This file is indexed.

/usr/share/ada/adainclude/asis/a4g-mapping.adb is in libasis2014-dev 2014-4.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
------------------------------------------------------------------------------
--                                                                          --
--                 ASIS-for-GNAT IMPLEMENTATION COMPONENTS                  --
--                                                                          --
--                         A 4 G . M A P P I N G                            --
--                                                                          --
--                                 B o d y                                  --
--                                                                          --
--            Copyright (C) 1995-2014, Free Software Foundation, Inc.       --
--                                                                          --
-- ASIS-for-GNAT is free software; you can redistribute it and/or modify it --
-- under terms of the  GNU General Public License  as published by the Free --
-- Software  Foundation;  either version 3,  or (at your option)  any later --
-- version.  ASIS-for-GNAT  is  distributed  in  the  hope  that it will be --
-- useful,  but  WITHOUT ANY WARRANTY; without even the implied warranty of --
-- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.                     --
--                                                                          --
--                                                                          --
--                                                                          --
--                                                                          --
--                                                                          --
-- You should have  received  a copy of the  GNU General Public License and --
-- a copy of the  GCC Runtime Library Exception  distributed with GNAT; see --
-- the files COPYING3 and COPYING.RUNTIME respectively.  If not, see        --
-- <http://www.gnu.org/licenses/>.                                          --
--                                                                          --
-- ASIS-for-GNAT was originally developed  by the ASIS-for-GNAT team at the --
-- Software  Engineering  Laboratory  of  the Swiss  Federal  Institute  of --
-- Technology (LGL-EPFL) in Lausanne,  Switzerland, in cooperation with the --
-- Scientific  Research  Computer  Center of  Moscow State University (SRCC --
-- MSU), Russia,  with funding partially provided  by grants from the Swiss --
-- National  Science  Foundation  and  the  Swiss  Academy  of  Engineering --
-- Sciences.  ASIS-for-GNAT is now maintained by  AdaCore                   --
-- (http://www.adacore.com).                                                --
--                                                                          --
------------------------------------------------------------------------------
pragma Ada_2012;

with Ada.Characters.Handling; use Ada.Characters.Handling;

with Asis;                    use Asis;
with Asis.Compilation_Units;  use Asis.Compilation_Units;
with Asis.Elements;           use Asis.Elements;

with Asis.Set_Get;            use Asis.Set_Get;

with A4G.A_Debug;             use A4G.A_Debug;
with A4G.A_Output;            use A4G.A_Output;
with A4G.A_Sem;               use A4G.A_Sem;
with A4G.A_Sinput;            use A4G.A_Sinput;
with A4G.Asis_Tables;         use A4G.Asis_Tables;
with A4G.Contt;               use A4G.Contt;
with A4G.Norm;                use A4G.Norm;
with A4G.Vcheck;              use A4G.Vcheck;

with Atree;                   use Atree;
with Einfo;                   use Einfo;
with Elists;                  use Elists;
with Namet;                   use Namet;
with Nlists;                  use Nlists;
with Output;                  use Output;
with Snames;                  use Snames;
with Stand;                   use Stand;
with Uintp;                   use Uintp;
with Urealp;                  use Urealp;

package body A4G.Mapping is

   -------------------------------------------
   -- Tree nodes onto ASIS Elements Mapping --
   -------------------------------------------

   --  The kernel of the mapping from tree nodes onto ASIS Elements is
   --  determining the ASIS kind of the Element which should be built on top
   --  of a given node. We are computing the Element position in the internal
   --  flat classification, that is, the corresponding value of
   --  Internal_Element_Kinds (which is further referred simply as Element
   --  kind in this unit).
   --
   --  Mapping of tree nodes onto Element kinds is implemented as two-level
   --  switching based on look-up tables. Both look-up tables are one-dimension
   --  arrays indexed by Node_Kind type).
   --
   --  The first table has Internal_Element_Kinds as its component type. It
   --  defines the mapping of Node_Kind values onto Internal_Element_Kinds
   --  values as pairs index_value -> component_value, the semantics of this
   --  mapping depends on the component value in the following way:
   --
   --    Component value                      First switch mapping semantics
   --
   --    A_Xxx, where A_Xxx corresponds   - Element which should be based on
   --    to some position in the original   any node having the corresponding
   --    ASIS element classification        Node_Kind will always be of A_Xxx
   --    hierarchy (such as An_Identifier)  ASIS kind, no more computation
   --                                       of Element kind is needed
   --
   --    Non_Trivial_Mapping              - Elements which can be built on
   --                                       nodes having the corresponding
   --                                       Node_Kind may have different ASIS
   --                                       kinds, therefore a special function
   --                                       computing the ASIS kind should be
   --                                       used, this function is defined by
   --                                       the second look-up table
   --
   --    No_Mapping                       - no ASIS Element kind corresponds to
   --                                       nodes of the corresponding
   --                                       Node_Kind in the framework of the
   --                                       given node-to-Element mapping
   --
   --    Not_Implemented_Mapping          - this value was used during the
   --                                       development phase and now it is
   --                                       kept as the value for 'others'
   --                                       choice in the initialization
   --                                       aggregate just in case if a new
   --                                       value appear in Node_Kind type
   --
   --  No_Mapping does not mean, that for a given Node_Kind value no Element
   --  can be created at all, it means, that automatic Element kind
   --  determination is impossible for these nodes because of any reason.
   --
   --  Both No_Mapping and Not_Implemented_Mapping mapping items, when chosen.
   --  resulted in raising the ASIS_Failed exception. The reason because of
   --  which we keep Not_Implemented_Mapping value after finishing the
   --  development stage is to catch possible changes in Node_Kind definition.
   --  No_Mapping means that for sure there is no mapping for a given Node_Kind
   --  value, and Not_Implemented_Mapping means that processing of the given
   --  Node_Kind value is missed in the existing code.
   --
   --  The second look-up table defines functions to be used to compute
   --  Element kind for those Node_Kind values for which the first table
   --  defines Non_Trivial_Mapping. All these functions are supposed to be
   --  called for nodes of the Node_Kind from the corresponding mapping item
   --  defined by the second table, it is erroneous to call them for other
   --  nodes.
   --
   --  The structure, documentation and naming policy for look-up tables
   --  implementing note-to-Element mapping are based on the GNAT Sinfo
   --  package, and, in particular, on the Sinfo.Node_Kind type definition.
   --  Rather old version of the spec of Sinfo is used, so some deviations
   --  with the latest version may be possible

   ------------------------------------------------------
   -- Tree nodes lists onto ASIS Element lists Mapping --
   ------------------------------------------------------

   --  ASIS Element lists are built from tree node lists: when constructing an
   --  ASIS Element_List value, the corresponding routine goes trough the
   --  corresponding tree node list, checks which nodes should be used as a
   --  basis for ASIS Elements to be placed in the result Element_List, and
   --  which should not, and then calls node-to-Element conversion function
   --  for the selected nodes. Therefore, two main components of node list to
   --  Element list mapping are filters for the nodes in the argument node
   --  list and node-to-Element mapping

   -----------------------
   -- Local subprograms --
   -----------------------

   procedure Normalize_Name (Capitalized : Boolean := False);
   --  This procedure "normalizes" a name stored in Namet.Name_Buffer by
   --  capitalizing its firs letter and all the letters following underscores
   --  (if any). If Capitalized is set ON, all the letters are converted to
   --  upper case, this is used for some defining names from Standard (such as
   --  ASCII)

   function Is_Protected_Procedure_Call (N : Node_Id) return Boolean;
   --  In case if N is of N_Entry_Call_Statement, it checks if this is a call
   --  to a protected subprogram (if it is, the corresponding ASIS Element
   --  should be classified as A_Procedure_Call_Statement, but not as
   --  An_Entry_Call_Statement

   function Is_Stub_To_Body_Instanse_Replacement
     (N :    Node_Id)
      return Boolean;
   --  Checks if the node corresponds to the body which replaces the body stub
   --  within the instance. The reason why we need this is that Sloc
   --  field is not set to point into the instance copy if the source for
   --  such node, so the ordinary Is_From_Instance check does not work
   --  for this node (see 8930-001)

   function Is_Config_Pragma (N : Node_Id) return Boolean;
   --  Checks if N represents a configuration pragma

   --------------------------------------------------------------
   -- Subprograms for the second Note-to-Element Look-Up Table --
   --------------------------------------------------------------

   procedure No_Mapping (Node : Node_Id);

   function Not_Implemented_Mapping
     (Node : Node_Id)
      return Internal_Element_Kinds;

   procedure Not_Implemented_Mapping (Source_Node_Kind : Node_Kind);
   --  These three subprograms raise ASIS_Failed with the appropriate
   --  Diagnosis string

   pragma No_Return (Not_Implemented_Mapping);
   pragma No_Return (No_Mapping);

   --  Individual mapping components:

   function N_Pragma_Mapping (Node : Node_Id) return Internal_Element_Kinds;

   function N_Defining_Identifier_Mapping
     (Node : Node_Id)
      return Internal_Element_Kinds;

   function N_Defining_Operator_Symbol_Mapping
     (Node : Node_Id)
      return Internal_Element_Kinds;

   function N_Expanded_Name_Mapping
     (Node : Node_Id)
      return Internal_Element_Kinds;

   function N_Identifier_Mapping
     (Node : Node_Id)
      return Internal_Element_Kinds renames N_Expanded_Name_Mapping;

   function N_Attribute_Reference_Mapping
     (Node : Node_Id)
      return Internal_Element_Kinds;

   function N_Function_Call_Mapping
     (Node : Node_Id)
      return Internal_Element_Kinds;

   function N_Range_Mapping (Node : Node_Id) return Internal_Element_Kinds;

   function N_Allocator_Mapping (Node : Node_Id) return Internal_Element_Kinds;

   function N_Aggregate_Mapping (Node : Node_Id) return Internal_Element_Kinds;

--  |A2005 start
   function N_Incomplete_Type_Declaration_Mapping
     (Node : Node_Id)
      return Internal_Element_Kinds;
--  |A2005 end

   function N_Subtype_Indication_Mapping
     (Node : Node_Id)
      return Internal_Element_Kinds;

