/usr/include/apr-1.0/apr_buckets.h is in libaprutil1-dev 1.5.4-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 | /* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/**
* @file apr_buckets.h
* @brief APR-UTIL Buckets/Bucket Brigades
*/
#ifndef APR_BUCKETS_H
#define APR_BUCKETS_H
#if defined(APR_BUCKET_DEBUG) && !defined(APR_RING_DEBUG)
#define APR_RING_DEBUG
#endif
#include "apu.h"
#include "apr_network_io.h"
#include "apr_file_io.h"
#include "apr_general.h"
#include "apr_mmap.h"
#include "apr_errno.h"
#include "apr_ring.h"
#include "apr.h"
#if APR_HAVE_SYS_UIO_H
#include <sys/uio.h> /* for struct iovec */
#endif
#if APR_HAVE_STDARG_H
#include <stdarg.h>
#endif
#ifdef __cplusplus
extern "C" {
#endif
/**
* @defgroup APR_Util_Bucket_Brigades Bucket Brigades
* @ingroup APR_Util
* @{
*/
/** default bucket buffer size - 8KB minus room for memory allocator headers */
#define APR_BUCKET_BUFF_SIZE 8000
/** Determines how a bucket or brigade should be read */
typedef enum {
APR_BLOCK_READ, /**< block until data becomes available */
APR_NONBLOCK_READ /**< return immediately if no data is available */
} apr_read_type_e;
/**
* The one-sentence buzzword-laden overview: Bucket brigades represent
* a complex data stream that can be passed through a layered IO
* system without unnecessary copying. A longer overview follows...
*
* A bucket brigade is a doubly linked list (ring) of buckets, so we
* aren't limited to inserting at the front and removing at the end.
* Buckets are only passed around as members of a brigade, although
* singleton buckets can occur for short periods of time.
*
* Buckets are data stores of various types. They can refer to data in
* memory, or part of a file or mmap area, or the output of a process,
* etc. Buckets also have some type-dependent accessor functions:
* read, split, copy, setaside, and destroy.
*
* read returns the address and size of the data in the bucket. If the
* data isn't in memory then it is read in and the bucket changes type
* so that it can refer to the new location of the data. If all the
* data doesn't fit in the bucket then a new bucket is inserted into
* the brigade to hold the rest of it.
*
* split divides the data in a bucket into two regions. After a split
* the original bucket refers to the first part of the data and a new
* bucket inserted into the brigade after the original bucket refers
* to the second part of the data. Reference counts are maintained as
* necessary.
*
* setaside ensures that the data in the bucket has a long enough
* lifetime. Sometimes it is convenient to create a bucket referring
* to data on the stack in the expectation that it will be consumed
* (output to the network) before the stack is unwound. If that
* expectation turns out not to be valid, the setaside function is
* called to move the data somewhere safer.
*
* copy makes a duplicate of the bucket structure as long as it's
* possible to have multiple references to a single copy of the
* data itself. Not all bucket types can be copied.
*
* destroy maintains the reference counts on the resources used by a
* bucket and frees them if necessary.
*
* Note: all of the above functions have wrapper macros (apr_bucket_read(),
* apr_bucket_destroy(), etc), and those macros should be used rather
* than using the function pointers directly.
*
* To write a bucket brigade, they are first made into an iovec, so that we
* don't write too little data at one time. Currently we ignore compacting the
* buckets into as few buckets as possible, but if we really want good
* performance, then we need to compact the buckets before we convert to an
* iovec, or possibly while we are converting to an iovec.
*/
/*
* Forward declaration of the main types.
*/
/** @see apr_bucket_brigade */
typedef struct apr_bucket_brigade apr_bucket_brigade;
/** @see apr_bucket */
typedef struct apr_bucket apr_bucket;
/** @see apr_bucket_alloc_t */
typedef struct apr_bucket_alloc_t apr_bucket_alloc_t;
/** @see apr_bucket_type_t */
typedef struct apr_bucket_type_t apr_bucket_type_t;
/**
* Basic bucket type
*/
struct apr_bucket_type_t {
/**
* The name of the bucket type
*/
const char *name;
/**
* The number of functions this bucket understands. Can not be less than
* five.
*/
int num_func;
/**
* Whether the bucket contains metadata (ie, information that
* describes the regular contents of the brigade). The metadata
* is not returned by apr_bucket_read() and is not indicated by
* the ->length of the apr_bucket itself. In other words, an
* empty bucket is safe to arbitrarily remove if and only if it
* contains no metadata. In this sense, "data" is just raw bytes
* that are the "content" of the brigade and "metadata" describes
* that data but is not a proper part of it.
*/
enum {
/** This bucket type represents actual data to send to the client. */
APR_BUCKET_DATA = 0,
/** This bucket type represents metadata. */
APR_BUCKET_METADATA = 1
} is_metadata;
/**
* Free the private data and any resources used by the bucket (if they
* aren't shared with another bucket). This function is required to be
* implemented for all bucket types, though it might be a no-op on some
* of them (namely ones that never allocate any private data structures).
* @param data The private data pointer from the bucket to be destroyed
*/
void (*destroy)(void *data);
/**
* Read the data from the bucket. This is required to be implemented
* for all bucket types.
* @param b The bucket to read from
* @param str A place to store the data read. Allocation should only be
* done if absolutely necessary.
* @param len The amount of data read.
* @param block Should this read function block if there is more data that
* cannot be read immediately.
*/
apr_status_t (*read)(apr_bucket *b, const char **str, apr_size_t *len,
apr_read_type_e block);
/**
* Make it possible to set aside the data for at least as long as the
* given pool. Buckets containing data that could potentially die before
* this pool (e.g. the data resides on the stack, in a child pool of
* the given pool, or in a disjoint pool) must somehow copy, shift, or
* transform the data to have the proper lifetime.
* @param e The bucket to convert
* @remark Some bucket types contain data that will always outlive the
* bucket itself. For example no data (EOS and FLUSH), or the data
* resides in global, constant memory (IMMORTAL), or the data is on
* the heap (HEAP). For these buckets, apr_bucket_setaside_noop can
* be used.
*/
apr_status_t (*setaside)(apr_bucket *e, apr_pool_t *pool);
/**
* Split one bucket in two at the specified position by duplicating
* the bucket structure (not the data) and modifying any necessary
* start/end/offset information. If it's not possible to do this
* for the bucket type (perhaps the length of the data is indeterminate,
* as with pipe and socket buckets), then APR_ENOTIMPL is returned.
* @param e The bucket to split
* @param point The offset of the first byte in the new bucket
*/
apr_status_t (*split)(apr_bucket *e, apr_size_t point);
/**
* Copy the bucket structure (not the data), assuming that this is
* possible for the bucket type. If it's not, APR_ENOTIMPL is returned.
* @param e The bucket to copy
* @param c Returns a pointer to the new bucket
*/
apr_status_t (*copy)(apr_bucket *e, apr_bucket **c);
};
/**
* apr_bucket structures are allocated on the malloc() heap and
* their lifetime is controlled by the parent apr_bucket_brigade
* structure. Buckets can move from one brigade to another e.g. by
* calling APR_BRIGADE_CONCAT(). In general the data in a bucket has
* the same lifetime as the bucket and is freed when the bucket is
* destroyed; if the data is shared by more than one bucket (e.g.
