/usr/include/alberta/dof_chains.h is in libalberta-dev 3.0.1-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 | /*******************************************************************************
* ALBERTA: an Adaptive multi Level finite element toolbox using
* Bisectioning refinement and Error control by Residual
* Techniques for scientific Applications
*
* file: oem_solve.h
*
* description: Some inline support routines and definitions for chains of
* objects, linked via a doubly linked list. The list-nodes are
* assumed to have the name `chain', `row_chain' and `col_chain'.
*
*******************************************************************************
*
* authors: Claus-Justus Heine
* Abteilung fuer Angewandte Mathematik
* Albert-Ludwigs-Universitaet Freiburg
* Hermann-Herder-Str. 10
* D-79104 Freiburg im Breisgau, Germany
*
* http://www.alberta-fem.de
*
* (c) by C.-J. Heine (2009)
*
******************************************************************************/
#ifndef _ALBERTA_DOF_CHAINS_H_
#define _ALBERTA_DOF_CHAINS_H_
#include "alberta.h"
#ifndef CHAINED_BASIS_FUNCTIONS
# define CHAINED_BASIS_FUNCTIONS 1
#endif
static inline
int __chain_length(const DBL_LIST_NODE *head)
{
const DBL_LIST_NODE *ptr;
int len;
if (!CHAINED_BASIS_FUNCTIONS) {
return 1;
}
for (len = 1, ptr = head->next; ptr != head; ptr = ptr->next, ++len);
return len;
}
/* <<< CHAIN_...() */
#define CHAIN_INIT(elem) DBL_LIST_INIT(&(elem)->chain)
#define CHAIN_INITIALIZER(name) DBL_LIST_INITIALIZER((name).chain)
#define CHAIN_LENGTH(head) __chain_length(&(head)->chain)
#define CHAIN_SINGLE(var) \
(!CHAINED_BASIS_FUNCTIONS || dbl_list_empty(&(var)->chain))
#define CHAIN_NEXT(var, type) dbl_list_entry((var)->chain.next, type, chain)
#define CHAIN_PREV(var, type) dbl_list_entry((var)->chain.prev, type, chain)
#define CHAIN_ADD_HEAD(head, elem) \
dbl_list_add_head(&(head)->chain, &(elem)->chain)
#define CHAIN_ADD_TAIL(head, elem) \
dbl_list_add_tail(&(head)->chain, &(elem)->chain)
#define CHAIN_DEL(elem) \
dbl_list_del(&(elem)->chain)
#define CHAIN_ENTRY(node, type) \
dbl_list_entry((node)x, type, chain)
/* A loop over all elements of the chain _AFTER_ the first one */
#define CHAIN_FOREACH(ptr, head, type) \
if (!CHAIN_SINGLE((head))) \
dbl_list_for_each_entry((ptr), &(head)->chain, type, chain)
/* A loop over all elements safe the first, elements may be deleted */
#define CHAIN_FOREACH_SAFE(ptr, next, head, type) \
if (!CHAIN_SINGLE((head))) \
dbl_list_for_each_entry_safe((ptr), (next), &(head)->chain, type, chain)
/* A loop over all elements of the chain _AFTER_ the first one, in
* reverse direction.
*/
#define CHAIN_FOREACH_REV(ptr, head, type) \
if (!CHAIN_SINGLE((head))) \
dbl_list_for_each_entry_rev((ptr), &(head)->chain, type, chain)
/* A loop over all elements safe the first, elements may be deleted,
* loop goes in reverse direction.
*/
#define CHAIN_FOREACH_REV_SAFE(ptr, next, head, type) \
if (!CHAIN_SINGLE((head))) \
dbl_list_for_each_entry_rev_safe((ptr), (next), &(head)->chain, type, chain)
/* A do-while-loop over the entire cyclic list. NEVER delete elements
* from the list.