--  |A2012 start
   function N_Formal_Type_Declaration_Mapping
     (Node : Node_Id)
      return Internal_Element_Kinds;

   function N_Iterator_Specification_Mapping
     (Node : Node_Id)
      return Internal_Element_Kinds;

   function N_Quantified_Expression_Mapping
     (Node : Node_Id)
      return Internal_Element_Kinds;
--  |A2012 end

   function N_Object_Declaration_Mapping
     (Node : Node_Id)
      return Internal_Element_Kinds;

   function N_Access_Function_Definition_Mapping
     (Node : Node_Id)
      return Internal_Element_Kinds;

   function N_Access_Procedure_Definition_Mapping
     (Node : Node_Id)
      return Internal_Element_Kinds;

   function N_Subprogram_Body_Stub_Mapping
     (Node : Node_Id)
      return Internal_Element_Kinds;

   function N_Subprogram_Body_Mapping
     (Node : Node_Id)
      return Internal_Element_Kinds;

   function N_Subprogram_Declaration_Mapping
     (Node : Node_Id)
      return Internal_Element_Kinds;

   function N_Generic_Subprogram_Declaration_Mapping
     (Node : Node_Id)
      return Internal_Element_Kinds;

   function N_Constrained_Array_Definition_Mapping
     (Node : Node_Id)
      return Internal_Element_Kinds;

   function N_Unconstrained_Array_Definition_Mapping
     (Node : Node_Id)
      return Internal_Element_Kinds;

   function N_Subprogram_Renaming_Declaration_Mapping
     (Node : Node_Id)
      return Internal_Element_Kinds;

   function N_Loop_Statement_Mapping
     (Node : Node_Id)
      return Internal_Element_Kinds;

   function N_Requeue_Statement_Mapping
     (Node : Node_Id)
      return Internal_Element_Kinds;

   function N_Abstract_Subprogram_Declaration_Mapping
     (Node : Node_Id)
      return Internal_Element_Kinds;

   function N_Accept_Alternative_Mapping
     (Node : Node_Id)
      return Internal_Element_Kinds;

--  --|A2005 start
   function N_Access_Definition_Mapping
     (Node : Node_Id)
      return Internal_Element_Kinds;
--  --|A2005 end

   function N_Access_To_Object_Definition_Mapping
     (Node : Node_Id)
      return Internal_Element_Kinds;

   function N_Component_Association_Mapping
     (Node : Node_Id)
      return Internal_Element_Kinds;

   function N_Derived_Type_Definition_Mapping
     (Node : Node_Id)
      return Internal_Element_Kinds;

   function N_Delay_Alternative_Mapping
     (Node : Node_Id)
      return Internal_Element_Kinds;

   function N_Formal_Package_Declaration_Mapping
     (Node : Node_Id)
      return Internal_Element_Kinds;

   function N_Formal_Private_Type_Definition_Mapping
     (Node : Node_Id)
      return Internal_Element_Kinds;

   function N_Formal_Subprogram_Declaration_Mapping
     (Node : Node_Id)
      return Internal_Element_Kinds;

   function N_Index_Or_Discriminant_Constraint_Mapping
     (Node : Node_Id)
      return Internal_Element_Kinds;

   function N_Number_Declaration_Mapping
     (Node : Node_Id)
      return Internal_Element_Kinds;

   function N_Procedure_Call_Statement_Mapping
     (Node : Node_Id)
      return Internal_Element_Kinds;

   function N_Range_Constraint_Mapping
     (Node : Node_Id)
      return Internal_Element_Kinds;

   function N_Record_Definition_Mapping
     (Node : Node_Id)
      return Internal_Element_Kinds;

   function N_Use_Type_Clause_Mapping
     (Node : Node_Id)
      return Internal_Element_Kinds;

   function N_Terminate_Alternative_Mapping
     (Node : Node_Id)
      return Internal_Element_Kinds renames N_Accept_Alternative_Mapping;

   -----------------------------------------
   -- Node lists to Element lists filters --
   -----------------------------------------

   function May_Be_Included (Node : Node_Id) return Boolean;
   --  Top-level filter for selecting nodes from a node list to be used to
   --  create ASIS Elements which are members of some ASIS Element List.

   function Ordinary_Inclusion_Condition (Node : Node_Id) return Boolean;
   --  Defines the general condition for a separate node list member to be
   --  used to construct an Element to be returned by some ASIS query. This
   --  function does not make the final decision, because the node may be
   --  duplicated, and this is checked in the May_Be_Included function

   procedure Skip_Normalized_Declarations (Node : in out Node_Id);
   --  This procedure is applied in case when the compiler normalizes a
   --  multi-identifier declaration (or multi-name with clause) in a set of
   --  equivalent one-identifier (one-name) declarations (clauses). It is
   --  intended to be called for Node representing the first declaration
   --  (clause) in this normalized sequence, and it resets its parameter
   --  to point to the last declaration (clause) in this sequence

   -----------------------------------------
   -- Node-to-Element First Look-Up Table --
   -----------------------------------------

   Node_To_Element_Kind_Mapping_First_Switch :
      constant array (Node_Kind) of Internal_Element_Kinds := (

   N_Unused_At_Start  => No_Mapping,
   N_At_Clause                         => An_At_Clause,
   N_Component_Clause                  => A_Component_Clause,
   N_Enumeration_Representation_Clause => An_Enumeration_Representation_Clause,
   N_Mod_Clause                        => No_Mapping,
   N_Record_Representation_Clause      => A_Record_Representation_Clause,
   N_Attribute_Definition_Clause       => An_Attribute_Definition_Clause,
   N_Empty                             => No_Mapping,
   N_Error                             => No_Mapping,
   N_Pragma                            => Non_Trivial_Mapping,
   N_Pragma_Argument_Association       => A_Pragma_Argument_Association,
   N_Defining_Character_Literal        => A_Defining_Character_Literal,
   N_Defining_Identifier               => Non_Trivial_Mapping,
   N_Defining_Operator_Symbol          => Non_Trivial_Mapping,
   N_Expanded_Name                     => Non_Trivial_Mapping,
   N_Identifier                        => Non_Trivial_Mapping,
   N_Character_Literal                 => A_Character_Literal,
   N_Operator_Symbol                   => Non_Trivial_Mapping,
   N_Op_Add                            => A_Function_Call,
   N_Op_And                            => A_Function_Call,
   N_And_Then                          => An_And_Then_Short_Circuit,
   N_Op_Concat                         => A_Function_Call,
   N_Op_Divide                         => A_Function_Call,
   N_Op_Eq                             => A_Function_Call,
   N_Op_Expon                          => A_Function_Call,
   N_Op_Ge                             => A_Function_Call,
   N_Op_Gt                             => A_Function_Call,
--   N_In                                => Non_Trivial_Mapping,
   N_In                                => An_In_Membership_Test,
   N_Op_Le                             => A_Function_Call,
   N_Op_Lt                             => A_Function_Call,
   N_Op_Mod                            => A_Function_Call,
   N_Op_Multiply                       => A_Function_Call,
   N_Op_Ne                             => A_Function_Call,
--   N_Not_In                            => Non_Trivial_Mapping,
   N_Not_In                            => A_Not_In_Membership_Test,
   N_Op_Or                             => A_Function_Call,
   N_Or_Else                           => An_Or_Else_Short_Circuit,
   N_Op_Rem                            => A_Function_Call,
   N_Op_Subtract                       => A_Function_Call,
   N_Op_Xor                            => A_Function_Call,
   N_Op_Abs                            => A_Function_Call,
   N_Op_Minus                          => A_Function_Call,
   N_Op_Not                            => A_Function_Call,
   N_Op_Plus                           => A_Function_Call,
   N_Attribute_Reference               => Non_Trivial_Mapping,
   N_If_Expression                     => An_If_Expression,
   N_Explicit_Dereference              => An_Explicit_Dereference,
   N_Function_Call                     => Non_Trivial_Mapping,
   N_Indexed_Component                 => An_Indexed_Component,
   N_Integer_Literal                   => An_Integer_Literal,
   N_Null                              => A_Null_Literal,
   N_Procedure_Call_Statement          => Non_Trivial_Mapping,
   N_Qualified_Expression              => A_Qualified_Expression,
   N_Quantified_Expression             => Non_Trivial_Mapping,
   N_Raise_Constraint_Error            => No_Mapping,
   N_Range                             => Non_Trivial_Mapping,
   N_Real_Literal                      => A_Real_Literal,
   N_Selected_Component                => A_Selected_Component,
   N_Type_Conversion                   => A_Type_Conversion,
   N_Allocator                         => Non_Trivial_Mapping,
   N_Case_Expression                   => A_Case_Expression,    --  ASIS 2012
   N_Aggregate                         => Non_Trivial_Mapping,
   N_Extension_Aggregate               => An_Extension_Aggregate,
   N_Raise_Expression                  => A_Raise_Expression,  -- AI12-0022-1
   N_Slice                             => A_Slice,
   N_String_Literal                    => A_String_Literal,
   N_Subtype_Indication                => Non_Trivial_Mapping,
   N_Component_Declaration             => A_Component_Declaration,
   N_Entry_Body                        => An_Entry_Body_Declaration,
   N_Entry_Declaration                 => An_Entry_Declaration,
   N_Expression_Function               => An_Expression_Function_Declaration,
   N_Entry_Index_Specification         => An_Entry_Index_Specification,
   N_Formal_Object_Declaration         => A_Formal_Object_Declaration,
   N_Formal_Type_Declaration           => Non_Trivial_Mapping,
   N_Freeze_Entity                     => No_Mapping,
   N_Full_Type_Declaration             => An_Ordinary_Type_Declaration,
--  --|A2005 start
--   N_Incomplete_Type_Declaration       => An_Incomplete_Type_Declaration,
   N_Incomplete_Type_Declaration       => Non_Trivial_Mapping,
--  --|A2005 end

--  --|A2012 start
   N_Iterator_Specification            => Non_Trivial_Mapping,
--  --|A2012 end