* after a split) the data is freed when the last bucket goes away.
*/
struct apr_bucket {
/** Links to the rest of the brigade */
APR_RING_ENTRY(apr_bucket) link;
/** The type of bucket. */
const apr_bucket_type_t *type;
/** The length of the data in the bucket. This could have been implemented
* with a function, but this is an optimization, because the most
* common thing to do will be to get the length. If the length is unknown,
* the value of this field will be (apr_size_t)(-1).
*/
apr_size_t length;
/** The start of the data in the bucket relative to the private base
* pointer. The vast majority of bucket types allow a fixed block of
* data to be referenced by multiple buckets, each bucket pointing to
* a different segment of the data. That segment starts at base+start
* and ends at base+start+length.
* If the length == (apr_size_t)(-1), then start == -1.
*/
apr_off_t start;
/** type-dependent data hangs off this pointer */
void *data;
/**
* Pointer to function used to free the bucket. This function should
* always be defined and it should be consistent with the memory
* function used to allocate the bucket. For example, if malloc() is
* used to allocate the bucket, this pointer should point to free().
* @param e Pointer to the bucket being freed
*/
void (*free)(void *e);
/** The freelist from which this bucket was allocated */
apr_bucket_alloc_t *list;
};
/** A list of buckets */
struct apr_bucket_brigade {
/** The pool to associate the brigade with. The data is not allocated out
* of the pool, but a cleanup is registered with this pool. If the
* brigade is destroyed by some mechanism other than pool destruction,
* the destroying function is responsible for killing the cleanup.
*/
apr_pool_t *p;
/** The buckets in the brigade are on this list. */
/*
* The apr_bucket_list structure doesn't actually need a name tag
* because it has no existence independent of struct apr_bucket_brigade;
* the ring macros are designed so that you can leave the name tag
* argument empty in this situation but apparently the Windows compiler
* doesn't like that.
*/
APR_RING_HEAD(apr_bucket_list, apr_bucket) list;
/** The freelist from which this bucket was allocated */
apr_bucket_alloc_t *bucket_alloc;
};
/**
* Function called when a brigade should be flushed
*/
typedef apr_status_t (*apr_brigade_flush)(apr_bucket_brigade *bb, void *ctx);
/*
* define APR_BUCKET_DEBUG if you want your brigades to be checked for
* validity at every possible instant. this will slow your code down
* substantially but is a very useful debugging tool.
*/
#ifdef APR_BUCKET_DEBUG
#define APR_BRIGADE_CHECK_CONSISTENCY(b) \
APR_RING_CHECK_CONSISTENCY(&(b)->list, apr_bucket, link)
#define APR_BUCKET_CHECK_CONSISTENCY(e) \
APR_RING_CHECK_ELEM_CONSISTENCY((e), apr_bucket, link)
#else
/**
* checks the ring pointers in a bucket brigade for consistency. an
* abort() will be triggered if any inconsistencies are found.
* note: this is a no-op unless APR_BUCKET_DEBUG is defined.
* @param b The brigade
*/
#define APR_BRIGADE_CHECK_CONSISTENCY(b)
/**
* checks the brigade a bucket is in for ring consistency. an
* abort() will be triggered if any inconsistencies are found.
* note: this is a no-op unless APR_BUCKET_DEBUG is defined.
* @param e The bucket
*/
#define APR_BUCKET_CHECK_CONSISTENCY(e)
#endif
/**
* Wrappers around the RING macros to reduce the verbosity of the code
* that handles bucket brigades.
*/
/**
* The magic pointer value that indicates the head of the brigade
* @remark This is used to find the beginning and end of the brigade, eg:
* <pre>
* while (e != APR_BRIGADE_SENTINEL(b)) {
* ...
* e = APR_BUCKET_NEXT(e);
* }
* </pre>
* @param b The brigade
* @return The magic pointer value
*/
#define APR_BRIGADE_SENTINEL(b) APR_RING_SENTINEL(&(b)->list, apr_bucket, link)
/**
* Determine if the bucket brigade is empty
* @param b The brigade to check
* @return true or false
*/
#define APR_BRIGADE_EMPTY(b) APR_RING_EMPTY(&(b)->list, apr_bucket, link)
/**
* Return the first bucket in a brigade
* @param b The brigade to query
* @return The first bucket in the brigade
*/
#define APR_BRIGADE_FIRST(b) APR_RING_FIRST(&(b)->list)
/**
* Return the last bucket in a brigade
* @param b The brigade to query
* @return The last bucket in the brigade
*/
#define APR_BRIGADE_LAST(b) APR_RING_LAST(&(b)->list)
/**
* Insert a single bucket at the front of a brigade
* @param b The brigade to add to
* @param e The bucket to insert
*/
#define APR_BRIGADE_INSERT_HEAD(b, e) do { \
apr_bucket *ap__b = (e); \
APR_RING_INSERT_HEAD(&(b)->list, ap__b, apr_bucket, link); \
APR_BRIGADE_CHECK_CONSISTENCY((b)); \
} while (0)
/**
* Insert a single bucket at the end of a brigade
* @param b The brigade to add to
* @param e The bucket to insert
*/
#define APR_BRIGADE_INSERT_TAIL(b, e) do { \
apr_bucket *ap__b = (e); \
APR_RING_INSERT_TAIL(&(b)->list, ap__b, apr_bucket, link); \
APR_BRIGADE_CHECK_CONSISTENCY((b)); \
} while (0)
/**
* Concatenate brigade b onto the end of brigade a, leaving brigade b empty
* @param a The first brigade
* @param b The second brigade
*/
#define APR_BRIGADE_CONCAT(a, b) do { \
APR_RING_CONCAT(&(a)->list, &(b)->list, apr_bucket, link); \
APR_BRIGADE_CHECK_CONSISTENCY((a)); \
} while (0)
/**
* Prepend brigade b onto the beginning of brigade a, leaving brigade b empty
* @param a The first brigade
* @param b The second brigade
*/
#define APR_BRIGADE_PREPEND(a, b) do { \
APR_RING_PREPEND(&(a)->list, &(b)->list, apr_bucket, link); \
APR_BRIGADE_CHECK_CONSISTENCY((a)); \
} while (0)
/**
* Insert a single bucket before a specified bucket
* @param a The bucket to insert before
* @param b The bucket to insert
*/
#define APR_BUCKET_INSERT_BEFORE(a, b) do { \
apr_bucket *ap__a = (a), *ap__b = (b); \
APR_RING_INSERT_BEFORE(ap__a, ap__b, link); \
APR_BUCKET_CHECK_CONSISTENCY(ap__a); \
} while (0)
/**
* Insert a single bucket after a specified bucket
* @param a The bucket to insert after
* @param b The bucket to insert
*/
#define APR_BUCKET_INSERT_AFTER(a, b) do { \
apr_bucket *ap__a = (a), *ap__b = (b); \
APR_RING_INSERT_AFTER(ap__a, ap__b, link); \
APR_BUCKET_CHECK_CONSISTENCY(ap__a); \
} while (0)
/**
* Get the next bucket in the list
* @param e The current bucket
* @return The next bucket
*/
#define APR_BUCKET_NEXT(e) APR_RING_NEXT((e), link)
/**
* Get the previous bucket in the list
* @param e The current bucket
* @return The previous bucket
*/
#define APR_BUCKET_PREV(e) APR_RING_PREV((e), link)
/**
* Remove a bucket from its bucket brigade
* @param e The bucket to remove
*/
#define APR_BUCKET_REMOVE(e) APR_RING_REMOVE((e), link)
/**
* Initialize a new bucket's prev/next pointers
* @param e The bucket to initialize
*/
#define APR_BUCKET_INIT(e) APR_RING_ELEM_INIT((e), link)
/**
* Determine if a bucket contains metadata. An empty bucket is
* safe to arbitrarily remove if and only if this is false.