*/
#if CHAINED_BASIS_FUNCTIONS
# define CHAIN_DO(list, type) dbl_list_do_cyclic(list, type, chain)
# define CHAIN_WHILE(list, type) dbl_list_while_cyclic(list, type, chain)
# define CHAIN_DO_REV(list, type) \
dbl_list_do_cyclic_rev((list), type, chain)
# define CHAIN_WHILE_REV(list, type) \
dbl_list_while_cyclic_rev((list), type, chain)
#else
# define CHAIN_DO(list, type) do
# define CHAIN_WHILE(list, type) while (false)
# define CHAIN_DO_REV(list, type) do
# define CHAIN_WHILE_REV(list, type) while (false)
#endif
/* >>> */
/* <<< ROW_CHAIN_...() */
#define ROW_CHAIN_INIT(elem) DBL_LIST_INIT(&(elem)->row_chain)
#define ROW_CHAIN_INITIALIZER(name) DBL_LIST_INITIALIZER((name).col_chain)
#define ROW_CHAIN_LENGTH(head) __chain_length(&(head)->row_chain)
#define ROW_CHAIN_SINGLE(var) \
(!CHAINED_BASIS_FUNCTIONS || dbl_list_empty(&(var)->row_chain))
#define ROW_CHAIN_NEXT(var, type) \
dbl_list_entry((var)->row_chain.next, type, row_chain)
#define ROW_CHAIN_PREV(var, type) \
dbl_list_entry((var)->row_chain.prev, type, row_chain)
#define ROW_CHAIN_ADD_HEAD(head, elem) \
dbl_list_add_head(&(head)->row_chain, &(elem)->row_chain)
#define ROW_CHAIN_ADD_TAIL(head, elem) \
dbl_list_add_tail(&(head)->row_chain, &(elem)->row_chain)
#define ROW_CHAIN_DEL(elem) \
dbl_list_del(&(elem)->row_chain)
#define ROW_CHAIN_FOREACH(ptr, head, type) \
if (!ROW_CHAIN_SINGLE((head))) \
dbl_list_for_each_entry((ptr), &(head)->row_chain, type, row_chain)
#define ROW_CHAIN_FOREACH_SAFE(ptr, next, head, type) \
if (!ROW_CHAIN_SINGLE((head))) \
dbl_list_for_each_entry_safe( \
(ptr), (next), &(head)->row_chain, type, row_chain)
#define ROW_CHAIN_FOREACH_REV(ptr, head, type) \
if (!ROW_CHAIN_SINGLE((head))) \
dbl_list_for_each_entry_rev((ptr), &(head)->row_chain, type, row_chain)
#define ROW_CHAIN_FOREACH_REV_SAFE(ptr, next, head, type) \
if (!ROW_CHAIN_SINGLE((head))) \
dbl_list_for_each_entry_rev_safe( \
(ptr), (next), &(head)->row_chain, type, row_chain)
#if CHAINED_BASIS_FUNCTIONS
# define ROW_CHAIN_DO(list, type) \
dbl_list_do_cyclic((list), type, row_chain)
# define ROW_CHAIN_WHILE(list, type) \
dbl_list_while_cyclic((list), type, row_chain)
# define ROW_CHAIN_DO_REV(list, type) \
dbl_list_do_cyclic_rev((list), type, row_chain)
# define ROW_CHAIN_WHILE_REV(list, type) \
dbl_list_while_cyclic_rev((list), type, row_chain)
#else
# define ROW_CHAIN_DO(list, type) do
# define ROW_CHAIN_WHILE(list, type) while (false)
# define ROW_CHAIN_DO_REV(list, type) do
# define ROW_CHAIN_WHILE_REV(list, type) while (false)
#endif
/* >>> */
/* <<< COL_CHAIN...() */
#define COL_CHAIN_INIT(elem) DBL_LIST_INIT(&(elem)->col_chain)
#define COL_CHAIN_INITIALIZER(name) DBL_LIST_INITIALIZER((name).col_chain)
#define COL_CHAIN_LENGTH(head) __chain_length(&(head)->col_chain)
#define COL_CHAIN_SINGLE(var) \
(!CHAINED_BASIS_FUNCTIONS || dbl_list_empty(&(var)->col_chain))
#define COL_CHAIN_NEXT(var, type) \
dbl_list_entry((var)->col_chain.next, type, col_chain)
#define COL_CHAIN_PREV(var, type) \
dbl_list_entry((var)->col_chain.prev, type, col_chain)
#define COL_CHAIN_ADD_HEAD(head, elem) \
dbl_list_add_head(&(head)->col_chain, &(elem)->col_chain)
#define COL_CHAIN_ADD_TAIL(head, elem) \
dbl_list_add_tail(&(head)->col_chain, &(elem)->col_chain)
#define COL_CHAIN_DEL(elem) \
dbl_list_del(&(elem)->col_chain)
#define COL_CHAIN_FOREACH(ptr, head, type) \
if (!COL_CHAIN_SINGLE((head))) \
dbl_list_for_each_entry((ptr), &(head)->col_chain, type, col_chain)
#define COL_CHAIN_FOREACH_SAFE(ptr, next, head, type) \
if (!COL_CHAIN_SINGLE((head))) \
dbl_list_for_each_entry_safe( \
(ptr), (next), &(head)->col_chain, type, col_chain)
#define COL_CHAIN_FOREACH_REV(ptr, head, type) \
if (!COL_CHAIN_SINGLE((head))) \
dbl_list_for_each_entry_rev((ptr), &(head)->col_chain, type, col_chain)
#define COL_CHAIN_FOREACH_REV_SAFE(ptr, next, head, type) \
if (!COL_CHAIN_SINGLE((head))) \
dbl_list_for_each_entry_rev_safe( \
(ptr), (next), &(head)->col_chain, type, col_chain)