   N_Loop_Parameter_Specification      => A_Loop_Parameter_Specification,
   N_Object_Declaration                => Non_Trivial_Mapping,
   N_Private_Extension_Declaration     => A_Private_Extension_Declaration,
   N_Private_Type_Declaration          => A_Private_Type_Declaration,
   N_Subtype_Declaration               => A_Subtype_Declaration,
   N_Protected_Type_Declaration        => A_Protected_Type_Declaration,
   N_Accept_Statement                  => An_Accept_Statement,
   N_Function_Specification            => No_Mapping,
   N_Procedure_Specification           => No_Mapping,
   N_Access_Function_Definition        => Non_Trivial_Mapping,
   N_Access_Procedure_Definition       => Non_Trivial_Mapping,
   N_Task_Type_Declaration             => A_Task_Type_Declaration,
   N_Package_Body_Stub                 => A_Package_Body_Stub,
   N_Protected_Body_Stub               => A_Protected_Body_Stub,
   N_Subprogram_Body_Stub              => Non_Trivial_Mapping,
   N_Task_Body_Stub                    => A_Task_Body_Stub,
   N_Function_Instantiation            => A_Function_Instantiation,
   N_Package_Instantiation             => A_Package_Instantiation,
   N_Procedure_Instantiation           => A_Procedure_Instantiation,
   N_Package_Body                      => A_Package_Body_Declaration,
   N_Subprogram_Body                   => Non_Trivial_Mapping,
   N_Implicit_Label_Declaration        => No_Mapping,
   N_Package_Declaration               => A_Package_Declaration,
   N_Single_Task_Declaration           => A_Single_Task_Declaration,
   N_Subprogram_Declaration            => Non_Trivial_Mapping,
   N_Task_Body                         => A_Task_Body_Declaration,
   N_Use_Package_Clause                => A_Use_Package_Clause,
   N_Generic_Package_Declaration       => A_Generic_Package_Declaration,
   N_Generic_Subprogram_Declaration    => Non_Trivial_Mapping,
   N_Constrained_Array_Definition      => Non_Trivial_Mapping,
   N_Unconstrained_Array_Definition    => Non_Trivial_Mapping,
   N_Exception_Renaming_Declaration    => An_Exception_Renaming_Declaration,
   N_Object_Renaming_Declaration       => An_Object_Renaming_Declaration,
   N_Package_Renaming_Declaration      => A_Package_Renaming_Declaration,
   N_Subprogram_Renaming_Declaration   => Non_Trivial_Mapping,

   N_Generic_Function_Renaming_Declaration  =>
      A_Generic_Function_Renaming_Declaration,

   N_Generic_Package_Renaming_Declaration   =>
      A_Generic_Package_Renaming_Declaration,

   N_Generic_Procedure_Renaming_Declaration =>
      A_Generic_Procedure_Renaming_Declaration,

   N_Abort_Statement                   => An_Abort_Statement,
   N_Assignment_Statement              => An_Assignment_Statement,
   N_Block_Statement                   => A_Block_Statement,
   N_Case_Statement                    => A_Case_Statement,
   N_Code_Statement                    => A_Code_Statement,
   N_Delay_Relative_Statement          => A_Delay_Relative_Statement,
   N_Delay_Until_Statement             => A_Delay_Until_Statement,
   N_Entry_Call_Statement              => An_Entry_Call_Statement,
   N_Exit_Statement                    => An_Exit_Statement,
   N_Free_Statement                    => No_Mapping,
   N_Goto_Statement                    => A_Goto_Statement,
   N_If_Statement                      => An_If_Statement,
   N_Loop_Statement                    => Non_Trivial_Mapping,
   N_Null_Statement                    => A_Null_Statement,
   N_Raise_Statement                   => A_Raise_Statement,
   N_Requeue_Statement                 => Non_Trivial_Mapping,
   N_Simple_Return_Statement           => A_Return_Statement,
   N_Extended_Return_Statement         => An_Extended_Return_Statement,
   N_Abortable_Part                    => A_Then_Abort_Path,
   N_Abstract_Subprogram_Declaration   => Non_Trivial_Mapping,
   N_Accept_Alternative                => Non_Trivial_Mapping,

--  --|A2005 start
   N_Access_Definition                 => Non_Trivial_Mapping,
--  --|A2005 end

   N_Access_To_Object_Definition       => Non_Trivial_Mapping,

--  --|A2012 start
   N_Aspect_Specification              => An_Aspect_Specification,
   N_Case_Expression_Alternative       => A_Case_Expression_Path,
--  --|A2012 end

   N_Asynchronous_Select               => An_Asynchronous_Select_Statement,
   N_Case_Statement_Alternative        => A_Case_Path,
   N_Compilation_Unit                  => No_Mapping,
   N_Component_Association             => Non_Trivial_Mapping,
   N_Component_Definition              => A_Component_Definition,
   N_Conditional_Entry_Call            => A_Conditional_Entry_Call_Statement,
   N_Derived_Type_Definition           => Non_Trivial_Mapping,
   N_Decimal_Fixed_Point_Definition    => A_Decimal_Fixed_Point_Definition,
   N_Defining_Program_Unit_Name        => A_Defining_Expanded_Name,
   N_Delay_Alternative                 => Non_Trivial_Mapping,
   N_Delta_Constraint                  => A_Delta_Constraint,
   N_Designator                        => A_Selected_Component,
   N_Digits_Constraint                 => A_Digits_Constraint,
   N_Discriminant_Association          => A_Discriminant_Association,
   N_Discriminant_Specification        => A_Discriminant_Specification,
   N_Elsif_Part                        => An_Elsif_Path,
   N_Enumeration_Type_Definition       => An_Enumeration_Type_Definition,
   N_Entry_Call_Alternative            => A_Select_Path,
   N_Exception_Declaration             => An_Exception_Declaration,
   N_Exception_Handler                 => An_Exception_Handler,
   N_Floating_Point_Definition         => A_Floating_Point_Definition,

   N_Formal_Decimal_Fixed_Point_Definition  =>
      A_Formal_Decimal_Fixed_Point_Definition,

   N_Formal_Derived_Type_Definition    => A_Formal_Derived_Type_Definition,
   N_Formal_Discrete_Type_Definition   => A_Formal_Discrete_Type_Definition,
   N_Formal_Floating_Point_Definition  => A_Formal_Floating_Point_Definition,
   N_Formal_Modular_Type_Definition    => A_Formal_Modular_Type_Definition,

   N_Formal_Ordinary_Fixed_Point_Definition =>
      A_Formal_Ordinary_Fixed_Point_Definition,

   N_Formal_Package_Declaration        => Non_Trivial_Mapping,
   N_Formal_Private_Type_Definition    => Non_Trivial_Mapping,

   N_Formal_Signed_Integer_Type_Definition  =>
      A_Formal_Signed_Integer_Type_Definition,

   N_Formal_Subprogram_Declaration     => Non_Trivial_Mapping,
   N_Generic_Association               => A_Generic_Association,
   N_Index_Or_Discriminant_Constraint  => Non_Trivial_Mapping,
   N_Label                             => No_Mapping,
   N_Modular_Type_Definition           => A_Modular_Type_Definition,
   N_Number_Declaration                => Non_Trivial_Mapping,
   N_Ordinary_Fixed_Point_Definition   => An_Ordinary_Fixed_Point_Definition,
   N_Others_Choice                     => An_Others_Choice,
   N_Package_Specification             => No_Mapping,
   N_Parameter_Association             => A_Parameter_Association,
   N_Parameter_Specification           => A_Parameter_Specification,
   N_Protected_Body                    => A_Protected_Body_Declaration,
   N_Protected_Definition              => A_Protected_Definition,
   N_Range_Constraint                  => Non_Trivial_Mapping,
   N_Real_Range_Specification          => A_Simple_Expression_Range,
   N_Record_Definition                 => Non_Trivial_Mapping,
   N_Selective_Accept                  => A_Selective_Accept_Statement,
   N_Signed_Integer_Type_Definition    => A_Signed_Integer_Type_Definition,
   N_Single_Protected_Declaration      => A_Single_Protected_Declaration,
   N_Subunit                           => No_Mapping,
   N_Task_Definition                   => A_Task_Definition,
   N_Terminate_Alternative             => Non_Trivial_Mapping,
   N_Timed_Entry_Call                  => A_Timed_Entry_Call_Statement,
   N_Triggering_Alternative            => A_Select_Path,
   N_Use_Type_Clause                   => Non_Trivial_Mapping,
   N_Variant                           => A_Variant,
   N_Variant_Part                      => A_Variant_Part,
   N_With_Clause                       => A_With_Clause,
   N_Unused_At_End                     => No_Mapping,

   others                          => Not_Implemented_Mapping);

   ------------------------------------------
   -- Node-to-Element Second Look-Up Table --
   ------------------------------------------

   type Mapping_Item is access function (Node : Node_Id)
         return Internal_Element_Kinds;

   Node_To_Element_Kind_Mapping_Second_Switch :
      constant array (Node_Kind) of Mapping_Item := (

      N_Pragma                   => N_Pragma_Mapping'Access,
      N_Defining_Identifier      => N_Defining_Identifier_Mapping'Access,
      N_Defining_Operator_Symbol => N_Defining_Operator_Symbol_Mapping'Access,
      N_Expanded_Name            => N_Expanded_Name_Mapping'Access,
      N_Identifier               => N_Identifier_Mapping'Access,
      N_Operator_Symbol          => N_Operator_Symbol_Mapping'Access,
      N_Attribute_Reference      => N_Attribute_Reference_Mapping'Access,
      N_Function_Call            => N_Function_Call_Mapping'Access,
      N_Quantified_Expression    => N_Quantified_Expression_Mapping'Access,
      N_Range                    => N_Range_Mapping'Access,
      N_Allocator                => N_Allocator_Mapping'Access,
      N_Aggregate                => N_Aggregate_Mapping'Access,
      N_Subtype_Indication       => N_Subtype_Indication_Mapping'Access,

--  --|A2012 start
      N_Formal_Type_Declaration  => N_Formal_Type_Declaration_Mapping'Access,
--  --|A2012 end