* @param e The bucket to inspect
* @return true or false
*/
#define APR_BUCKET_IS_METADATA(e) ((e)->type->is_metadata)
/**
* Determine if a bucket is a FLUSH bucket
* @param e The bucket to inspect
* @return true or false
*/
#define APR_BUCKET_IS_FLUSH(e) ((e)->type == &apr_bucket_type_flush)
/**
* Determine if a bucket is an EOS bucket
* @param e The bucket to inspect
* @return true or false
*/
#define APR_BUCKET_IS_EOS(e) ((e)->type == &apr_bucket_type_eos)
/**
* Determine if a bucket is a FILE bucket
* @param e The bucket to inspect
* @return true or false
*/
#define APR_BUCKET_IS_FILE(e) ((e)->type == &apr_bucket_type_file)
/**
* Determine if a bucket is a PIPE bucket
* @param e The bucket to inspect
* @return true or false
*/
#define APR_BUCKET_IS_PIPE(e) ((e)->type == &apr_bucket_type_pipe)
/**
* Determine if a bucket is a SOCKET bucket
* @param e The bucket to inspect
* @return true or false
*/
#define APR_BUCKET_IS_SOCKET(e) ((e)->type == &apr_bucket_type_socket)
/**
* Determine if a bucket is a HEAP bucket
* @param e The bucket to inspect
* @return true or false
*/
#define APR_BUCKET_IS_HEAP(e) ((e)->type == &apr_bucket_type_heap)
/**
* Determine if a bucket is a TRANSIENT bucket
* @param e The bucket to inspect
* @return true or false
*/
#define APR_BUCKET_IS_TRANSIENT(e) ((e)->type == &apr_bucket_type_transient)
/**
* Determine if a bucket is a IMMORTAL bucket
* @param e The bucket to inspect
* @return true or false
*/
#define APR_BUCKET_IS_IMMORTAL(e) ((e)->type == &apr_bucket_type_immortal)
#if APR_HAS_MMAP
/**
* Determine if a bucket is a MMAP bucket
* @param e The bucket to inspect
* @return true or false
*/
#define APR_BUCKET_IS_MMAP(e) ((e)->type == &apr_bucket_type_mmap)
#endif
/**
* Determine if a bucket is a POOL bucket
* @param e The bucket to inspect
* @return true or false
*/
#define APR_BUCKET_IS_POOL(e) ((e)->type == &apr_bucket_type_pool)
/*
* General-purpose reference counting for the various bucket types.
*
* Any bucket type that keeps track of the resources it uses (i.e.
* most of them except for IMMORTAL, TRANSIENT, and EOS) needs to
* attach a reference count to the resource so that it can be freed
* when the last bucket that uses it goes away. Resource-sharing may
* occur because of bucket splits or buckets that refer to globally
* cached data. */
/** @see apr_bucket_refcount */
typedef struct apr_bucket_refcount apr_bucket_refcount;
/**
* The structure used to manage the shared resource must start with an
* apr_bucket_refcount which is updated by the general-purpose refcount
* code. A pointer to the bucket-type-dependent private data structure
* can be cast to a pointer to an apr_bucket_refcount and vice versa.
*/
struct apr_bucket_refcount {
/** The number of references to this bucket */
int refcount;
};
/* ***** Reference-counted bucket types ***** */
/** @see apr_bucket_heap */
typedef struct apr_bucket_heap apr_bucket_heap;
/**
* A bucket referring to data allocated off the heap.
*/
struct apr_bucket_heap {
/** Number of buckets using this memory */
apr_bucket_refcount refcount;
/** The start of the data actually allocated. This should never be
* modified, it is only used to free the bucket.
*/
char *base;
/** how much memory was allocated */
apr_size_t alloc_len;
/** function to use to delete the data */
void (*free_func)(void *data);
};
/** @see apr_bucket_pool */
typedef struct apr_bucket_pool apr_bucket_pool;
/**
* A bucket referring to data allocated from a pool
*/
struct apr_bucket_pool {
/** The pool bucket must be able to be easily morphed to a heap
* bucket if the pool gets cleaned up before all references are
* destroyed. This apr_bucket_heap structure is populated automatically
* when the pool gets cleaned up, and subsequent calls to pool_read()
* will result in the apr_bucket in question being morphed into a
* regular heap bucket. (To avoid having to do many extra refcount
* manipulations and b->data manipulations, the apr_bucket_pool
* struct actually *contains* the apr_bucket_heap struct that it
* will become as its first element; the two share their
* apr_bucket_refcount members.)
*/
apr_bucket_heap heap;
/** The block of data actually allocated from the pool.
* Segments of this block are referenced by adjusting
* the start and length of the apr_bucket accordingly.
* This will be NULL after the pool gets cleaned up.
*/
const char *base;
/** The pool the data was allocated from. When the pool
* is cleaned up, this gets set to NULL as an indicator
* to pool_read() that the data is now on the heap and
* so it should morph the bucket into a regular heap
* bucket before continuing.
*/
apr_pool_t *pool;
/** The freelist this structure was allocated from, which is
* needed in the cleanup phase in order to allocate space on the heap
*/
apr_bucket_alloc_t *list;
};
#if APR_HAS_MMAP
/** @see apr_bucket_mmap */
typedef struct apr_bucket_mmap apr_bucket_mmap;
/**
* A bucket referring to an mmap()ed file
*/
struct apr_bucket_mmap {
/** Number of buckets using this memory */
apr_bucket_refcount refcount;
/** The mmap this sub_bucket refers to */
apr_mmap_t *mmap;
};
#endif
/** @see apr_bucket_file */
typedef struct apr_bucket_file apr_bucket_file;
/**
* A bucket referring to an file
*/
struct apr_bucket_file {
/** Number of buckets using this memory */
apr_bucket_refcount refcount;
/** The file this bucket refers to */
apr_file_t *fd;
/** The pool into which any needed structures should
* be created while reading from this file bucket */
apr_pool_t *readpool;
#if APR_HAS_MMAP
/** Whether this bucket should be memory-mapped if
* a caller tries to read from it */
int can_mmap;
#endif /* APR_HAS_MMAP */
};
/** @see apr_bucket_structs */
typedef union apr_bucket_structs apr_bucket_structs;
/**
* A union of all bucket structures so we know what
* the max size is.