#if CHAINED_BASIS_FUNCTIONS
# define COL_CHAIN_DO(list, type) \
dbl_list_do_cyclic((list), type, col_chain)
# define COL_CHAIN_WHILE(list, type) \
dbl_list_while_cyclic((list), type, col_chain)
# define COL_CHAIN_DO_REV(list, type) \
dbl_list_do_cyclic_rev((list), type, col_chain)
# define COL_CHAIN_WHILE_REV(list, type) \
dbl_list_while_cyclic_rev((list), type, col_chain)
#else
# define COL_CHAIN_DO(list, type) do
# define COL_CHAIN_WHILE(list, type) while (false)
# define COL_CHAIN_DO_REV(list, type) do
# define COL_CHAIN_WHILE_REV(list, type) while (false)
#endif
/* >>> */
/* <<< DEP_CHAIN...() */
/* "depth" chain, this is currently only use for quadrature "tensors" */
#define DEP_CHAIN_INIT(elem) DBL_LIST_INIT(&(elem)->dep_chain)
#define DEP_CHAIN_INITIALIZER(name) DBL_LIST_INITIALIZER((name).dep_chain)
#define DEP_CHAIN_LENGTH(head) __chain_length(&(head)->dep_chain)
#define DEP_CHAIN_SINGLE(var) \
(!CHAINED_BASIS_FUNCTIONS || dbl_list_empty(&(var)->dep_chain))
#define DEP_CHAIN_NEXT(var, type) \
dbl_list_entry((var)->dep_chain.next, type, dep_chain)
#define DEP_CHAIN_PREV(var, type) \
dbl_list_entry((var)->dep_chain.prev, type, dep_chain)
#define DEP_CHAIN_ADD_HEAD(head, elem) \
dbl_list_add_head(&(head)->dep_chain, &(elem)->dep_chain)
#define DEP_CHAIN_ADD_TAIL(head, elem) \
dbl_list_add_tail(&(head)->dep_chain, &(elem)->dep_chain)
#define DEP_CHAIN_DEL(elem) \
dbl_list_del(&(elem)->dep_chain)
#define DEP_CHAIN_FOREACH(ptr, head, type) \
if (!DEP_CHAIN_SINGLE((head))) \
dbl_list_for_each_entry((ptr), &(head)->dep_chain, type, dep_chain)
#define DEP_CHAIN_FOREACH_SAFE(ptr, next, head, type) \
if (!DEP_CHAIN_SINGLE((head))) \
dbl_list_for_each_entry_safe( \
(ptr), next, &(head)->dep_chain, type, dep_chain)
#define DEP_CHAIN_FOREACH_REV(ptr, head, type) \
if (!DEP_CHAIN_SINGLE((head))) \
dbl_list_for_each_entry_rev((ptr), &(head)->dep_chain, type, dep_chain)
#define DEP_CHAIN_FOREACH_REV_SAFE(ptr, next, head, type) \
if (!DEP_CHAIN_SINGLE((head))) \
dbl_list_for_each_entry_rev_safe( \
(ptr), (next), &(head)->dep_chain, type, dep_chain)
#if CHAINED_BASIS_FUNCTIONS
# define DEP_CHAIN_DO(list, type) \
dbl_list_do_cyclic((list), type, dep_chain)
# define DEP_CHAIN_WHILE(list, type) \
dbl_list_while_cyclic((list), type, dep_chain)
# define DEP_CHAIN_DO_REV(list, type) \
dbl_list_do_cyclic_rev((list), type, dep_chain)
# define DEP_CHAIN_WHILE_REV(list, type) \
dbl_list_while_cyclic_rev((list), type, dep_chain)
#else
# define DEP_CHAIN_DO(list, type) do
# define DEP_CHAIN_WHILE(list, type) while (false)
# define DEP_CHAIN_DO_REV(list, type) do
# define DEP_CHAIN_WHILE_REV(list, type) while (false)
#endif
/* >>> */
/* <<< FOREACH_DOF...() */
#define FOREACH_DOF(fe_space, todo, next) \
{ \
const FE_SPACE *_AI_fe_space = (fe_space); \
CHAIN_DO(_AI_fe_space, const FE_SPACE) { \
FOR_ALL_DOFS(_AI_fe_space->admin, { todo; }); \
next; \
} CHAIN_WHILE(_AI_fe_space, const FE_SPACE); \
}
#define FOREACH_DOF_DOW(fe_space, todo, todo_cart, next) \
{ \
const FE_SPACE *_AI_fe_space = (fe_space); \
CHAIN_DO(_AI_fe_space, const FE_SPACE) { \
if (_AI_fe_space->rdim != 1 && _AI_fe_space->bas_fcts->rdim == 1) { \
FOR_ALL_DOFS(_AI_fe_space->admin, { todo_cart; }); \
} else { \
FOR_ALL_DOFS(_AI_fe_space->admin, { todo; }); \
} \
next; \
} CHAIN_WHILE(_AI_fe_space, const FE_SPACE); \
}
#define FOREACH_FREE_DOF(fe_space, todo, next) \
{ \
const FE_SPACE *_AI_fe_space = (fe_space); \
CHAIN_DO(_AI_fe_space, const FE_SPACE) { \
FOR_ALL_FREE_DOFS(_AI_fe_space->admin, todo); \
next; \
} CHAIN_WHILE(_AI_fe_space, const FE_SPACE); \
}
#define FOREACH_FREE_DOF_DOW(fe_space, todo, todo_cart, next) \
{ \
const FE_SPACE *_AI_fe_space = (fe_space); \
CHAIN_DO(_AI_fe_space, const FE_SPACE) { \
if (_AI_fe_space->rdim != 1 && _AI_fe_space->bas_fcts->rdim == 1) { \
FOR_ALL_FREE_DOFS(_AI_fe_space->admin, todo_cart); \
} else { \
FOR_ALL_FREE_DOFS(_AI_fe_space->admin, todo); \
} \
next; \