--  --|A2005 start
--   N_Incomplete_Type_Declaration       => An_Incomplete_Type_Declaration,
      N_Incomplete_Type_Declaration =>
        N_Incomplete_Type_Declaration_Mapping'Access,
--  --|A2005 end

--  --|A2012 start
      N_Iterator_Specification   => N_Iterator_Specification_Mapping'Access,
--  --|A2012 end

      N_Object_Declaration       => N_Object_Declaration_Mapping'Access,

      N_Access_Function_Definition  =>
         N_Access_Function_Definition_Mapping'Access,

      N_Access_Procedure_Definition =>
         N_Access_Procedure_Definition_Mapping'Access,

      N_Subprogram_Body_Stub     => N_Subprogram_Body_Stub_Mapping'Access,
      N_Subprogram_Body          => N_Subprogram_Body_Mapping'Access,
      N_Subprogram_Declaration   => N_Subprogram_Declaration_Mapping'Access,

      N_Generic_Subprogram_Declaration =>
         N_Generic_Subprogram_Declaration_Mapping'Access,

      N_Constrained_Array_Definition =>
         N_Constrained_Array_Definition_Mapping'Access,

      N_Unconstrained_Array_Definition =>
         N_Unconstrained_Array_Definition_Mapping'Access,

      N_Subprogram_Renaming_Declaration =>
         N_Subprogram_Renaming_Declaration_Mapping'Access,

      N_Loop_Statement           => N_Loop_Statement_Mapping'Access,
      N_Requeue_Statement        => N_Requeue_Statement_Mapping'Access,

      N_Abstract_Subprogram_Declaration =>
         N_Abstract_Subprogram_Declaration_Mapping'Access,

      N_Accept_Alternative       => N_Accept_Alternative_Mapping'Access,

--  --|A2005 start
      N_Access_Definition        => N_Access_Definition_Mapping'Access,
--  --|A2005 end

      N_Access_To_Object_Definition =>
         N_Access_To_Object_Definition_Mapping'Access,

      N_Component_Association    => N_Component_Association_Mapping'Access,
      N_Derived_Type_Definition  => N_Derived_Type_Definition_Mapping'Access,
      N_Delay_Alternative        => N_Delay_Alternative_Mapping'Access,

      N_Formal_Package_Declaration     =>
         N_Formal_Package_Declaration_Mapping'Access,

      N_Formal_Private_Type_Definition =>
         N_Formal_Private_Type_Definition_Mapping'Access,

      N_Formal_Subprogram_Declaration  =>
         N_Formal_Subprogram_Declaration_Mapping'Access,

      N_Index_Or_Discriminant_Constraint =>
         N_Index_Or_Discriminant_Constraint_Mapping'Access,

      N_Number_Declaration       => N_Number_Declaration_Mapping'Access,
      N_Range_Constraint         => N_Range_Constraint_Mapping'Access,
      N_Record_Definition        => N_Record_Definition_Mapping'Access,
      N_Terminate_Alternative    => N_Terminate_Alternative_Mapping'Access,
      N_Use_Type_Clause          => N_Use_Type_Clause_Mapping'Access,
      N_Procedure_Call_Statement => N_Procedure_Call_Statement_Mapping'Access,

      others                     => Not_Implemented_Mapping'Access);

   ----------------------------------------------------
   -- Node List to Element List Filter Look-Up Table --
   ----------------------------------------------------

   --  The following look-up table defines the first, very rough filter for
   --  selecting node list elements to be used as a basis for ASIS Element
   --  list components: it defines which Node_Kind values could never be used
   --  for creating Elements in Element List (for them False is set in the
   --  table)

   May_Be_Included_Switch : constant array (Node_Kind) of Boolean := (

      N_Unused_At_Start             => False,
      N_Freeze_Entity               => False,
      N_Implicit_Label_Declaration  => False,
      N_Label                       => False,

      others                        => True);

   --------------------------------
   -- Asis_Internal_Element_Kind --
   --------------------------------

   function Asis_Internal_Element_Kind
     (Node : Node_Id)
      return Internal_Element_Kinds
   is
      Mapping_Case  : Internal_Element_Kinds;
      Source_Node_Kind : Node_Kind;

   begin -- two-level switching only!

      Source_Node_Kind := Nkind (Node);
      Mapping_Case  := Node_To_Element_Kind_Mapping_First_Switch
                          (Source_Node_Kind);

      case Mapping_Case is

      when Non_Trivial_Mapping =>

         return Node_To_Element_Kind_Mapping_Second_Switch
                (Source_Node_Kind) (Node);

      when Not_Implemented_Mapping =>

         Not_Implemented_Mapping (Source_Node_Kind);

      when No_Mapping =>

         No_Mapping (Node);

      when others => -- all trivial cases!

         return Mapping_Case;

      end case;

   end Asis_Internal_Element_Kind;

   --------------------------------------
   -- Defining_Id_List_From_Normalized --
   --------------------------------------

   function Defining_Id_List_From_Normalized
     (N                : Node_Id;
      From_Declaration : Asis.Element)
      return Asis.Defining_Name_List
   is
      Res_Max_Len : constant Natural :=
        Natural (List_Length (List_Containing (N)));
      --  to avoid two loops through the list of declarations/specifications,
      --  we use the rough estimation of the length of the result
      --  Defining_Name_List - it cannot contain more elements that the
      --  number of nodes in the tree node list containing (normalized)
      --  declarations
      Res_Act_Len : Natural := 1;
      --  the actual number of defining identifiers in the normalized
      --  declaration
      Result_List : Defining_Name_List (1 .. Res_Max_Len);
      Decl_Node   : Node_Id := N;
      Decl_Nkind  : constant Node_Kind := Nkind (Decl_Node);
      Def_Id_Node : Node_Id;
   begin
      Def_Id_Node := Defining_Identifier (Decl_Node);

      Result_List (Res_Act_Len) :=
         Node_To_Element_New (Node             => Def_Id_Node,
                              Starting_Element => From_Declaration,
                              Internal_Kind    => A_Defining_Identifier);

      while More_Ids (Decl_Node) loop
         Decl_Node   := Next (Decl_Node);

         while Nkind (Decl_Node) /= Decl_Nkind loop
            --  some implicit subtype declarations may be inserted by
            --  the compiler in between the normalized declarations, so:
            Decl_Node := Next (Decl_Node);
         end loop;

         Def_Id_Node := Defining_Identifier (Decl_Node);
         Res_Act_Len := Res_Act_Len + 1;

         Result_List (Res_Act_Len) :=
            Node_To_Element_New (Node             => Def_Id_Node,
                                 Starting_Element => From_Declaration,
                                 Internal_Kind    => A_Defining_Identifier);
      end loop;

      return Result_List (1 .. Res_Act_Len);

   end Defining_Id_List_From_Normalized;

   ------------------------------------------
   -- Discrete_Choice_Node_To_Element_List --
   ------------------------------------------

   function Discrete_Choice_Node_To_Element_List
     (Choice_List      : List_Id;
      Starting_Element : Asis.Element)
   return Asis.Element_List
   is
      Result_List  : Asis.Element_List
                     (1 .. ASIS_Integer (List_Length (Choice_List)));
      --  List_Length (Choice_List) cannot be 0 for the DISCRETE_CHOICE_LIST!

      Current_Node             : Node_Id;
      Current_Original_Node    : Node_Id;
      Element_Already_Composed : Boolean;
      Result_Kind              : Internal_Element_Kinds;
   begin

      Current_Node :=  First (Choice_List);
      --  first list element to process cannot be Empty!

      Current_Original_Node := Original_Node (Current_Node);

      for I in 1 .. ASIS_Integer (List_Length (Choice_List)) loop

         Element_Already_Composed := False;

         if Paren_Count (Current_Original_Node) > 0 then
            --  Corner but legal case of discrete choice like
            --
            --    when (1) =>
            --
            --  or
            --
            --     When (A.B.C) =>
            Result_Kind := Not_An_Element;
         else

            case Nkind (Current_Original_Node) is

            --  DISCRETE_CHOICE_LIST ::= DISCRETE_CHOICE {| DISCRETE_CHOICE}
            --  DISCRETE_CHOICE ::= EXPRESSION | DISCRETE_RANGE | others

            when N_Others_Choice =>  --  DISCRETE_CHOICE ::= ... | others

               Result_Kind := An_Others_Choice;

            --  DISCRETE_CHOICE ::= ... | DISCRETE_RANGE | ...

            --  DISCRETE_RANGE ::= discrete_SUBTYPE_INDICATION | RANGE

            when N_Subtype_Indication =>
               --  DISCRETE_RANGE ::= discrete_SUBTYPE_INDICATION | ...
               --
               --  The problem is that GNAT reduces the subtype_indication
               --  having NO constraint directly to subtype_mark
               --  (-> N_Identifier, N_Expanded_Name). May be, it is a
               --  pathological case, but it can also be represented by
               --  ...'Base construction (-> N_Attribute_Reference)

               Result_Kind := A_Discrete_Subtype_Indication;

            when N_Identifier =>

               if No (Entity (Current_Original_Node)) then
                  --  Temporary solution for '-gnatI' tree
                  Current_Original_Node :=
                    Parent (Parent (Parent (Current_Original_Node)));

                  case Nkind (Current_Original_Node) is
                     when N_Enumeration_Representation_Clause =>
                        Result_Kind := An_Enumeration_Literal;
                     when others =>
                        pragma Assert (False);
                  end case;
               else
                  if Ekind (Entity (Current_Original_Node)) in
                       Discrete_Kind
                  then
                     --  discrete subtype mark!!
                     Result_Kind := A_Discrete_Subtype_Indication;

                  elsif Ekind (Entity (Current_Original_Node)) =
                        E_Enumeration_Literal
                  then
                     Result_Kind := An_Enumeration_Literal;
                  else
                     Result_Kind := An_Identifier;
                  end if;
               end if;

            when N_Expanded_Name =>

               if Ekind (Entity (Current_Original_Node)) in  Discrete_Kind then
                  --  discrete subtype mark!!
                  Result_Kind := A_Discrete_Subtype_Indication;
               else
                  --  expression
                  Result_Kind := A_Selected_Component;
               end if;