*/
union apr_bucket_structs {
apr_bucket b; /**< Bucket */
apr_bucket_heap heap; /**< Heap */
apr_bucket_pool pool; /**< Pool */
#if APR_HAS_MMAP
apr_bucket_mmap mmap; /**< MMap */
#endif
apr_bucket_file file; /**< File */
};
/**
* The amount that apr_bucket_alloc() should allocate in the common case.
* Note: this is twice as big as apr_bucket_structs to allow breathing
* room for third-party bucket types.
*/
#define APR_BUCKET_ALLOC_SIZE APR_ALIGN_DEFAULT(2*sizeof(apr_bucket_structs))
/* ***** Bucket Brigade Functions ***** */
/**
* Create a new bucket brigade. The bucket brigade is originally empty.
* @param p The pool to associate with the brigade. Data is not allocated out
* of the pool, but a cleanup is registered.
* @param list The bucket allocator to use
* @return The empty bucket brigade
*/
APU_DECLARE(apr_bucket_brigade *) apr_brigade_create(apr_pool_t *p,
apr_bucket_alloc_t *list);
/**
* destroy an entire bucket brigade. This includes destroying all of the
* buckets within the bucket brigade's bucket list.
* @param b The bucket brigade to destroy
*/
APU_DECLARE(apr_status_t) apr_brigade_destroy(apr_bucket_brigade *b);
/**
* empty out an entire bucket brigade. This includes destroying all of the
* buckets within the bucket brigade's bucket list. This is similar to
* apr_brigade_destroy(), except that it does not deregister the brigade's
* pool cleanup function.
* @param data The bucket brigade to clean up
* @remark Generally, you should use apr_brigade_destroy(). This function
* can be useful in situations where you have a single brigade that
* you wish to reuse many times by destroying all of the buckets in
* the brigade and putting new buckets into it later.
*/
APU_DECLARE(apr_status_t) apr_brigade_cleanup(void *data);
/**
* Move the buckets from the tail end of the existing brigade @a b into
* the brigade @a a. If @a a is NULL a new brigade is created. Buckets
* from @a e to the last bucket (inclusively) of brigade @a b are moved
* from @a b to the returned brigade @a a.
*
* @param b The brigade to split
* @param e The first bucket to move
* @param a The brigade which should be used for the result or NULL if
* a new brigade should be created. The brigade @a a will be
* cleared if it is not empty.
* @return The brigade supplied in @a a or a new one if @a a was NULL.
* @warning Note that this function allocates a new brigade if @a a is
* NULL so memory consumption should be carefully considered.
*/
APU_DECLARE(apr_bucket_brigade *) apr_brigade_split_ex(apr_bucket_brigade *b,
apr_bucket *e,
apr_bucket_brigade *a);
/**
* Create a new bucket brigade and move the buckets from the tail end
* of an existing brigade into the new brigade. Buckets from
* @a e to the last bucket (inclusively) of brigade @a b
* are moved from @a b to the returned brigade.
* @param b The brigade to split
* @param e The first bucket to move
* @return The new brigade
* @warning Note that this function always allocates a new brigade
* so memory consumption should be carefully considered.
*/
APU_DECLARE(apr_bucket_brigade *) apr_brigade_split(apr_bucket_brigade *b,
apr_bucket *e);
/**
* Partition a bucket brigade at a given offset (in bytes from the start of
* the brigade). This is useful whenever a filter wants to use known ranges
* of bytes from the brigade; the ranges can even overlap.
* @param b The brigade to partition
* @param point The offset at which to partition the brigade
* @param after_point Returns a pointer to the first bucket after the partition
* @return APR_SUCCESS on success, APR_INCOMPLETE if the contents of the
* brigade were shorter than @a point, or an error code.
* @remark if APR_INCOMPLETE is returned, @a after_point will be set to
* the brigade sentinel.
*/
APU_DECLARE(apr_status_t) apr_brigade_partition(apr_bucket_brigade *b,
apr_off_t point,
apr_bucket **after_point);
/**
* Return the total length of the brigade.
* @param bb The brigade to compute the length of
* @param read_all Read unknown-length buckets to force a size
* @param length Returns the length of the brigade (up to the end, or up
* to a bucket read error), or -1 if the brigade has buckets
* of indeterminate length and read_all is 0.
*/
APU_DECLARE(apr_status_t) apr_brigade_length(apr_bucket_brigade *bb,
int read_all,
apr_off_t *length);
/**
* Take a bucket brigade and store the data in a flat char*
* @param bb The bucket brigade to create the char* from
* @param c The char* to write into
* @param len The maximum length of the char array. On return, it is the
* actual length of the char array.
*/
APU_DECLARE(apr_status_t) apr_brigade_flatten(apr_bucket_brigade *bb,
char *c,
apr_size_t *len);
/**
* Creates a pool-allocated string representing a flat bucket brigade
* @param bb The bucket brigade to create the char array from
* @param c On return, the allocated char array
* @param len On return, the length of the char array.
* @param pool The pool to allocate the string from.
*/
APU_DECLARE(apr_status_t) apr_brigade_pflatten(apr_bucket_brigade *bb,
char **c,
apr_size_t *len,
apr_pool_t *pool);
/**
* Split a brigade to represent one LF line.
* @param bbOut The bucket brigade that will have the LF line appended to.
* @param bbIn The input bucket brigade to search for a LF-line.
* @param block The blocking mode to be used to split the line.
* @param maxbytes The maximum bytes to read. If this many bytes are seen
* without a LF, the brigade will contain a partial line.
*/
APU_DECLARE(apr_status_t) apr_brigade_split_line(apr_bucket_brigade *bbOut,
apr_bucket_brigade *bbIn,
apr_read_type_e block,
apr_off_t maxbytes);
/**
* Create an iovec of the elements in a bucket_brigade... return number
* of elements used. This is useful for writing to a file or to the
* network efficiently.
* @param b The bucket brigade to create the iovec from
* @param vec The iovec to create
* @param nvec The number of elements in the iovec. On return, it is the
* number of iovec elements actually filled out.
*/
APU_DECLARE(apr_status_t) apr_brigade_to_iovec(apr_bucket_brigade *b,
struct iovec *vec, int *nvec);
/**
* This function writes a list of strings into a bucket brigade.
* @param b The bucket brigade to add to
* @param flush The flush function to use if the brigade is full
* @param ctx The structure to pass to the flush function
* @param va A list of strings to add
* @return APR_SUCCESS or error code.
*/
APU_DECLARE(apr_status_t) apr_brigade_vputstrs(apr_bucket_brigade *b,
apr_brigade_flush flush,
void *ctx,
va_list va);
/**
* This function writes a string into a bucket brigade.
*
* The apr_brigade_write function attempts to be efficient with the
* handling of heap buckets. Regardless of the amount of data stored
* inside a heap bucket, heap buckets are a fixed size to promote their
* reuse.