} CHAIN_WHILE(_AI_fe_space, const FE_SPACE); \
}
/* >>> */
/* <<< generate a DOF-vec skeleton for a possibly chained fe-space */
static inline
DOF_REAL_VEC *init_dof_real_vec_skel(DOF_REAL_VEC vecs[],
const char *name,
const FE_SPACE *fe_space)
{
DOF_REAL_VEC *head = vecs;
const FE_SPACE *fe_chain;
memset(head, 0, sizeof(*head));
head->fe_space = fe_space;
head->name = name;
head->size = fe_space->admin->size_used;
head->reserved = 1;
CHAIN_INIT(head);
CHAIN_FOREACH(fe_chain, fe_space, const FE_SPACE) {
memset(++vecs, 0, sizeof(*vecs));
vecs->fe_space = fe_chain;
vecs->name = name;
vecs->size = fe_chain->admin->size_used;
vecs->reserved = 1;
CHAIN_ADD_TAIL(head, vecs);
}
return head;
}
static inline
DOF_REAL_D_VEC *init_dof_real_d_vec_skel(DOF_REAL_D_VEC vecs[],
const char *name,
const FE_SPACE *fe_space)
{
DOF_REAL_D_VEC *head = vecs;
const FE_SPACE *fe_chain;
memset(head, 0, sizeof(*head));
head->fe_space = fe_space;
head->name = name;
head->size = fe_space->admin->size_used;
head->reserved = DIM_OF_WORLD;
CHAIN_INIT(head);
CHAIN_FOREACH(fe_chain, fe_space, const FE_SPACE) {
memset(++vecs, 0, sizeof(*vecs));
vecs->fe_space = fe_chain;
vecs->name = name;
vecs->size = fe_chain->admin->size_used;
vecs->reserved = DIM_OF_WORLD;
CHAIN_ADD_TAIL(head, vecs);
}
return head;
}
static inline
DOF_REAL_VEC_D *init_dof_real_vec_d_skel(DOF_REAL_VEC_D vecs[],
const char *name,
const FE_SPACE *fe_space)
{
DOF_REAL_VEC_D *head = vecs;
const FE_SPACE *fe_chain;
memset(head, 0, sizeof(*head));
head->fe_space = fe_space;
head->name = name;
head->size = fe_space->admin->size_used;
head->stride =
(fe_space->rdim == fe_space->bas_fcts->rdim) ? 1 : DIM_OF_WORLD;
CHAIN_INIT(head);
CHAIN_FOREACH(fe_chain, fe_space, const FE_SPACE) {
memset(++vecs, 0, sizeof(*vecs));
vecs->fe_space = fe_chain;
vecs->name = name;
vecs->size = fe_chain->admin->size_used;
vecs->stride =
(fe_chain->rdim == fe_chain->bas_fcts->rdim) ? 1 : DIM_OF_WORLD;
CHAIN_ADD_TAIL(head, vecs);
}
return head;
}
static inline
DOF_SCHAR_VEC *init_dof_schar_vec_skel(DOF_SCHAR_VEC vecs[],
const char *name,
const FE_SPACE *fe_space)
{
DOF_SCHAR_VEC *head = vecs;
const FE_SPACE *fe_chain;
memset(head, 0, sizeof(*head));
head->fe_space = fe_space;
head->name = name;
head->size = fe_space->admin->size_used;
head->reserved = 1;
CHAIN_INIT(head);
CHAIN_FOREACH(fe_chain, fe_space, const FE_SPACE) {
memset(++vecs, 0, sizeof(*vecs));
vecs->fe_space = fe_chain;
vecs->name = name;
vecs->size = fe_chain->admin->size_used;
vecs->reserved = 1;
CHAIN_ADD_TAIL(head, vecs);
}
return head;
}
static inline
DOF_REAL_VEC *get_dof_real_vec_skel(const char *name,
const FE_SPACE *fe_space,
SCRATCH_MEM scr)
{
DOF_REAL_VEC *vecs;
vecs = SCRATCH_MEM_ALLOC(scr, CHAIN_LENGTH(fe_space), DOF_REAL_VEC);
return init_dof_real_vec_skel(vecs, name, fe_space);
}
static inline
DOF_REAL_D_VEC *get_dof_real_d_vec_skel(const char *name,
const FE_SPACE *fe_space,
SCRATCH_MEM scr)
{
DOF_REAL_D_VEC *vecs;
vecs = SCRATCH_MEM_ALLOC(scr, CHAIN_LENGTH(fe_space), DOF_REAL_D_VEC);
return init_dof_real_d_vec_skel(vecs, name, fe_space);
}
static inline
DOF_REAL_VEC_D *get_dof_real_vec_d_skel(const char *name,
const FE_SPACE *fe_space,
SCRATCH_MEM scr)
{
DOF_REAL_VEC_D *vecs;
vecs = SCRATCH_MEM_ALLOC(scr, CHAIN_LENGTH(fe_space), DOF_REAL_VEC_D);
return init_dof_real_vec_d_skel(vecs, name, fe_space);
}
static inline
DOF_SCHAR_VEC *get_dof_schar_vec_skel(const char *name,
const FE_SPACE *fe_space,
SCRATCH_MEM scr)
{
DOF_SCHAR_VEC *vecs;
vecs = SCRATCH_MEM_ALLOC(scr, CHAIN_LENGTH(fe_space), DOF_SCHAR_VEC);
return init_dof_schar_vec_skel(vecs, name, fe_space);
}
/* >>> */
/* <<< distribute a contiguous vector to a DOF_REAL[_D]_VEC[_D] */
/* Given a possibly chained DOF_VEC skeleton, distribute the given
* contiguous vector to the DOF_VEC skeleton. This is meant to be used
* inside a matrix-vector multiplication routine. SKEL is a fake-chain
* of DOF-vectors, e.g. obtained by get_dof_real_vec_skel().