               --  DISCRETE_RANGE ::= ... | RANGE

               --  RANGE ::=
               --    RANGE_ATTRIBUTE_REFERENCE
               --  | SIMPLE_EXPRESSION .. SIMPLE_EXPRESSION

            when N_Range =>
               --  RANGE ::= ...
               --  | SIMPLE_EXPRESSION .. SIMPLE_EXPRESSION

               Result_Kind := A_Discrete_Simple_Expression_Range;

            when N_Attribute_Reference =>
               --  RANGE ::= RANGE_ATTRIBUTE_REFERENCE | ...
               --  Sinfo.ads:
               --            A range attribute designator is represented
               --            in the tree using the normal N_Attribute_Reference
               --            node.
               --  But if the tree corresponds to the compilable Compilation
               --  Unit, the RANGE_ATTRIBUTE_REFERENCE is the only construct
               --  which could be in this position --W_R_O_N_G !!! T'Base!!!

               if Attribute_Name (Current_Original_Node) = Name_Range then
                  Result_Kind := A_Discrete_Range_Attribute_Reference;
               else
                  --  attribute denoting a type/subtype or yielding a value:

                  Result_List (I) := Node_To_Element_New (
                        Node             => Current_Node,
                        Starting_Element => Starting_Element);

                  Element_Already_Composed := True;

               end if;

            --  DISCRETE_CHOICE ::= EXPRESSION | ...

            when others =>
               --  In the tree corresponding to the compilable Compilation
               --  Unit the only possibility in the others choice is the
               --  EXPRESSION as the DISCRETE_CHOICE.

               Result_List (I) := Node_To_Element_New (
                     Node             => Current_Node,
                     Starting_Element => Starting_Element);

               Element_Already_Composed := True;

            end case;
         end if;

         if not Element_Already_Composed then

            Result_List (I) := Node_To_Element_New (
                  Node             => Current_Node,
                  Internal_Kind    => Result_Kind,
                  Starting_Element => Starting_Element);
         end if;

         Current_Node          := Next (Current_Node);
         Current_Original_Node := Original_Node (Current_Node);

      end loop;

      return Result_List;

   end Discrete_Choice_Node_To_Element_List;

   ----------------------
   -- Is_Config_Pragma --
   ----------------------

   function Is_Config_Pragma (N : Node_Id) return Boolean is
   begin
      return True
        and then Nkind (N) = N_Pragma
        and then Pragma_Name (N) in
          First_Pragma_Name .. Last_Configuration_Pragma_Name;
   end Is_Config_Pragma;

   -------------------------------
   -- Is_GNAT_Attribute_Routine --
   -------------------------------

   function Is_GNAT_Attribute_Routine (N : Node_Id) return Boolean is
      Attribute_Chars : Name_Id;
      Result          : Boolean := False;
   begin

      Attribute_Chars := Attribute_Name (N);

      if Attribute_Chars = Name_Asm_Input     or else
         Attribute_Chars = Name_Asm_Output    or else
         Attribute_Chars = Name_Enum_Rep      or else
         Attribute_Chars = Name_Enum_Val      or else
         Attribute_Chars = Name_Fixed_Value   or else
         Attribute_Chars = Name_Integer_Value or else
         Attribute_Chars = Name_Ref
      then
         Result := True;
      end if;

      return Result;

   end Is_GNAT_Attribute_Routine;

   -------------------------------------------
   -- Is_Rewritten_Function_Prefix_Notation --
   -------------------------------------------

   function Is_Rewritten_Function_Prefix_Notation
     (N     : Node_Id)
      return Boolean
   is
      Result : Boolean := False;
   begin

      if Nkind (N) = N_Function_Call
        and then
         Is_Rewrite_Substitution (N)
        and then
         Nkind (Original_Node (N)) not in N_Op
        and then
         Present (Parameter_Associations (N))
        and then
         not Is_Empty_List (Parameter_Associations (N))
        and then
         Sloc (First (Parameter_Associations (N))) < Sloc (Sinfo.Name (N))
      then
         Result := True;
      end if;

      return Result;
   end Is_Rewritten_Function_Prefix_Notation;

   ------------------------------------------------------
   -- Is_Rewritten_Impl_Deref_Function_Prefix_Notation --
   ------------------------------------------------------

   function Is_Rewritten_Impl_Deref_Function_Prefix_Notation
     (N     : Node_Id)
      return Boolean
   is
      Result : Boolean := False;
   begin

      if Nkind (N) = N_Function_Call
        and then
         Present (Parameter_Associations (N))
        and then
         not Is_Empty_List (Parameter_Associations (N))
        and then
         Sloc (First (Parameter_Associations (N))) < Sloc (Sinfo.Name (N))
      then
         Result := True;
      end if;

      return Result;
   end Is_Rewritten_Impl_Deref_Function_Prefix_Notation;

   -----------------------------------
   -- Get_Next_Configuration_Pragma --
   -----------------------------------

   function Get_Next_Configuration_Pragma (N : Node_Id) return Node_Id is
      Result : Node_Id := N;
   begin

      while not (Is_Config_Pragma (Result) or else
                 No (Result))
      loop
         Result := Next (Result);
      end loop;

      return Result;
   end Get_Next_Configuration_Pragma;

   ----------------------------
   -- Is_Not_Duplicated_Decl --
   ----------------------------

   function Is_Not_Duplicated_Decl (Node : Node_Id) return Boolean is
      Prev_List_Elem : Node_Id;
   begin
      --  the idea is to check if the previous list member (and we are
      --  sure that Node itself is a list member) to be included
      --  in the list is the rewritten tree structure representing
      --  just the same Ada construct
      --
      --  If we change Prev_Non_Pragma to Next_Non_Pragma, then this
      --  function will return False for the first, but not for the second
      --  of the two duplicated declarations

      if not (Nkind (Node) = N_Full_Type_Declaration or else
              Nkind (Node) = N_Private_Type_Declaration or else
              Nkind (Node) = N_Subtype_Declaration)
      then
         return True;
         --  as far as we know for now, the problem of duplicated
         --  declaration exists only for type declarations
      end if;

      Prev_List_Elem := Prev_Non_Pragma (Node);

      while Present (Prev_List_Elem) loop

         if Ordinary_Inclusion_Condition (Prev_List_Elem)
           and then
            (Nkind (Prev_List_Elem) = N_Full_Type_Declaration or else
             Nkind (Prev_List_Elem) = N_Subtype_Declaration)
           and then
            Chars (Defining_Identifier (Prev_List_Elem)) =
            Chars (Defining_Identifier (Node))
         then
            return False;
         end if;

         Prev_List_Elem := Prev_Non_Pragma (Prev_List_Elem);
      end loop;

      return True;

   end Is_Not_Duplicated_Decl;

   ---------------------------------
   -- Is_Protected_Procedure_Call --
   ---------------------------------

   function Is_Protected_Procedure_Call (N : Node_Id) return Boolean is
      Result   : Boolean := False;
      Tmp_Node : Node_Id;
   begin
      Tmp_Node := Sinfo.Name (N);

      if Nkind (Tmp_Node) = N_Indexed_Component then
         --  Call to an entry from an entry family,
         Tmp_Node := Prefix (Tmp_Node);
      end if;

      if Nkind (Tmp_Node) = N_Selected_Component then
         Tmp_Node := Selector_Name (Tmp_Node);
      end if;

      Tmp_Node := Entity (Tmp_Node);

      Result := Ekind (Tmp_Node) = E_Procedure;

      return Result;

   end Is_Protected_Procedure_Call;

   ------------------
   -- Is_Statement --
   ------------------

   function Is_Statement (N : Node_Id) return Boolean is
      Arg_Kind : constant Node_Kind := Nkind (N);
   begin
      return Arg_Kind in N_Statement_Other_Than_Procedure_Call or else
             Arg_Kind = N_Procedure_Call_Statement;
   end Is_Statement;

   ------------------------------------------
   -- Is_Stub_To_Body_Instanse_Replacement --
   ------------------------------------------

   function Is_Stub_To_Body_Instanse_Replacement
     (N :    Node_Id)
      return Boolean
   is
      Arg_Kind : constant Node_Kind := Nkind (N);
      Result   : Boolean            := False;
   begin

      if Arg_Kind in N_Proper_Body and then
         Was_Originally_Stub (N)
      then

         case Arg_Kind is
            when N_Subprogram_Body =>
               Result := Is_From_Instance (Sinfo.Specification (N));
            when N_Package_Body =>
               Result := Is_From_Instance (Sinfo.Defining_Unit_Name (N));
            when others =>
               Result := Is_From_Instance (Sinfo.Defining_Identifier (N));
         end case;

      end if;

      return Result;
   end Is_Stub_To_Body_Instanse_Replacement;

   ---------------------
   -- May_Be_Included --
   ---------------------

   function May_Be_Included (Node : Node_Id) return Boolean is

   begin
      return Ordinary_Inclusion_Condition (Node) and then
             Is_Not_Duplicated_Decl       (Node);

   end May_Be_Included;

   -----------------------------------------------
   -- N_Abstract_Subprogram_Declaration_Mapping --
   -----------------------------------------------

   function N_Abstract_Subprogram_Declaration_Mapping
     (Node : Node_Id)
      return Internal_Element_Kinds
   is
   begin
      --  Two Internal_Element_Kinds values may be possible:
      --    A_Procedure_Declaration
      --    A_Function_Declaration

         if Nkind (Specification (Node)) = N_Function_Specification then
            return A_Function_Declaration;
         else
            return A_Procedure_Declaration;
         end if;

   end N_Abstract_Subprogram_Declaration_Mapping;

   ----------------------------------
   -- N_Accept_Alternative_Mapping --
   ----------------------------------

   function N_Accept_Alternative_Mapping
     (Node : Node_Id)
      return Internal_Element_Kinds
   is
   begin
      --  Two Internal_Element_Kinds values may be possible:
      --    A_Select_Path
      --    An_Or_Path

      if No (Prev (Node)) then
         return A_Select_Path;
      else
         return An_Or_Path;
      end if;

   end N_Accept_Alternative_Mapping;