*
* If an attempt is made to write a string to a brigade that already
* ends with a heap bucket, this function will attempt to pack the
* string into the remaining space in the previous heap bucket, before
* allocating a new heap bucket.
*
* This function always returns APR_SUCCESS, unless a flush function is
* passed, in which case the return value of the flush function will be
* returned if used.
* @param b The bucket brigade to add to
* @param flush The flush function to use if the brigade is full
* @param ctx The structure to pass to the flush function
* @param str The string to add
* @param nbyte The number of bytes to write
* @return APR_SUCCESS or error code
*/
APU_DECLARE(apr_status_t) apr_brigade_write(apr_bucket_brigade *b,
apr_brigade_flush flush, void *ctx,
const char *str, apr_size_t nbyte);
/**
* This function writes multiple strings into a bucket brigade.
* @param b The bucket brigade to add to
* @param flush The flush function to use if the brigade is full
* @param ctx The structure to pass to the flush function
* @param vec The strings to add (address plus length for each)
* @param nvec The number of entries in iovec
* @return APR_SUCCESS or error code
*/
APU_DECLARE(apr_status_t) apr_brigade_writev(apr_bucket_brigade *b,
apr_brigade_flush flush,
void *ctx,
const struct iovec *vec,
apr_size_t nvec);
/**
* This function writes a string into a bucket brigade.
* @param bb The bucket brigade to add to
* @param flush The flush function to use if the brigade is full
* @param ctx The structure to pass to the flush function
* @param str The string to add
* @return APR_SUCCESS or error code
*/
APU_DECLARE(apr_status_t) apr_brigade_puts(apr_bucket_brigade *bb,
apr_brigade_flush flush, void *ctx,
const char *str);
/**
* This function writes a character into a bucket brigade.
* @param b The bucket brigade to add to
* @param flush The flush function to use if the brigade is full
* @param ctx The structure to pass to the flush function
* @param c The character to add
* @return APR_SUCCESS or error code
*/
APU_DECLARE(apr_status_t) apr_brigade_putc(apr_bucket_brigade *b,
apr_brigade_flush flush, void *ctx,
const char c);
/**
* This function writes an unspecified number of strings into a bucket brigade.
* @param b The bucket brigade to add to
* @param flush The flush function to use if the brigade is full
* @param ctx The structure to pass to the flush function
* @param ... The strings to add
* @return APR_SUCCESS or error code
*/
APU_DECLARE_NONSTD(apr_status_t) apr_brigade_putstrs(apr_bucket_brigade *b,
apr_brigade_flush flush,
void *ctx, ...);
/**
* Evaluate a printf and put the resulting string at the end
* of the bucket brigade.
* @param b The brigade to write to
* @param flush The flush function to use if the brigade is full
* @param ctx The structure to pass to the flush function
* @param fmt The format of the string to write
* @param ... The arguments to fill out the format
* @return APR_SUCCESS or error code
*/
APU_DECLARE_NONSTD(apr_status_t) apr_brigade_printf(apr_bucket_brigade *b,
apr_brigade_flush flush,
void *ctx,
const char *fmt, ...)
__attribute__((format(printf,4,5)));
/**
* Evaluate a printf and put the resulting string at the end
* of the bucket brigade.
* @param b The brigade to write to
* @param flush The flush function to use if the brigade is full
* @param ctx The structure to pass to the flush function
* @param fmt The format of the string to write
* @param va The arguments to fill out the format
* @return APR_SUCCESS or error code
*/
APU_DECLARE(apr_status_t) apr_brigade_vprintf(apr_bucket_brigade *b,
apr_brigade_flush flush,
void *ctx,
const char *fmt, va_list va);
/**
* Utility function to insert a file (or a segment of a file) onto the
* end of the brigade. The file is split into multiple buckets if it
* is larger than the maximum size which can be represented by a
* single bucket.
* @param bb the brigade to insert into
* @param f the file to insert
* @param start the offset of the start of the segment
* @param len the length of the segment of the file to insert
* @param p pool from which file buckets are allocated
* @return the last bucket inserted
*/
APU_DECLARE(apr_bucket *) apr_brigade_insert_file(apr_bucket_brigade *bb,
apr_file_t *f,
apr_off_t start,
apr_off_t len,
apr_pool_t *p);
/* ***** Bucket freelist functions ***** */
/**
* Create a bucket allocator.
* @param p This pool's underlying apr_allocator_t is used to allocate memory
* for the bucket allocator. When the pool is destroyed, the bucket
* allocator's cleanup routine will free all memory that has been
* allocated from it.
* @remark The reason the allocator gets its memory from the pool's
* apr_allocator_t rather than from the pool itself is because
* the bucket allocator will free large memory blocks back to the
* allocator when it's done with them, thereby preventing memory
* footprint growth that would occur if we allocated from the pool.
* @warning The allocator must never be used by more than one thread at a time.
*/
APU_DECLARE_NONSTD(apr_bucket_alloc_t *) apr_bucket_alloc_create(apr_pool_t *p);
/**
* Create a bucket allocator.
* @param allocator This apr_allocator_t is used to allocate both the bucket
* allocator and all memory handed out by the bucket allocator. The
* caller is responsible for destroying the bucket allocator and the
* apr_allocator_t -- no automatic cleanups will happen.
* @warning The allocator must never be used by more than one thread at a time.
*/
APU_DECLARE_NONSTD(apr_bucket_alloc_t *) apr_bucket_alloc_create_ex(apr_allocator_t *allocator);
/**
* Destroy a bucket allocator.
* @param list The allocator to be destroyed
*/
APU_DECLARE_NONSTD(void) apr_bucket_alloc_destroy(apr_bucket_alloc_t *list);
/**
* Allocate memory for use by the buckets.
* @param size The amount to allocate.
* @param list The allocator from which to allocate the memory.
*/
APU_DECLARE_NONSTD(void *) apr_bucket_alloc(apr_size_t size, apr_bucket_alloc_t *list);
/**
* Free memory previously allocated with apr_bucket_alloc().
* @param block The block of memory to be freed.
*/
APU_DECLARE_NONSTD(void) apr_bucket_free(void *block);
/* ***** Bucket Functions ***** */
/**
* Free the resources used by a bucket. If multiple buckets refer to
* the same resource it is freed when the last one goes away.
* @see apr_bucket_delete()
* @param e The bucket to destroy
*/
#define apr_bucket_destroy(e) do { \
(e)->type->destroy((e)->data); \
(e)->free(e); \
} while (0)
/**
* Delete a bucket by removing it from its brigade (if any) and then
* destroying it.
* @remark This mainly acts as an aid in avoiding code verbosity. It is
* the preferred exact equivalent to:
* <pre>
* APR_BUCKET_REMOVE(e);
* apr_bucket_destroy(e);
* </pre>
* @param e The bucket to delete
*/
#define apr_bucket_delete(e) do { \
APR_BUCKET_REMOVE(e); \
apr_bucket_destroy(e); \
} while (0)
/**
* Read some data from the bucket.