*/
static inline
size_t distribute_to_dof_real_vec_skel(DOF_REAL_VEC *skel, const REAL *data)
{
size_t length = 0;
CHAIN_DO(skel, DOF_REAL_VEC) {
skel->vec = (REAL *)data;
skel->size = skel->fe_space->admin->size_used;
data += skel->size;
length += skel->size;
} CHAIN_WHILE(skel, DOF_REAL_VEC);
return length;
}
static inline
size_t distribute_to_dof_real_d_vec_skel(DOF_REAL_D_VEC *skel, const REAL *ptr)
{
size_t length = 0;
REAL_D *data = (REAL_D *)ptr;
CHAIN_DO(skel, DOF_REAL_VEC) {
skel->vec = data;
skel->size = skel->fe_space->admin->size_used;
data += skel->size;
length += skel->size;
} CHAIN_WHILE(skel, DOF_REAL_D_VEC);
return length * DIM_OF_WORLD;
}
static inline
size_t distribute_to_dof_real_vec_d_skel(DOF_REAL_VEC_D *skel, const REAL *data)
{
size_t length = 0, l;
CHAIN_DO(skel, DOF_REAL_VEC_D) {
skel->vec = (REAL *)data;
skel->size = skel->fe_space->admin->size_used;
l = skel->size * (skel->stride != 1 ? DIM_OF_WORLD : 1);
data += l;
length += l;
} CHAIN_WHILE(skel, DOF_REAL_VEC_D);
return length;
}
static inline
size_t distribute_to_dof_schar_vec_skel(DOF_SCHAR_VEC *skel, const S_CHAR *data)
{
size_t length = 0;
CHAIN_DO(skel, DOF_SCHAR_VEC) {
skel->vec = (S_CHAR *)data;
skel->size = skel->fe_space->admin->size_used;
data += skel->size;
length += skel->size;
} CHAIN_WHILE(skel, DOF_SCHAR_VEC);
return length;
}
/* >>> */
/* <<< copy a contiguous vector to a DOF_REAL[_D]_VEC[_D] */
/* This is meant to be called after some solver has done its job to
* copy the contiguous result vector back to the DOF-vector chain.
*/
static inline
size_t copy_to_dof_real_vec(DOF_REAL_VEC *vecs, const REAL *data)
{
size_t length = 0;
CHAIN_DO(vecs, DOF_REAL_VEC) {
DOF size_used = vecs->fe_space->admin->size_used;
memcpy(vecs->vec, data, size_used * sizeof(REAL));
data += size_used;
length += size_used;
} CHAIN_WHILE(vecs, DOF_REAL_VEC);
return length;
}
static inline
size_t copy_to_dof_real_d_vec(DOF_REAL_D_VEC *vecs, const REAL *_data)
{
size_t length = 0;
const REAL_D *data = (const REAL_D *)_data;
CHAIN_DO(vecs, DOF_REAL_D_VEC) {
DOF size_used = vecs->fe_space->admin->size_used;
memcpy(vecs->vec, data, size_used * sizeof(REAL_D));
data += size_used;
length += size_used;
} CHAIN_WHILE(vecs, DOF_REAL_D_VEC);
return length;
}
static inline
size_t copy_to_dof_real_vec_d(DOF_REAL_VEC_D *vecs, const REAL *data)
{
size_t length = 0;
CHAIN_DO(vecs, DOF_REAL_VEC_D) {
DOF size_used = vecs->fe_space->admin->size_used;
if (vecs->stride != 1) {
size_used *= DIM_OF_WORLD;
}
memcpy(vecs->vec, data, size_used * sizeof(REAL));
data += size_used;
length += size_used;
} CHAIN_WHILE(vecs, DOF_REAL_VEC_D);
return length;
}
static inline
size_t copy_to_dof_schar_vec(DOF_SCHAR_VEC *vecs, const S_CHAR *data)
{
size_t length = 0;
CHAIN_DO(vecs, DOF_SCHAR_VEC) {
DOF size_used = vecs->fe_space->admin->size_used;
memcpy(vecs->vec, data, size_used * sizeof(S_CHAR));
data += size_used;
length += size_used;
} CHAIN_WHILE(vecs, DOF_SCHAR_VEC);
return length;
}
/* >>> */
/* <<< copy a DOF_REAL[_D]_VEC[_D] to a contiguous vector */
/* This is meant to be called before some solver expecting a
* contiguous vector tries to do its job. This takes the data of a
* DOF-vector chain and copies it to the given contiguous memory
* portion.
