This file is indexed.

/usr/include/agg2/agg_span_gouraud_gray.h is in libagg-dev 2.5+dfsg1-9.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
//----------------------------------------------------------------------------
// Anti-Grain Geometry (AGG) - Version 2.5
// A high quality rendering engine for C++
// Copyright (C) 2002-2006 Maxim Shemanarev
// Contact: mcseem@antigrain.com
//          mcseemagg@yahoo.com
//          http://antigrain.com
// 
// AGG is free software; you can redistribute it and/or
// modify it under the terms of the GNU General Public License
// as published by the Free Software Foundation; either version 2
// of the License, or (at your option) any later version.
// 
// AGG is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.
// 
// You should have received a copy of the GNU General Public License
// along with AGG; if not, write to the Free Software
// Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, 
// MA 02110-1301, USA.
//----------------------------------------------------------------------------
//
// Adaptation for high precision colors has been sponsored by 
// Liberty Technology Systems, Inc., visit http://lib-sys.com
//
// Liberty Technology Systems, Inc. is the provider of
// PostScript and PDF technology for software developers.
// 
//----------------------------------------------------------------------------

#ifndef AGG_SPAN_GOURAUD_GRAY_INCLUDED
#define AGG_SPAN_GOURAUD_GRAY_INCLUDED

#include "agg_basics.h"
#include "agg_color_gray.h"
#include "agg_dda_line.h"
#include "agg_span_gouraud.h"

namespace agg
{

    //=======================================================span_gouraud_gray
    template<class ColorT> class span_gouraud_gray : public span_gouraud<ColorT>
    {
    public:
        typedef ColorT color_type;
        typedef typename color_type::value_type value_type;
        typedef span_gouraud<color_type> base_type;
        typedef typename base_type::coord_type coord_type;
        enum subpixel_scale_e
        { 
            subpixel_shift = 4, 
            subpixel_scale = 1 << subpixel_shift
        };

    private:
        //--------------------------------------------------------------------
        struct gray_calc
        {
            void init(const coord_type& c1, const coord_type& c2)
            {
                m_x1  = c1.x - 0.5;
                m_y1  = c1.y - 0.5;
                m_dx  = c2.x - c1.x;
                double dy = c2.y - c1.y;
                m_1dy = (fabs(dy) < 1e-10) ? 1e10 : 1.0 / dy;
                m_v1 = c1.color.v;
                m_a1 = c1.color.a;
                m_dv = c2.color.v - m_v1;
                m_da = c2.color.a - m_a1;
            }

            void calc(double y)
            {
                double k = (y - m_y1) * m_1dy;
                if(k < 0.0) k = 0.0;
                if(k > 1.0) k = 1.0;
                m_v = m_v1 + iround(m_dv * k);
                m_a = m_a1 + iround(m_da * k);
                m_x = iround((m_x1 + m_dx * k) * subpixel_scale);
            }

            double m_x1;
            double m_y1;
            double m_dx;
            double m_1dy;
            int    m_v1;
            int    m_a1;
            int    m_dv;
            int    m_da;
            int    m_v;
            int    m_a;
            int    m_x;
        };


    public:
        //--------------------------------------------------------------------
        span_gouraud_gray() {}
        span_gouraud_gray(const color_type& c1, 
                          const color_type& c2, 
                          const color_type& c3,
                          double x1, double y1, 
                          double x2, double y2,
                          double x3, double y3, 
                          double d = 0) : 
            base_type(c1, c2, c3, x1, y1, x2, y2, x3, y3, d)
        {}

        //--------------------------------------------------------------------
        void prepare()
        {
            coord_type coord[3];
            base_type::arrange_vertices(coord);

            m_y2 = int(coord[1].y);

            m_swap = cross_product(coord[0].x, coord[0].y, 
                                   coord[2].x, coord[2].y,
                                   coord[1].x, coord[1].y) < 0.0;

            m_c1.init(coord[0], coord[2]);
            m_c2.init(coord[0], coord[1]);
            m_c3.init(coord[1], coord[2]);
        }

        //--------------------------------------------------------------------
        void generate(color_type* span, int x, int y, unsigned len)
        {
            m_c1.calc(y);
            const gray_calc* pc1 = &m_c1;
            const gray_calc* pc2 = &m_c2;

            if(y < m_y2)
            {
                // Bottom part of the triangle (first subtriangle)
                //-------------------------
                m_c2.calc(y + m_c2.m_1dy);
            }
            else
            {
                // Upper part (second subtriangle)
                //-------------------------
                m_c3.calc(y - m_c3.m_1dy);
                pc2 = &m_c3;
            }

            if(m_swap)
            {
                // It means that the triangle is oriented clockwise, 
                // so that we need to swap the controlling structures
                //-------------------------
                const gray_calc* t = pc2;
                pc2 = pc1;
                pc1 = t;
            }

            // Get the horizontal length with subpixel accuracy
            // and protect it from division by zero
            //-------------------------
            int nlen = abs(pc2->m_x - pc1->m_x);
            if(nlen <= 0) nlen = 1;

            dda_line_interpolator<14> v(pc1->m_v, pc2->m_v, nlen);
            dda_line_interpolator<14> a(pc1->m_a, pc2->m_a, nlen);

            // Calculate the starting point of the gradient with subpixel 
            // accuracy and correct (roll back) the interpolators.
            // This operation will also clip the beginning of the span
            // if necessary.
            //-------------------------
            int start = pc1->m_x - (x << subpixel_shift);
            v    -= start; 
            a    -= start;
            nlen += start;

            int vv, va;
            enum lim_e { lim = color_type::base_mask };

            // Beginning part of the span. Since we rolled back the 
            // interpolators, the color values may have overflow.
            // So that, we render the beginning part with checking 
            // for overflow. It lasts until "start" is positive;
            // typically it's 1-2 pixels, but may be more in some cases.
            //-------------------------
            while(len && start > 0)
            {
                vv = v.y();
                va = a.y();
                if(vv < 0) vv = 0; if(vv > lim) vv = lim;
                if(va < 0) va = 0; if(va > lim) va = lim;
                span->v = (value_type)vv;
                span->a = (value_type)va;
                v     += subpixel_scale; 
                a     += subpixel_scale;
                nlen  -= subpixel_scale;
                start -= subpixel_scale;
                ++span;
                --len;
            }

            // Middle part, no checking for overflow.
            // Actual spans can be longer than the calculated length
            // because of anti-aliasing, thus, the interpolators can 
            // overflow. But while "nlen" is positive we are safe.
            //-------------------------
            while(len && nlen > 0)
            {
                span->v = (value_type)v.y();
                span->a = (value_type)a.y();
                v    += subpixel_scale; 
                a    += subpixel_scale;
                nlen -= subpixel_scale;
                ++span;
                --len;
            }

            // Ending part; checking for overflow.
            // Typically it's 1-2 pixels, but may be more in some cases.
            //-------------------------
            while(len)
            {
                vv = v.y();
                va = a.y();
                if(vv < 0) vv = 0; if(vv > lim) vv = lim;
                if(va < 0) va = 0; if(va > lim) va = lim;
                span->v = (value_type)vv;
                span->a = (value_type)va;
                v += subpixel_scale; 
                a += subpixel_scale;
                ++span;
                --len;
            }
        }


    private:
        bool      m_swap;
        int       m_y2;
        gray_calc m_c1;
        gray_calc m_c2;
        gray_calc m_c3;
    };


}

#endif