   ------------------------------------------
   -- N_Access_Function_Definition_Mapping --
   ------------------------------------------

   function N_Access_Function_Definition_Mapping
     (Node : Node_Id)
      return Internal_Element_Kinds
   is
   begin
      --  Four Internal_Element_Kinds values may be possible:
      --
      --   An_Access_To_Function
      --   An_Access_To_Protected_Function
      --
      --   A_Formal_Access_To_Function
      --   A_Formal_Access_To_Protected_Function

         if Nkind (Parent (Node)) = N_Formal_Type_Declaration then

            if Protected_Present (Node) then
               return A_Formal_Access_To_Protected_Function;
            else
               return A_Formal_Access_To_Function;
            end if;

         else

            if Protected_Present (Node) then
               return An_Access_To_Protected_Function;
            else
               return An_Access_To_Function;
            end if;

         end if;

   end N_Access_Function_Definition_Mapping;

   -------------------------------------------
   -- N_Access_Procedure_Definition_Mapping --
   -------------------------------------------

   function N_Access_Procedure_Definition_Mapping
     (Node : Node_Id)
      return Internal_Element_Kinds
   is
   begin
      --  Four Internal_Element_Kinds values may be possible:
      --
      --   An_Access_To_Procedure
      --   An_Access_To_Protected_Procedure
      --
      --   A_Formal_Access_To_Procedure
      --   A_Formal_Access_To_Protected_Procedure

         if Nkind (Parent (Node)) = N_Formal_Type_Declaration then
            if Protected_Present (Node) then
               return A_Formal_Access_To_Protected_Procedure;
            else
               return A_Formal_Access_To_Procedure;
            end if;
         else
            if Protected_Present (Node) then
               return An_Access_To_Protected_Procedure;
            else
               return An_Access_To_Procedure;
            end if;
         end if;

   end N_Access_Procedure_Definition_Mapping;

--  --|A2005 start
   ---------------------------------
   -- N_Access_Definition_Mapping --
   ---------------------------------

   function N_Access_Definition_Mapping
     (Node : Node_Id)
      return Internal_Element_Kinds
   is
      Result :          Internal_Element_Kinds := Not_An_Element;
      Tmp    : constant Node_Id                :=
        Sinfo.Access_To_Subprogram_Definition (Node);
   begin

      case Nkind (Tmp) is
         when N_Empty =>
            if Constant_Present (Node) then
               Result := An_Anonymous_Access_To_Constant;
            else
               Result := An_Anonymous_Access_To_Variable;
            end if;

         when N_Access_Function_Definition =>

            if Protected_Present (Tmp) then
               Result := An_Anonymous_Access_To_Protected_Function;
            else
               Result := An_Anonymous_Access_To_Function;
            end if;

         when N_Access_Procedure_Definition =>

            if Protected_Present (Tmp) then
               Result := An_Anonymous_Access_To_Protected_Procedure;
            else
               Result := An_Anonymous_Access_To_Procedure;
            end if;

         when others =>
            pragma Assert (False);
            null;
      end case;

      return Result;
   end N_Access_Definition_Mapping;
--  --|A2005 end

   -------------------------------------------
   -- N_Access_To_Object_Definition_Mapping --
   -------------------------------------------

   function N_Access_To_Object_Definition_Mapping
     (Node : Node_Id)
      return Internal_Element_Kinds
   is
   begin
      --  Six Internal_Element_Kinds values may be possible:
      --
      --   A_Pool_Specific_Access_To_Variable
      --   An_Access_To_Variable
      --   An_Access_To_Constant
      --
      --   A_Formal_Pool_Specific_Access_To_Variable
      --   A_Formal_Access_To_Variable
      --   A_Formal_Access_To_Constant

      if Nkind (Parent (Node)) = N_Formal_Type_Declaration then

         if All_Present (Node) then
            return A_Formal_Access_To_Variable;
         elsif Constant_Present (Node) then
            return A_Formal_Access_To_Constant;
         else
            return A_Formal_Pool_Specific_Access_To_Variable;
         end if;

      else

         if All_Present (Node) then
            return An_Access_To_Variable;
         elsif Constant_Present (Node) then
            return An_Access_To_Constant;
         else
            return A_Pool_Specific_Access_To_Variable;
         end if;

      end if;

   end N_Access_To_Object_Definition_Mapping;

   -------------------------
   -- N_Aggregate_Mapping --
   -------------------------

   function N_Aggregate_Mapping
     (Node : Node_Id)
      return Internal_Element_Kinds
   is
      Aggregate_Type : Node_Id := Etype (Node);
   begin
      --  Three Internal_Element_Kinds values may be possible:
      --     A_Record_Aggregate
      --     A_Positional_Array_Aggregate
      --     A_Named_Array_Aggregate

         --  the following fragment is a result of the current setting
         --  of Etype field in the tree, see open problems #77

         --  for multi-dimensional array aggregates, Etype field for
         --  inner aggregates is set to Empty!!

         if Present (Aggregate_Type)                and then
            Ekind (Aggregate_Type) in Private_Kind  and then
            not (Ekind (Aggregate_Type) in Array_Kind    or else
                  Ekind (Aggregate_Type) in Record_Kind)
         then
            --  we need a full view of the type!
            Aggregate_Type := Full_View (Aggregate_Type);
         end if;

         --  Special case:
         if No (Aggregate_Type)
           and then
            (Nkind (Parent (Node)) = N_Pragma_Argument_Association
            or else
             Nkind (Parent (Node)) = N_Aspect_Specification)
         then
            return A_Record_Aggregate;
         end if;

         if Present (Aggregate_Type) and then
            Ekind (Aggregate_Type) in Record_Kind
         then
            return A_Record_Aggregate;
         else

            if Present (Expressions (Node)) then
               return A_Positional_Array_Aggregate;
            else
               return A_Named_Array_Aggregate;
            end if;

         end if;

   end N_Aggregate_Mapping;

   -------------------------
   -- N_Allocator_Mapping --
   -------------------------

   function N_Allocator_Mapping
     (Node : Node_Id)
      return Internal_Element_Kinds
   is
   begin
      --  Two Internal_Element_Kinds values may be possible:
      --     An_Allocation_From_Subtype
      --     An_Allocation_From_Qualified_Expression

         if Nkind (Sinfo.Expression (Node)) = N_Qualified_Expression then
            return An_Allocation_From_Qualified_Expression;
         else
            return An_Allocation_From_Subtype;
         end if;

   end N_Allocator_Mapping;

   -----------------------------------
   -- N_Attribute_Reference_Mapping --
   -----------------------------------

   function N_Attribute_Reference_Mapping
     (Node : Node_Id)
      return Internal_Element_Kinds
   is
      Attribute_Chars : constant Name_Id   := Attribute_Name (Node);
      Context_Kind    : constant Node_Kind :=
        Nkind  (Original_Node (Parent_Node));
   begin
      --  The following Internal_Element_Kinds values may be possible:
      --
      --  For range attribute reference:
      --
      --     A_Discrete_Range_Attribute_Reference_As_Subtype_Definition
      --     A_Discrete_Range_Attribute_Reference
      --     A_Range_Attribute_Reference
      --
      --  For attribute reference corresponding to the attributes which are
      --  functions
      --
      --     Adjacent
      --     Ceiling
      --     Compose
      --     Copy_Sign
      --     Exponent
      --     Floor
      --     Fraction
      --     Image
      --     Input
      --     Leading_Part
      --     Machine
      --     Max
      --     Min
      --     Model
      --     Pos
      --     Pred
      --     Remainder
      --     Round
      --     Rounding
      --     Scaling
      --     Succ
      --     Truncation
      --     Unbiased_Rounding
      --     Val
      --     Value
      --     Wide_Image
      --     Wide_Value
--  |A2005 start
      --
      --  Ada 2005 attributes that are functions:
      --
      --      Machine_Rounding
      --      Mod
      --      Wide_Wide_Image
--  |A2005 end
      --
      --  plus GNAT-specific attributes:
      --     Enum_Rep
      --     Fixed_Value
      --     Integer_Value
      --     Result
      --
      --  the Element of A_Function_Call Internal_Element_Kinds value should be
      --  created, and the determination of the prefix kind should further be
      --  done by hand (function Asis_Expressions.Prefix)
      --
      --  For attribute reference corresponding to the attributes which are
      --  procedures
      --
      --     Output
      --     Read
      --     Write
      --
      --  the Element of A_Procedure_Call_Statement kind should be created
      --
      --  For attributes returning types:
      --     Base
      --     Class
      --  the Element of A_Type_Conversion should be created if the node is
      --  rewritten into N_Type_Conversion node. But this is done by the
      --  Node_To_Element function (together with setting the Special_Case
      --  Element field, which is then taken into account by functions
      --  decomposing A_Type_Conversion Element.

      if Attribute_Chars = Name_Range then
      --  processing the range attribute reference
      --  range attribute reference is the part of the RANGE
      --  Syntax Cross Reference extraction for RANGE:
      --
      --  range
      --    discrete_range                       3.6.1
      --       discrete_choice                      3.8.1
      --          discrete_choice_list                 3.8.1
      --             array_component_association          4.3.3
      --                named_array_aggregate                4.3.3
      --             case_statement_alternative           5.4
      --             variant                              3.8.1
      --       index_constraint                     3.6.1
      --       slice                                4.1.2
      --    discrete_subtype_definition          3.6
      --       constrained_array_definition         3.6
      --       entry_declaration                    9.5.2
      --       entry_index_specification            9.5.2
      --       loop_parameter_specification         5.5
      --    range_constraint                     3.5
      --       delta_constraint                     J.3
      --       digits_constraint                    3.5.9
      --       scalar_constraint                    3.2.2
      --    relation                             4.4

         case Context_Kind is      --  should be reorganized when complete

         when
            --  discrete_range
               N_Component_Association
             | N_Case_Statement_Alternative
             | N_Variant
             | N_Index_Or_Discriminant_Constraint
             | N_Slice
             =>

            return A_Discrete_Range_Attribute_Reference;

         when                                -- discrete_subtype_definition
               N_Constrained_Array_Definition
             | N_Entry_Index_Specification
             | N_Loop_Parameter_Specification
             | N_Entry_Declaration
            =>

            return A_Discrete_Range_Attribute_Reference_As_Subtype_Definition;

         when  N_Range_Constraint =>    -- range_constraint ???