*
* The apr_bucket_read function returns a convenient amount of data
* from the bucket provided, writing the address and length of the
* data to the pointers provided by the caller. The function tries
* as hard as possible to avoid a memory copy.
*
* Buckets are expected to be a member of a brigade at the time they
* are read.
*
* In typical application code, buckets are read in a loop, and after
* each bucket is read and processed, it is moved or deleted from the
* brigade and the next bucket read.
*
* The definition of "convenient" depends on the type of bucket that
* is being read, and is decided by APR. In the case of memory based
* buckets such as heap and immortal buckets, a pointer will be
* returned to the location of the buffer containing the complete
* contents of the bucket.
*
* Some buckets, such as the socket bucket, might have no concept
* of length. If an attempt is made to read such a bucket, the
* apr_bucket_read function will read a convenient amount of data
* from the socket. The socket bucket is magically morphed into a
* heap bucket containing the just-read data, and a new socket bucket
* is inserted just after this heap bucket.
*
* To understand why apr_bucket_read might do this, consider the loop
* described above to read and process buckets. The current bucket
* is magically morphed into a heap bucket and returned to the caller.
* The caller processes the data, and deletes the heap bucket, moving
* onto the next bucket, the new socket bucket. This process repeats,
* giving the illusion of a bucket brigade that contains potentially
* infinite amounts of data. It is up to the caller to decide at what
* point to stop reading buckets.
*
* Some buckets, such as the file bucket, might have a fixed size,
* but be significantly larger than is practical to store in RAM in
* one go. As with the socket bucket, if an attempt is made to read
* from a file bucket, the file bucket is magically morphed into a
* heap bucket containing a convenient amount of data read from the
* current offset in the file. During the read, the offset will be
* moved forward on the file, and a new file bucket will be inserted
* directly after the current bucket representing the remainder of the
* file. If the heap bucket was large enough to store the whole
* remainder of the file, no more file buckets are inserted, and the
* file bucket will disappear completely.
*
* The pattern for reading buckets described above does create the
* illusion that the code is willing to swallow buckets that might be
* too large for the system to handle in one go. This however is just
* an illusion: APR will always ensure that large (file) or infinite
* (socket) buckets are broken into convenient bite sized heap buckets
* before data is returned to the caller.
*
* There is a potential gotcha to watch for: if buckets are read in a
* loop, and aren't deleted after being processed, the potentially large
* bucket will slowly be converted into RAM resident heap buckets. If
* the file is larger than available RAM, an out of memory condition
* could be caused if the application is not careful to manage this.
*
* @param e The bucket to read from
* @param str The location to store a pointer to the data in
* @param len The location to store the amount of data read
* @param block Whether the read function blocks
*/
#define apr_bucket_read(e,str,len,block) (e)->type->read(e, str, len, block)
/**
* Setaside data so that stack data is not destroyed on returning from
* the function
* @param e The bucket to setaside
* @param p The pool to setaside into
*/
#define apr_bucket_setaside(e,p) (e)->type->setaside(e,p)
/**
* Split one bucket in two at the point provided.
*
* Once split, the original bucket becomes the first of the two new buckets.
*
* (It is assumed that the bucket is a member of a brigade when this
* function is called).
* @param e The bucket to split
* @param point The offset to split the bucket at
*/
#define apr_bucket_split(e,point) (e)->type->split(e, point)
/**
* Copy a bucket.
* @param e The bucket to copy
* @param c Returns a pointer to the new bucket
*/
#define apr_bucket_copy(e,c) (e)->type->copy(e, c)
/* Bucket type handling */
/**
* This function simply returns APR_SUCCESS to denote that the bucket does
* not require anything to happen for its setaside() function. This is
* appropriate for buckets that have "immortal" data -- the data will live
* at least as long as the bucket.
* @param data The bucket to setaside
* @param pool The pool defining the desired lifetime of the bucket data
* @return APR_SUCCESS
*/
APU_DECLARE_NONSTD(apr_status_t) apr_bucket_setaside_noop(apr_bucket *data,
apr_pool_t *pool);
/**
* A place holder function that signifies that the setaside function was not
* implemented for this bucket
* @param data The bucket to setaside
* @param pool The pool defining the desired lifetime of the bucket data
* @return APR_ENOTIMPL
*/
APU_DECLARE_NONSTD(apr_status_t) apr_bucket_setaside_notimpl(apr_bucket *data,
apr_pool_t *pool);
/**
* A place holder function that signifies that the split function was not
* implemented for this bucket
* @param data The bucket to split
* @param point The location to split the bucket
* @return APR_ENOTIMPL
*/
APU_DECLARE_NONSTD(apr_status_t) apr_bucket_split_notimpl(apr_bucket *data,
apr_size_t point);
/**
* A place holder function that signifies that the copy function was not
* implemented for this bucket
* @param e The bucket to copy
* @param c Returns a pointer to the new bucket
* @return APR_ENOTIMPL
*/
APU_DECLARE_NONSTD(apr_status_t) apr_bucket_copy_notimpl(apr_bucket *e,
apr_bucket **c);
/**
* A place holder function that signifies that this bucket does not need
* to do anything special to be destroyed. That's only the case for buckets
* that either have no data (metadata buckets) or buckets whose data pointer
* points to something that's not a bucket-type-specific structure, as with
* simple buckets where data points to a string and pipe buckets where data
* points directly to the apr_file_t.
* @param data The bucket data to destroy
*/
APU_DECLARE_NONSTD(void) apr_bucket_destroy_noop(void *data);
/**
* There is no apr_bucket_destroy_notimpl, because destruction is required
* to be implemented (it could be a noop, but only if that makes sense for
* the bucket type)
*/
/* There is no apr_bucket_read_notimpl, because it is a required function
*/
/* All of the bucket types implemented by the core */
/**
* The flush bucket type. This signifies that all data should be flushed to
* the next filter. The flush bucket should be sent with the other buckets.
*/
APU_DECLARE_DATA extern const apr_bucket_type_t apr_bucket_type_flush;
/**
* The EOS bucket type. This signifies that there will be no more data, ever.
* All filters MUST send all data to the next filter when they receive a
* bucket of this type
*/
APU_DECLARE_DATA extern const apr_bucket_type_t apr_bucket_type_eos;
/**
* The FILE bucket type. This bucket represents a file on disk
*/
APU_DECLARE_DATA extern const apr_bucket_type_t apr_bucket_type_file;
/**
* The HEAP bucket type. This bucket represents a data allocated from the
* heap.
*/
APU_DECLARE_DATA extern const apr_bucket_type_t apr_bucket_type_heap;
#if APR_HAS_MMAP
/**
* The MMAP bucket type. This bucket represents an MMAP'ed file
*/
APU_DECLARE_DATA extern const apr_bucket_type_t apr_bucket_type_mmap;
#endif
/**
* The POOL bucket type. This bucket represents a data that was allocated
* from a pool. IF this bucket is still available when the pool is cleared,
* the data is copied on to the heap.
*/
APU_DECLARE_DATA extern const apr_bucket_type_t apr_bucket_type_pool;
/**
* The PIPE bucket type. This bucket represents a pipe to another program.