*/
static inline
size_t copy_from_dof_real_vec(REAL *data, const DOF_REAL_VEC *vecs)
{
size_t length = 0;
CHAIN_DO(vecs, DOF_REAL_VEC) {
DOF size_used = vecs->fe_space->admin->size_used;
memcpy(data, vecs->vec, size_used * sizeof(REAL));
FOR_ALL_USED_FREE_DOFS(vecs->fe_space->admin, data[dof] = 0.0);
data += size_used;
length += size_used;
} CHAIN_WHILE(vecs, DOF_REAL_VEC);
return length;
}
static inline
size_t copy_from_dof_real_d_vec(REAL_D *data, const DOF_REAL_D_VEC *vecs)
{
size_t length = 0;
CHAIN_DO(vecs, DOF_REAL_D_VEC) {
DOF size_used = vecs->fe_space->admin->size_used;
memcpy(data, vecs->vec, size_used * sizeof(REAL_D));
FOR_ALL_USED_FREE_DOFS(vecs->fe_space->admin, SET_DOW(0.0, data[dof]));
data += size_used;
length += size_used;
} CHAIN_WHILE(vecs, DOF_REAL_D_VEC);
return length;
}
static inline
size_t copy_from_dof_real_vec_d(REAL *data, const DOF_REAL_VEC_D *vecs)
{
size_t length = 0;
CHAIN_DO(vecs, DOF_REAL_VEC_D) {
DOF size_used = vecs->fe_space->admin->size_used;
if (vecs->stride != 1) {
size_used *= DIM_OF_WORLD;
memcpy(data, vecs->vec, size_used * sizeof(REAL));
FOR_ALL_USED_FREE_DOFS(vecs->fe_space->admin,
SET_DOW(0.0, ((REAL_D *)data)[dof]));
} else {
memcpy(data, vecs->vec, size_used * sizeof(REAL));
FOR_ALL_USED_FREE_DOFS(vecs->fe_space->admin, data[dof] = 0.0);
}
data += size_used;
length += size_used;
} CHAIN_WHILE(vecs, DOF_REAL_VEC_D);
return length;
}
static inline
size_t copy_from_dof_schar_vec(S_CHAR *data, const DOF_SCHAR_VEC *vecs)
{
size_t length = 0;
CHAIN_DO(vecs, DOF_SCHAR_VEC) {
DOF size_used = vecs->fe_space->admin->size_used;
memcpy(data, vecs->vec, size_used * sizeof(S_CHAR));
FOR_ALL_USED_FREE_DOFS(vecs->fe_space->admin, data[dof] = 0);
data += size_used;
length += size_used;
} CHAIN_WHILE(vecs, DOF_SCHAR_VEC);
return length;
}
/* >>> */
/* <<< Length (in REAL's) of a vector */
/* Compute the size of the given DOF_REAL[_D]_VEC[_D] chain in terms
* of REAL components.
*/
static inline size_t dof_real_vec_d_length(const FE_SPACE *fe_space)
{
size_t len = 0;
CHAIN_DO(fe_space, const FE_SPACE) {
if (fe_space->bas_fcts->rdim == 1 && fe_space->rdim != 1) {
len += fe_space->admin->size_used * DIM_OF_WORLD;
} else {
len += fe_space->admin->size_used;
}
} CHAIN_WHILE(fe_space, const FE_SPACE);
return len;
}
static inline size_t dof_real_d_vec_length(const FE_SPACE *fe_space)
{
return dof_real_vec_d_length(fe_space);
}
static inline size_t dof_real_vec_length(const FE_SPACE *fe_space)
{
return dof_real_vec_d_length(fe_space);
}
/* >>> */
/* <<< refine_inter hooks etc. */
/* Install the standard hooks from the basis function implementations
* into each component of a possibly chained discrete function.
*/
/* <<< refine_inter */
static inline void set_refine_inter(DOF_REAL_VEC *uh)
{
CHAIN_DO(uh,DOF_REAL_VEC) {
uh->refine_interpol = uh->fe_space->bas_fcts->real_refine_inter;
} CHAIN_WHILE(uh, DOF_REAL_VEC);
}
static inline void set_refine_inter_d(DOF_REAL_D_VEC *uh)
{
CHAIN_DO(uh,DOF_REAL_D_VEC) {
uh->refine_interpol = uh->fe_space->bas_fcts->real_d_refine_inter;
} CHAIN_WHILE(uh, DOF_REAL_D_VEC);
}
static inline void set_refine_inter_dow(DOF_REAL_VEC_D *uh)
{
CHAIN_DO(uh,DOF_REAL_VEC_D) {
uh->refine_interpol = uh->fe_space->bas_fcts->real_refine_inter_d;
} CHAIN_WHILE(uh, DOF_REAL_VEC_D);
}
/* >>> */
/* <<< coarse_inter */
static inline void set_coarse_inter(DOF_REAL_VEC *uh)
{
CHAIN_DO(uh,DOF_REAL_VEC) {
uh->coarse_restrict = uh->fe_space->bas_fcts->real_coarse_inter;
} CHAIN_WHILE(uh, DOF_REAL_VEC);
}
static inline void set_coarse_inter_d(DOF_REAL_D_VEC *uh)
{
CHAIN_DO(uh,DOF_REAL_D_VEC) {
uh->coarse_restrict = uh->fe_space->bas_fcts->real_d_coarse_inter;
} CHAIN_WHILE(uh, DOF_REAL_D_VEC);
}
static inline void set_coarse_inter_dow(DOF_REAL_VEC_D *uh)
{
CHAIN_DO(uh,DOF_REAL_VEC_D) {
uh->coarse_restrict = uh->fe_space->bas_fcts->real_coarse_inter_d;
} CHAIN_WHILE(uh, DOF_REAL_VEC_D);
}
/* >>> */
/* <<< coarse_restrict */
static inline void set_coarse_restrict(DOF_REAL_VEC *uh)
{
CHAIN_DO(uh,DOF_REAL_VEC) {
uh->coarse_restrict = uh->fe_space->bas_fcts->real_coarse_restr;
} CHAIN_WHILE(uh, DOF_REAL_VEC);
}
static inline void set_coarse_restrict_d(DOF_REAL_D_VEC *uh)
{
CHAIN_DO(uh,DOF_REAL_D_VEC) {
uh->coarse_restrict = uh->fe_space->bas_fcts->real_d_coarse_restr;
} CHAIN_WHILE(uh, DOF_REAL_D_VEC);
}
static inline void set_coarse_restrict_dow(DOF_REAL_VEC_D *uh)
{
CHAIN_DO(uh,DOF_REAL_VEC_D) {
uh->coarse_restrict = uh->fe_space->bas_fcts->real_coarse_restr_d;
} CHAIN_WHILE(uh, DOF_REAL_VEC_D);
}
/* >>> */
/* >>> */
/* <<< sub-chains */
/* A sub-chain is a shallow-copy of the real objects (shallow means,
* e.g., that DOF_REAL_VEC::vec is not cloned, but just the pointer is
* installed into the copy).
