------------is_curve4
inline bool is_curve4(unsigned c)
{
return c == path_cmd_curve4;
}
//-------------------------------------------------------------is_end_poly
inline bool is_end_poly(unsigned c)
{
return (c & path_cmd_mask) == path_cmd_end_poly;
}
//----------------------------------------------------------------is_close
inline bool is_close(unsigned c)
{
return (c & ~(path_flags_cw | path_flags_ccw)) ==
(path_cmd_end_poly | path_flags_close);
}
//------------------------------------------------------------is_next_poly
inline bool is_next_poly(unsigned c)
{
return is_stop(c) || is_move_to(c) || is_end_poly(c);
}
//-------------------------------------------------------------------is_cw
inline bool is_cw(unsigned c)
{
return (c & path_flags_cw) != 0;
}
//------------------------------------------------------------------is_ccw
inline bool is_ccw(unsigned c)
{
return (c & path_flags_ccw) != 0;
}
//-------------------------------------------------------------is_oriented
inline bool is_oriented(unsigned c)
{
return (c & (path_flags_cw | path_flags_ccw)) != 0;
}
//---------------------------------------------------------------is_closed
inline bool is_closed(unsigned c)
{
return (c & path_flags_close) != 0;
}
//----------------------------------------------------------get_close_flag
inline unsigned get_close_flag(unsigned c)
{
return c & path_flags_close;
}
//-------------------------------------------------------clear_orientation
inline unsigned clear_orientation(unsigned c)
{
return c & ~(path_flags_cw | path_flags_ccw);
}
//---------------------------------------------------------get_orientation
inline unsigned get_orientation(unsigned c)
{
return c & (path_flags_cw | path_flags_ccw);
}
//---------------------------------------------------------set_orientation
inline unsigned set_orientation(unsigned c, unsigned o)
{
return clear_orientation(c) | o;
}
//--------------------------------------------------------------point_base
template<class T> struct point_base
{
typedef T value_type;
T x,y;
point_base() {}
point_base(T x_, T y_) : x(x_), y(y_) {}
};
typedef point_base<int> point_i; //-----point_i
typedef point_base<float> point_f; //-----point_f
typedef point_base<double> point_d; //-----point_d
//-------------------------------------------------------------vertex_base
template<class T> struct vertex_base
{
typedef T value_type;
T x,y;
unsigned cmd;
vertex_base() {}
vertex_base(T x_, T y_, unsigned cmd_) : x(x_), y(y_), cmd(cmd_) {}
};
typedef vertex_base<int> vertex_i; //-----vertex_i
typedef vertex_base<float> vertex_f; //-----vertex_f
typedef vertex_base<double> vertex_d; //-----vertex_d
//----------------------------------------------------------------row_info
template<class T> struct row_info
{
int x1, x2;
T* ptr;
row_info() {}
row_info(int x1_, int x2_, T* ptr_) : x1(x1_), x2(x2_), ptr(ptr_) {}
};
//----------------------------------------------------------const_row_info
template<class T> struct const_row_info
{
int x1, x2;
const T* ptr;
const_row_info() {}
const_row_info(int x1_, int x2_, const T* ptr_) :
x1(x1_), x2(x2_), ptr(ptr_) {}
};
//------------------------------------------------------------is_equal_eps
template<class T> inline bool is_equal_eps(T v1, T v2, T epsilon)
{
return fabs(v1 - v2) <= double(epsilon);
}
}
#endif
|