*/
APU_DECLARE_DATA extern const apr_bucket_type_t apr_bucket_type_pipe;
/**
* The IMMORTAL bucket type. This bucket represents a segment of data that
* the creator is willing to take responsibility for. The core will do
* nothing with the data in an immortal bucket
*/
APU_DECLARE_DATA extern const apr_bucket_type_t apr_bucket_type_immortal;
/**
* The TRANSIENT bucket type. This bucket represents a data allocated off
* the stack. When the setaside function is called, this data is copied on
* to the heap
*/
APU_DECLARE_DATA extern const apr_bucket_type_t apr_bucket_type_transient;
/**
* The SOCKET bucket type. This bucket represents a socket to another machine
*/
APU_DECLARE_DATA extern const apr_bucket_type_t apr_bucket_type_socket;
/* ***** Simple buckets ***** */
/**
* Split a simple bucket into two at the given point. Most non-reference
* counting buckets that allow multiple references to the same block of
* data (eg transient and immortal) will use this as their split function
* without any additional type-specific handling.
* @param b The bucket to be split
* @param point The offset of the first byte in the new bucket
* @return APR_EINVAL if the point is not within the bucket;
* APR_ENOMEM if allocation failed;
* or APR_SUCCESS
*/
APU_DECLARE_NONSTD(apr_status_t) apr_bucket_simple_split(apr_bucket *b,
apr_size_t point);
/**
* Copy a simple bucket. Most non-reference-counting buckets that allow
* multiple references to the same block of data (eg transient and immortal)
* will use this as their copy function without any additional type-specific
* handling.
* @param a The bucket to copy
* @param b Returns a pointer to the new bucket
* @return APR_ENOMEM if allocation failed;
* or APR_SUCCESS
*/
APU_DECLARE_NONSTD(apr_status_t) apr_bucket_simple_copy(apr_bucket *a,
apr_bucket **b);
/* ***** Shared, reference-counted buckets ***** */
/**
* Initialize a bucket containing reference-counted data that may be
* shared. The caller must allocate the bucket if necessary and
* initialize its type-dependent fields, and allocate and initialize
* its own private data structure. This function should only be called
* by type-specific bucket creation functions.
* @param b The bucket to initialize
* @param data A pointer to the private data structure
* with the reference count at the start
* @param start The start of the data in the bucket
* relative to the private base pointer
* @param length The length of the data in the bucket
* @return The new bucket, or NULL if allocation failed
*/
APU_DECLARE(apr_bucket *) apr_bucket_shared_make(apr_bucket *b, void *data,
apr_off_t start,
apr_size_t length);
/**
* Decrement the refcount of the data in the bucket. This function
* should only be called by type-specific bucket destruction functions.
* @param data The private data pointer from the bucket to be destroyed
* @return TRUE or FALSE; TRUE if the reference count is now
* zero, indicating that the shared resource itself can
* be destroyed by the caller.
*/
APU_DECLARE(int) apr_bucket_shared_destroy(void *data);
/**
* Split a bucket into two at the given point, and adjust the refcount
* to the underlying data. Most reference-counting bucket types will
* be able to use this function as their split function without any
* additional type-specific handling.
* @param b The bucket to be split
* @param point The offset of the first byte in the new bucket
* @return APR_EINVAL if the point is not within the bucket;
* APR_ENOMEM if allocation failed;
* or APR_SUCCESS
*/
APU_DECLARE_NONSTD(apr_status_t) apr_bucket_shared_split(apr_bucket *b,
apr_size_t point);
/**
* Copy a refcounted bucket, incrementing the reference count. Most
* reference-counting bucket types will be able to use this function
* as their copy function without any additional type-specific handling.
* @param a The bucket to copy
* @param b Returns a pointer to the new bucket
* @return APR_ENOMEM if allocation failed;
or APR_SUCCESS
*/
APU_DECLARE_NONSTD(apr_status_t) apr_bucket_shared_copy(apr_bucket *a,
apr_bucket **b);
/* ***** Functions to Create Buckets of varying types ***** */
/*
* Each bucket type foo has two initialization functions:
* apr_bucket_foo_make which sets up some already-allocated memory as a
* bucket of type foo; and apr_bucket_foo_create which allocates memory
* for the bucket, calls apr_bucket_make_foo, and initializes the
* bucket's list pointers. The apr_bucket_foo_make functions are used
* inside the bucket code to change the type of buckets in place;
* other code should call apr_bucket_foo_create. All the initialization
* functions change nothing if they fail.
*/
/**
* Create an End of Stream bucket. This indicates that there is no more data
* coming from down the filter stack. All filters should flush at this point.
* @param list The freelist from which this bucket should be allocated
* @return The new bucket, or NULL if allocation failed
*/
APU_DECLARE(apr_bucket *) apr_bucket_eos_create(apr_bucket_alloc_t *list);
/**
* Make the bucket passed in an EOS bucket. This indicates that there is no
* more data coming from down the filter stack. All filters should flush at
* this point.
* @param b The bucket to make into an EOS bucket
* @return The new bucket, or NULL if allocation failed
*/
APU_DECLARE(apr_bucket *) apr_bucket_eos_make(apr_bucket *b);
/**
* Create a flush bucket. This indicates that filters should flush their
* data. There is no guarantee that they will flush it, but this is the
* best we can do.
* @param list The freelist from which this bucket should be allocated
* @return The new bucket, or NULL if allocation failed
*/
APU_DECLARE(apr_bucket *) apr_bucket_flush_create(apr_bucket_alloc_t *list);
/**
* Make the bucket passed in a FLUSH bucket. This indicates that filters
* should flush their data. There is no guarantee that they will flush it,
* but this is the best we can do.
* @param b The bucket to make into a FLUSH bucket
* @return The new bucket, or NULL if allocation failed
*/
APU_DECLARE(apr_bucket *) apr_bucket_flush_make(apr_bucket *b);
/**
* Create a bucket referring to long-lived data.
* @param buf The data to insert into the bucket
* @param nbyte The size of the data to insert.
* @param list The freelist from which this bucket should be allocated
* @return The new bucket, or NULL if allocation failed
*/
APU_DECLARE(apr_bucket *) apr_bucket_immortal_create(const char *buf,
apr_size_t nbyte,
apr_bucket_alloc_t *list);
/**
* Make the bucket passed in a bucket refer to long-lived data
* @param b The bucket to make into a IMMORTAL bucket
* @param buf The data to insert into the bucket
* @param nbyte The size of the data to insert.
* @return The new bucket, or NULL if allocation failed
*/
APU_DECLARE(apr_bucket *) apr_bucket_immortal_make(apr_bucket *b,
const char *buf,
apr_size_t nbyte);
/**
* Create a bucket referring to data on the stack.
* @param buf The data to insert into the bucket
* @param nbyte The size of the data to insert.