*
* A sub-chain has to be updated explicitly when the backing "real"
* object changes (e.g. because of mesh-refinement etc., matrix
* update).
*/
/* <<< clone basis functions */
static inline
BAS_FCTS *bas_fcts_sub_chain(SCRATCH_MEM scr,
const BAS_FCTS *bfcts, FLAGS which)
{
BAS_FCTS *first = NULL, *chain;
CHAIN_DO(bfcts, const BAS_FCTS) {
if ((which & 1)) {
chain = SCRATCH_MEM_ALLOC(scr, 1, BAS_FCTS);
*chain = *bfcts;
if (first == NULL) {
first = chain;
CHAIN_INIT(first);
} else {
CHAIN_ADD_TAIL(first, chain);
}
}
which >>= 1;
} CHAIN_WHILE(bfcts, const BAS_FCTS);
return first;
}
/* >>> */
/* <<< clone fe-spaces */
static inline
FE_SPACE *fe_space_sub_chain(SCRATCH_MEM scr,
const FE_SPACE *fe_space, FLAGS which)
{
FE_SPACE *first = NULL, *chain;
const BAS_FCTS *bfcts;
bfcts = bas_fcts_sub_chain(scr, fe_space->bas_fcts, which);
CHAIN_DO(fe_space, const FE_SPACE) {
if ((which & 1)) {
chain = SCRATCH_MEM_ALLOC(scr, 1, FE_SPACE);
*chain = *fe_space;
chain->bas_fcts = bfcts;
if (first == NULL) {
first = chain;
CHAIN_INIT(first);
} else {
CHAIN_ADD_TAIL(first, chain);
}
bfcts = CHAIN_NEXT(bfcts, const BAS_FCTS);
}
which >>= 1;
} CHAIN_WHILE(fe_space, const FE_SPACE);
return first;
}
/* >>> */
/* <<< sub-chains for DOF_..._VECs */
#define DEFUN_DOF_VEC_SUB_CHAIN(TYPE, type) \
static inline \
DOF_##TYPE *dof_##type##_sub_chain( \
SCRATCH_MEM scr, const DOF_##TYPE *vec, FLAGS which) \
{ \
DOF_##TYPE *first = NULL, *chain; \
const FE_SPACE *fecp; \
\
fecp = fe_space_sub_chain(scr, vec->fe_space, which); \
\
CHAIN_DO(vec, const DOF_##TYPE) { \
if ((which & 1)) { \
chain = SCRATCH_MEM_ALLOC(scr, 1, DOF_##TYPE); \
*chain = *vec; \
chain->unchained = vec; \
chain->fe_space = fecp; \
chain->mem_info = NULL; \
chain->next = NULL; \
if (first == NULL) { \
first = chain; \
CHAIN_INIT(first); \
} else { \
CHAIN_ADD_TAIL(first, chain); \
} \
fecp = CHAIN_NEXT(fecp, const FE_SPACE); \
} \
which >>= 1; \
} CHAIN_WHILE(vec, const DOF_##TYPE); \
return first; \
} \
struct _AI_semicolon_dummy
/* Shallow update, i.e. make sure the sub_vec->vec points to
* sub_vec->vec->unchained, sub_vec->fe_space is _NOT_ updated, nor
* the underlying basis functions.