* @param list The freelist from which this bucket should be allocated
* @return The new bucket, or NULL if allocation failed
*/
APU_DECLARE(apr_bucket *) apr_bucket_transient_create(const char *buf,
apr_size_t nbyte,
apr_bucket_alloc_t *list);
/**
* Make the bucket passed in a bucket refer to stack data
* @param b The bucket to make into a TRANSIENT bucket
* @param buf The data to insert into the bucket
* @param nbyte The size of the data to insert.
* @return The new bucket, or NULL if allocation failed
*/
APU_DECLARE(apr_bucket *) apr_bucket_transient_make(apr_bucket *b,
const char *buf,
apr_size_t nbyte);
/**
* Create a bucket referring to memory on the heap. If the caller asks
* for the data to be copied, this function always allocates 4K of
* memory so that more data can be added to the bucket without
* requiring another allocation. Therefore not all the data may be put
* into the bucket. If copying is not requested then the bucket takes
* over responsibility for free()ing the memory.
* @param buf The buffer to insert into the bucket
* @param nbyte The size of the buffer to insert.
* @param free_func Function to use to free the data; NULL indicates that the
* bucket should make a copy of the data
* @param list The freelist from which this bucket should be allocated
* @return The new bucket, or NULL if allocation failed
*/
APU_DECLARE(apr_bucket *) apr_bucket_heap_create(const char *buf,
apr_size_t nbyte,
void (*free_func)(void *data),
apr_bucket_alloc_t *list);
/**
* Make the bucket passed in a bucket refer to heap data
* @param b The bucket to make into a HEAP bucket
* @param buf The buffer to insert into the bucket
* @param nbyte The size of the buffer to insert.
* @param free_func Function to use to free the data; NULL indicates that the
* bucket should make a copy of the data
* @return The new bucket, or NULL if allocation failed
*/
APU_DECLARE(apr_bucket *) apr_bucket_heap_make(apr_bucket *b, const char *buf,
apr_size_t nbyte,
void (*free_func)(void *data));
/**
* Create a bucket referring to memory allocated from a pool.
*
* @param buf The buffer to insert into the bucket
* @param length The number of bytes referred to by this bucket
* @param pool The pool the memory was allocated from
* @param list The freelist from which this bucket should be allocated
* @return The new bucket, or NULL if allocation failed
*/
APU_DECLARE(apr_bucket *) apr_bucket_pool_create(const char *buf,
apr_size_t length,
apr_pool_t *pool,
apr_bucket_alloc_t *list);
/**
* Make the bucket passed in a bucket refer to pool data
* @param b The bucket to make into a pool bucket
* @param buf The buffer to insert into the bucket
* @param length The number of bytes referred to by this bucket
* @param pool The pool the memory was allocated from
* @return The new bucket, or NULL if allocation failed
*/
APU_DECLARE(apr_bucket *) apr_bucket_pool_make(apr_bucket *b, const char *buf,
apr_size_t length,
apr_pool_t *pool);
#if APR_HAS_MMAP
/**
* Create a bucket referring to mmap()ed memory.
* @param mm The mmap to insert into the bucket
* @param start The offset of the first byte in the mmap
* that this bucket refers to
* @param length The number of bytes referred to by this bucket
* @param list The freelist from which this bucket should be allocated
* @return The new bucket, or NULL if allocation failed
*/
APU_DECLARE(apr_bucket *) apr_bucket_mmap_create(apr_mmap_t *mm,
apr_off_t start,
apr_size_t length,
apr_bucket_alloc_t *list);
/**
* Make the bucket passed in a bucket refer to an MMAP'ed file
* @param b The bucket to make into a MMAP bucket
* @param mm The mmap to insert into the bucket
* @param start The offset of the first byte in the mmap
* that this bucket refers to
* @param length The number of bytes referred to by this bucket
* @return The new bucket, or NULL if allocation failed
*/
APU_DECLARE(apr_bucket *) apr_bucket_mmap_make(apr_bucket *b, apr_mmap_t *mm,
apr_off_t start,
apr_size_t length);
#endif
/**
* Create a bucket referring to a socket.
* @param thissock The socket to put in the bucket
* @param list The freelist from which this bucket should be allocated
* @return The new bucket, or NULL if allocation failed
*/
APU_DECLARE(apr_bucket *) apr_bucket_socket_create(apr_socket_t *thissock,
apr_bucket_alloc_t *list);
/**
* Make the bucket passed in a bucket refer to a socket
* @param b The bucket to make into a SOCKET bucket
* @param thissock The socket to put in the bucket
* @return The new bucket, or NULL if allocation failed
*/
APU_DECLARE(apr_bucket *) apr_bucket_socket_make(apr_bucket *b,
apr_socket_t *thissock);
/**
* Create a bucket referring to a pipe.
* @param thispipe The pipe to put in the bucket
* @param list The freelist from which this bucket should be allocated
* @return The new bucket, or NULL if allocation failed
*/
APU_DECLARE(apr_bucket *) apr_bucket_pipe_create(apr_file_t *thispipe,
apr_bucket_alloc_t *list);
/**
* Make the bucket passed in a bucket refer to a pipe
* @param b The bucket to make into a PIPE bucket
* @param thispipe The pipe to put in the bucket
* @return The new bucket, or NULL if allocation failed
*/
APU_DECLARE(apr_bucket *) apr_bucket_pipe_make(apr_bucket *b,
apr_file_t *thispipe);
/**
* Create a bucket referring to a file.
* @param fd The file to put in the bucket
* @param offset The offset where the data of interest begins in the file
* @param len The amount of data in the file we are interested in
* @param p The pool into which any needed structures should be created
* while reading from this file bucket
* @param list The freelist from which this bucket should be allocated
* @return The new bucket, or NULL if allocation failed
* @remark If the file is truncated such that the segment of the file
* referenced by the bucket no longer exists, an attempt to read
* from the bucket will fail with APR_EOF.
* @remark apr_brigade_insert_file() should generally be used to
* insert files into brigades, since that function can correctly
* handle large file issues.
*/
APU_DECLARE(apr_bucket *) apr_bucket_file_create(apr_file_t *fd,
apr_off_t offset,
apr_size_t len,
apr_pool_t *p,
apr_bucket_alloc_t *list);
/**
* Make the bucket passed in a bucket refer to a file
* @param b The bucket to make into a FILE bucket
* @param fd The file to put in the bucket
* @param offset The offset where the data of interest begins in the file
* @param len The amount of data in the file we are interested in
* @param p The pool into which any needed structures should be created
* while reading from this file bucket
* @return The new bucket, or NULL if allocation failed
*/
APU_DECLARE(apr_bucket *) apr_bucket_file_make(apr_bucket *b, apr_file_t *fd,
apr_off_t offset,
apr_size_t len, apr_pool_t *p);
/**
* Enable or disable memory-mapping for a FILE bucket (default is enabled)
* @param b The bucket
* @param enabled Whether memory-mapping should be enabled
* @return APR_SUCCESS normally, or an error code if the operation fails
*/
APU_DECLARE(apr_status_t) apr_bucket_file_enable_mmap(apr_bucket *b,
int enabled);
/** @} */
#ifdef __cplusplus
}
#endif
#endif /* !APR_BUCKETS_H */
|