*/
#define DEFUN_UPDATE_DOF_VEC_SUB_CHAIN(TYPE, type) \
static inline \
void update_dof_##type##_sub_chain(const DOF_##TYPE *sub_vec) \
{ \
CHAIN_DO(sub_vec, const DOF_REAL_VEC) { \
((DOF_##TYPE *)sub_vec)->vec = sub_vec->unchained->vec; \
((DOF_##TYPE *)sub_vec)->size = sub_vec->unchained->size; \
} CHAIN_WHILE(sub_vec, const DOF_##TYPE); \
} \
struct _AI_semicolon_dummy
DEFUN_DOF_VEC_SUB_CHAIN(REAL_VEC, real_vec);
DEFUN_UPDATE_DOF_VEC_SUB_CHAIN(REAL_VEC, real_vec);
DEFUN_DOF_VEC_SUB_CHAIN(REAL_D_VEC, real_d_vec);
DEFUN_UPDATE_DOF_VEC_SUB_CHAIN(REAL_D_VEC, real_d_vec);
DEFUN_DOF_VEC_SUB_CHAIN(REAL_VEC_D, real_vec_d);
DEFUN_UPDATE_DOF_VEC_SUB_CHAIN(REAL_VEC_D, real_vec_d);
DEFUN_DOF_VEC_SUB_CHAIN(DOF_VEC, dof_vec);
DEFUN_UPDATE_DOF_VEC_SUB_CHAIN(DOF_VEC, dof_vec);
DEFUN_DOF_VEC_SUB_CHAIN(INT_VEC, int_vec);
DEFUN_UPDATE_DOF_VEC_SUB_CHAIN(INT_VEC, int_vec);
DEFUN_DOF_VEC_SUB_CHAIN(SCHAR_VEC, schar_vec);
DEFUN_UPDATE_DOF_VEC_SUB_CHAIN(SCHAR_VEC, schar_vec);
DEFUN_DOF_VEC_SUB_CHAIN(UCHAR_VEC, uchar_vec);
DEFUN_UPDATE_DOF_VEC_SUB_CHAIN(UCHAR_VEC, uchar_vec);
DEFUN_DOF_VEC_SUB_CHAIN(PTR_VEC, ptr_vec);
DEFUN_UPDATE_DOF_VEC_SUB_CHAIN(PTR_VEC, ptr_vec);
/* >>> */
/* <<< sub-chains for DOF_MATRIXes */
/* helper-function: flat dummy clone of a DOF-matrix */
static inline
void _AI_unchain_dof_matrix(DOF_MATRIX *to, const DOF_MATRIX *from,
const FE_SPACE *row_fe_space,
const FE_SPACE *col_fe_space)
{
*to = *from;
to->unchained = from;
COL_CHAIN_INIT(to);
ROW_CHAIN_INIT(to);
to->row_fe_space = row_fe_space;
to->col_fe_space = col_fe_space;
to->mem_info = NULL;
to->next = NULL;
}
/* a helper-function for extracting one row */
static inline
DOF_MATRIX *_AI_dm_row_sub_chain(SCRATCH_MEM scr,
const DOF_MATRIX *A, FLAGS col_which,
const FE_SPACE *row_fe_space,
const FE_SPACE *col_fe_space)
{
DOF_MATRIX *first = NULL, *chain;
ROW_CHAIN_DO(A, DOF_MATRIX) {
if ((col_which & 1)) {
chain = SCRATCH_MEM_ALLOC(scr, 1, DOF_MATRIX);
_AI_unchain_dof_matrix(chain, A, row_fe_space, col_fe_space);
if (first != NULL) {
ROW_CHAIN_ADD_TAIL(first, chain);
} else {
first = chain;
}
col_fe_space = CHAIN_NEXT(col_fe_space, const FE_SPACE);
}
col_which >>= 1;
} ROW_CHAIN_WHILE(A, DOF_MATRIX);
return first;
}
static inline
DOF_MATRIX *dof_matrix_sub_chain(SCRATCH_MEM scr,
const DOF_MATRIX *A,
FLAGS row_which, FLAGS col_which)
{
DOF_MATRIX *first = NULL, *chain;
const FE_SPACE *row_fe_space;
const FE_SPACE *col_fe_space;
row_fe_space = fe_space_sub_chain(scr, A->row_fe_space, row_which);
if (A->row_fe_space != A->col_fe_space || row_which != col_which) {
col_fe_space = fe_space_sub_chain(scr, A->col_fe_space, col_which);
} else {
col_fe_space = row_fe_space;
}
COL_CHAIN_DO(A, DOF_MATRIX) {
if (row_which & 1) {
chain =
_AI_dm_row_sub_chain(scr, A, col_which, row_fe_space, col_fe_space);
if (first != NULL) {
/* concatenate with first row */
ROW_CHAIN_DO(first, DOF_MATRIX) {
COL_CHAIN_ADD_TAIL(first, chain);
chain = ROW_CHAIN_NEXT(chain, DOF_MATRIX);
} ROW_CHAIN_WHILE(first, DOF_MATRIX);
} else {
first = chain;
}
row_fe_space = CHAIN_NEXT(row_fe_space, const FE_SPACE);
}
row_which >>= 1;
} COL_CHAIN_WHILE(A, const DOF_MATRIX);
return first;
}
/* Update a dummy sub-matrix chain, i.e. see that subM->matrix_row and
* subM->size are up to date. NOTE: subM->{row,col}_fe_space is NOT
* updated.
*/
static inline
void update_dof_matrix_sub_chain(DOF_MATRIX *subM)
{
COL_CHAIN_DO(subM, DOF_MATRIX) {
ROW_CHAIN_DO(subM, DOF_MATRIX) {
subM->matrix_row = subM->unchained->matrix_row;
subM->size = subM->unchained->size;
} ROW_CHAIN_WHILE(subM, DOF_MATRIX);
} COL_CHAIN_WHILE(subM, DOF_MATRIX);
}
/* >>> */
/* >>> */
#endif /* _ALBERTA_DOF_CHAINS_H_ */
|