            return A_Range_Attribute_Reference;

         when  N_In       -- relation
             | N_Not_In
            =>

            return A_Range_Attribute_Reference;

         when others => -- impossible cases:
            raise Internal_Implementation_Error;
         end case;

      elsif -- language-defined attributes which are functions:

            Attribute_Chars = Name_Adjacent          or else
            Attribute_Chars = Name_Ceiling           or else
            Attribute_Chars = Name_Compose           or else
            Attribute_Chars = Name_Copy_Sign         or else
            Attribute_Chars = Name_Exponent          or else
            Attribute_Chars = Name_Floor             or else
            Attribute_Chars = Name_Fraction          or else
            Attribute_Chars = Name_Image             or else
            Attribute_Chars = Name_Input             or else
            Attribute_Chars = Name_Leading_Part      or else
            Attribute_Chars = Name_Machine           or else
            Attribute_Chars = Name_Max               or else
            Attribute_Chars = Name_Min               or else
            Attribute_Chars = Name_Model             or else
            Attribute_Chars = Name_Pos               or else
            Attribute_Chars = Name_Pred              or else
            Attribute_Chars = Name_Remainder         or else
            Attribute_Chars = Name_Round             or else
            Attribute_Chars = Name_Rounding          or else
            Attribute_Chars = Name_Scaling           or else
            Attribute_Chars = Name_Succ              or else
            Attribute_Chars = Name_Truncation        or else
            Attribute_Chars = Name_Unbiased_Rounding or else
            Attribute_Chars = Name_Val               or else
            Attribute_Chars = Name_Value             or else
            Attribute_Chars = Name_Wide_Image        or else
            Attribute_Chars = Name_Wide_Value        or else

--  |A2005 start

            --  Ada 2005 attributes that are functions:
            Attribute_Chars = Name_Machine_Rounding  or else
            Attribute_Chars = Name_Mod               or else
            Attribute_Chars = Name_Wide_Wide_Image   or else
            Attribute_Chars = Name_Wide_Wide_Value   or else

--  |A2012 start
            --  Ada 2012 attributes that are functions:
            Attribute_Chars = Name_Overlaps_Storage  or else
--  |A2012 end

--  |A2005 end
            --  Implementation Dependent Attributes-Functions:

            Attribute_Chars = Name_Asm_Input         or else
            Attribute_Chars = Name_Asm_Output        or else
            Attribute_Chars = Name_Enum_Rep          or else
            Attribute_Chars = Name_Enum_Val          or else
            Attribute_Chars = Name_Fixed_Value       or else
            Attribute_Chars = Name_Integer_Value     or else
            Attribute_Chars = Name_Ref
      then

         return A_Function_Call;

      elsif --  language-defined attributes which are procedures:

            Attribute_Chars = Name_Output    or else
            Attribute_Chars = Name_Read      or else
            Attribute_Chars = Name_Write

      then

         return A_Procedure_Call_Statement;

      --  language-defined attributes:

      elsif Attribute_Chars = Name_Access then
         return  An_Access_Attribute;
      elsif Attribute_Chars = Name_Address then
         return  An_Address_Attribute;
      elsif Attribute_Chars = Name_Aft then
         return  An_Aft_Attribute;
      elsif Attribute_Chars = Name_Alignment then
         return  An_Alignment_Attribute;
      elsif Attribute_Chars = Name_Base then
         return  A_Base_Attribute;
      elsif Attribute_Chars = Name_Bit_Order then
         return  A_Bit_Order_Attribute;
      elsif Attribute_Chars = Name_Body_Version then
         return  A_Body_Version_Attribute;
      elsif Attribute_Chars = Name_Callable then
         return  A_Callable_Attribute;
      elsif Attribute_Chars = Name_Caller then
         return  A_Caller_Attribute;
      elsif Attribute_Chars = Name_Class then
         return  A_Class_Attribute;
      elsif Attribute_Chars = Name_Component_Size then
         return  A_Component_Size_Attribute;
      elsif Attribute_Chars = Name_Constrained then
         return  A_Constrained_Attribute;
      elsif Attribute_Chars = Name_Count then
         return  A_Count_Attribute;
      elsif Attribute_Chars = Name_Definite then
         return  A_Definite_Attribute;
      elsif Attribute_Chars = Name_Delta then
         return  A_Delta_Attribute;
      elsif Attribute_Chars = Name_Denorm then
         return  A_Denorm_Attribute;
      elsif Attribute_Chars = Name_Digits then
         return  A_Digits_Attribute;
      elsif Attribute_Chars = Name_External_Tag then
         return  An_External_Tag_Attribute;
      elsif Attribute_Chars = Name_First then
         return  A_First_Attribute;
      elsif Attribute_Chars = Name_First_Bit then
         return  A_First_Bit_Attribute;
      elsif Attribute_Chars = Name_Fore then
         return  A_Fore_Attribute;
      elsif Attribute_Chars = Name_Identity then
         return  An_Identity_Attribute;
      elsif Attribute_Chars = Name_Last then
         return  A_Last_Attribute;
      elsif Attribute_Chars = Name_Last_Bit then
         return  A_Last_Bit_Attribute;
      elsif Attribute_Chars = Name_Length then
         return  A_Length_Attribute;
      elsif Attribute_Chars = Name_Machine_Emax then
         return  A_Machine_Emax_Attribute;
      elsif Attribute_Chars = Name_Machine_Emin then
         return  A_Machine_Emin_Attribute;
      elsif Attribute_Chars = Name_Machine_Mantissa then
         return  A_Machine_Mantissa_Attribute;
      elsif Attribute_Chars = Name_Machine_Overflows then
         return  A_Machine_Overflows_Attribute;
      elsif Attribute_Chars = Name_Machine_Radix then
         return  A_Machine_Radix_Attribute;
      elsif Attribute_Chars = Name_Machine_Rounds then
         return  A_Machine_Rounds_Attribute;
      elsif Attribute_Chars = Name_Max_Size_In_Storage_Elements then
         return  A_Max_Size_In_Storage_Elements_Attribute;
      elsif Attribute_Chars = Name_Model_Emin then
         return  A_Model_Emin_Attribute;
      elsif Attribute_Chars = Name_Model_Epsilon then
         return  A_Model_Epsilon_Attribute;
      elsif Attribute_Chars = Name_Model_Mantissa then
         return  A_Model_Mantissa_Attribute;
      elsif Attribute_Chars = Name_Model_Small then
         return  A_Model_Small_Attribute;
      elsif Attribute_Chars = Name_Modulus then
         return  A_Modulus_Attribute;
      elsif Attribute_Chars = Name_Partition_ID then
         return  A_Partition_ID_Attribute;
      elsif Attribute_Chars = Name_Position then
         return  A_Position_Attribute;
      elsif Attribute_Chars = Name_Range then   --  this alternative
         return  A_Range_Attribute;             --  never works!
      elsif Attribute_Chars = Name_Safe_First then
         return  A_Safe_First_Attribute;
      elsif Attribute_Chars = Name_Safe_Last then
         return  A_Safe_Last_Attribute;
      elsif Attribute_Chars = Name_Scale then
         return  A_Scale_Attribute;
      elsif Attribute_Chars = Name_Signed_Zeros then
         return  A_Signed_Zeros_Attribute;
      elsif Attribute_Chars = Name_Size then
         return  A_Size_Attribute;
      elsif Attribute_Chars = Name_Small then
         return  A_Small_Attribute;
      elsif Attribute_Chars = Name_Storage_Pool then
         return  A_Storage_Pool_Attribute;
      elsif Attribute_Chars = Name_Storage_Size then
         return  A_Storage_Size_Attribute;
      elsif Attribute_Chars = Name_Tag then
         return  A_Tag_Attribute;
      elsif Attribute_Chars = Name_Terminated then
         return  A_Terminated_Attribute;
      elsif Attribute_Chars = Name_Unchecked_Access then
         return  An_Unchecked_Access_Attribute;
      elsif Attribute_Chars = Name_Valid then
         return  A_Valid_Attribute;
      elsif Attribute_Chars = Name_Version then
         return  A_Version_Attribute;
      elsif Attribute_Chars = Name_Wide_Width then
         return  A_Wide_Width_Attribute;
      elsif Attribute_Chars = Name_Width then
         return  A_Width_Attribute;

   --  New Ada 2005/2012 attributes:
      elsif Attribute_Chars = Name_Priority then
         return  A_Priority_Attribute;
      elsif Attribute_Chars = Name_Stream_Size    then
         return  A_Stream_Size_Attribute;
      elsif Attribute_Chars = Name_Wide_Wide_Width then
         return  A_Wide_Wide_Width_Attribute;
      elsif Attribute_Chars = Name_Max_Alignment_For_Allocation then
         return  A_Max_Alignment_For_Allocation_Attribute;

   --  New Ada 2005/2012 attributes:

   --  Implementation Dependent Attributes:

      elsif Attribute_Chars = Name_Abort_Signal             or else
            Attribute_Chars = Name_Address_Size             or else
            Attribute_Chars = Name_Asm_Input                or else
            Attribute_Chars = Name_Asm_Output               or else
            Attribute_Chars = Name_AST_Entry                or else  -- VMS
            Attribute_Chars = Name_Bit                      or else
            Attribute_Chars = Name_Bit_Position             or else
            Attribute_Chars = Name_Code_Address             or else
            Attribute_Chars = Name_Compiler_Version         or else
            Attribute_Chars = Name_Default_Bit_Order        or else
            Attribute_Chars = Name_Elab_Subp_Body           or else
            Attribute_Chars = Name_Elaborated               or else
            Attribute_Chars = Name_Emax                     or else  -- Ada 83
            Attribute_Chars = Name_Enabled                  or else
            Attribute_Chars = Name_Enum_Rep                 or else
            Attribute_Chars = Name_Enum_Val                 or else
            Attribute_Chars = Name_Epsilon                  or else  -- Ada 83
            Attribute_Chars = Name_Fixed_Value              or else
            Attribute_Chars = Name_Has_Access_Values        or else
            Attribute_Chars = Name_Has_Discriminants        or else
            Attribute_Chars = Name_Img                      or else
            Attribute_Chars = Name_Integer_Value            or else
            Attribute_Chars = Name_Invalid_Value            or else
            Attribute_Chars = Name_Large                    or else  -- Ada 83
            Attribute_Chars = Name_Machine_Size             or else
            Attribute_Chars = Name_Mantissa                 or else  -- Ada 83
            Attribute_Chars = Name_Maximum_Alignment        or else
            Attribute_Chars = Name_Mechanism_Code           or else
            Attribute_Chars = Name_Null_Parameter           or else
            Attribute_Chars = Name_Object_Size              or else
            Attribute_Chars = Name_Old                      or else
            Attribute_Chars = Name_Passed_By_Reference      or else
            Attribute_Chars = Name_Range_Length             or else
            Attribute_Chars = Name_Ref                      or else
            Attribute_Chars = Name_Result                   or else
            Attribute_Chars = Name_Safe_Emax                or else  -- Ada 83
            Attribute_Chars = Name_Safe_Large               or else  -- Ada 83
            Attribute_Chars = Name_Safe_Small               or else  -- Ada 83
            Attribute_Chars = Name_Storage_Unit             or else
            Attribute_Chars = Name_System_Allocator_Alignment or else
            Attribute_Chars = Name_Target_Name              or else
            Attribute_Chars = Name_To_Address               or else
            Attribute_Chars = Name_Type_Class               or else
            Attribute_Chars = Name_UET_Address              or else
            Attribute_Chars = Name_Universal_Literal_String or else
            Attribute_Chars = Name_Unrestricted_Access      or else
            Attribute_Chars = Name_Update                   or else
            Attribute_Chars = Name_VADS_Size                or else
            Attribute_Chars = Name_Value_Size               or else
            Attribute_Chars = Name_Wchar_T_Size             or else
            Attribute_Chars = Name_Word_Size                or else
            Attribute_Chars = Name_Elab_Body                or else
            Attribute_Chars = Name_Elab_Spec
      then
         return An_Implementation_Defined_Attribute;
      else
         return An_Unknown_Attribute;
      end if;

   end N_Attribute_Reference_Mapping;

   -------------------------------------
   -- N_Component_Association_Mapping --
   -------------------------------------

   function N_Component_Association_Mapping
     (Node : Node_Id)
      return Internal_Element_Kinds
   is
   begin
      --  Special cases first:

      case Nkind (Parent (Parent (Node))) is
         when N_Enumeration_Representation_Clause =>
            return An_Array_Component_Association;
         when N_Pragma_Argument_Association |
              N_Aspect_Specification        =>
            return A_Record_Component_Association;
         when others =>
            null;
      end case;

      --  Regular case:
      if Nkind (Parent (Parent (Node))) = N_Enumeration_Representation_Clause
       or else
         Ekind (Etype (Parent (Node))) in Array_Kind
      then
         return An_Array_Component_Association;
      else
         return A_Record_Component_Association;
      end if;
   end N_Component_Association_Mapping;

   --------------------------------------------
   -- N_Constrained_Array_Definition_Mapping --
   --------------------------------------------

   function N_Constrained_Array_Definition_Mapping
     (Node : Node_Id)
      return Internal_Element_Kinds
   is
   begin
      --  Two Internal_Element_Kinds values may be possible:
      --   A_Constrained_Array_Definition
      --   A_Formal_Constrained_Array_Definition

      if Nkind (Parent (Node)) = N_Formal_Type_Declaration then
         return A_Formal_Constrained_Array_Definition;
      else
         return A_Constrained_Array_Definition;
      end if;

   end N_Constrained_Array_Definition_Mapping;

   -----------------------------------
   -- N_Defining_Identifier_Mapping --
   -----------------------------------

   function N_Defining_Identifier_Mapping
     (Node : Node_Id)
      return Internal_Element_Kinds
   is
      Template_Node : Node_Id := Empty;
   begin
      --  Several Internal_Element_Kinds values may be possible for automatic
      --  Internal Kind Determination:
      --
      --    A_Defining_Identifier
      --    A_Defining_Enumeration_Literal
      --    Internal Defining Name kinds, this happens for the extended
      --    code of the function instantiation in case if the instance
      --    defines an operator symbol - in this case the defining name of
      --    the extended function spec and body is represented by
      --    N_Defining_Identifier node.
      --
      --  Some other Internal_Element_Kinds values could be set "by-hand",
      --  for example:
      --
      --     An_Enumeration_Literal_Specification

      if Sloc (Node) > Standard_Location and then
         Get_Character (Sloc (Node)) = '"'
      then
         Template_Node := Parent (Parent (Node));

         if Pass_Generic_Actual (Template_Node) then
            --  This is the case of subprogram renaming that passes an actual
            --  for a formal operator function
            Template_Node := Corresponding_Formal_Spec (Template_Node);
         else
            --  This is the case of expanded generic subprogram having a
            --  defining operator symbol, it comes as the defining name from
            --  the corresponding instance, but is represented by
            --  N_Defining_Identifier node in the expanded code. We just
            --  go to the defining name from the instance and call
            --  N_Defining_Operator_Symbol_Mapping for it
            Template_Node := Parent (Template_Node);

            if Nkind (Template_Node) = N_Package_Specification then
               Template_Node := Parent (Template_Node);
            end if;

            Template_Node := Next (Template_Node);

            if Nkind (Template_Node) = N_Package_Body then
               --  skipping the body of wrapper package for extended subprogram
               --  body
               Template_Node := Next (Template_Node);
            end if;

            Template_Node := Defining_Unit_Name (Template_Node);
         end if;

         pragma Assert (Nkind (Template_Node) = N_Defining_Operator_Symbol);

         return N_Defining_Operator_Symbol_Mapping (Template_Node);
      else

         if Nkind (Parent (Node)) = N_Enumeration_Type_Definition then
            return A_Defining_Enumeration_Literal;
         else
            return A_Defining_Identifier;
         end if;
      end if;

   end N_Defining_Identifier_Mapping;

   ----------------------------------------
   -- N_Defining_Operator_Symbol_Mapping --
   ----------------------------------------

   function N_Defining_Operator_Symbol_Mapping
     (Node : Node_Id)
      return Internal_Element_Kinds
   is

      Operator_Chars   : constant Name_Id := Chars (Node);
      Parameter_Number : Nat range 1 .. 2;

      --  see the GNAT components Namet.ads and Snames.ads

      --  N_Operator_Symbol_Mapping uses just the same approach,
      --  (except computing the Parameter_Number value)
      --  so if there is any error in it, then both functions contain it

   begin
      --  The following Internal_Element_Kinds values may be possible:
      --
      --    A_Defining_And_Operator,                    -- and
      --    A_Defining_Or_Operator,                     -- or
      --    A_Defining_Xor_Operator,                    -- xor
      --    A_Defining_Equal_Operator,                  -- =
      --    A_Defining_Not_Equal_Operator,              -- /=
      --    A_Defining_Less_Than_Operator,              -- <
      --    A_Defining_Less_Than_Or_Equal_Operator,     -- <=
      --    A_Defining_Greater_Than_Operator,           -- >
      --    A_Defining_Greater_Than_Or_Equal_Operator,  -- >=
      --    A_Defining_Plus_Operator,                   -- +
      --    A_Defining_Minus_Operator,                  -- -
      --    A_Defining_Concatenate_Operator,            -- &
      --    A_Defining_Unary_Plus_Operator,             -- +
      --    A_Defining_Unary_Minus_Operator,            -- -
      --    A_Defining_Multiply_Operator,               -- *
      --    A_Defining_Divide_Operator,                 -- /
      --    A_Defining_Mod_Operator,                    -- mod
      --    A_Defining_Rem_Operator,                    -- rem
      --    A_Defining_Exponentiate_Operator,           -- **
      --    A_Defining_Abs_Operator,                    -- abs
      --    A_Defining_Not_Operator,                    -- not

         if Operator_Chars = Name_Op_And then
            return A_Defining_And_Operator;

         elsif Operator_Chars = Name_Op_Or then
            return A_Defining_Or_Operator;

         elsif Operator_Chars = Name_Op_Xor then
            return A_Defining_Xor_Operator;

         elsif Operator_Chars = Name_Op_Eq then
            return A_Defining_Equal_Operator;

         elsif Operator_Chars = Name_Op_Ne then
            return A_Defining_Not_Equal_Operator;

         elsif Operator_Chars = Name_Op_Lt then
            return A_Defining_Less_Than_Operator;

         elsif Operator_Chars = Name_Op_Le then
            return A_Defining_Less_Than_Or_Equal_Operator;

         elsif Operator_Chars = Name_Op_Gt then
            return A_Defining_Greater_Than_Operator;

         elsif Operator_Chars = Name_Op_Ge then
            return A_Defining_Greater_Than_Or_Equal_Operator;

         elsif Operator_Chars = Name_Op_Concat then
            return A_Defining_Concatenate_Operator;

         elsif Operator_Chars = Name_Op_Multiply then
            return A_Defining_Multiply_Operator;

         elsif Operator_Chars = Name_Op_Divide then
            return A_Defining_Divide_Operator;

         elsif Operator_Chars = Name_Op_Mod then
            return A_Defining_Mod_Operator;

         elsif Operator_Chars = Name_Op_Rem then
            return A_Defining_Rem_Operator;

         elsif Operator_Chars = Name_Op_Expon then
            return A_Defining_Exponentiate_Operator;

         elsif Operator_Chars = Name_Op_Abs then
            return A_Defining_Abs_Operator;

         elsif Operator_Chars = Name_Op_Not then
            return A_Defining_Not_Operator;

         else
            --  for + and - operator signs binary and unary cases
            --  should be distinguished

            if Nkind (Parent_Node) = N_Function_Instantiation then
               --  we have to compute the number of parameters
               --  from the declaration of the corresponding generic
               --  function
               Parent_Node := Parent (Entity (Sinfo.Name (Parent_Node)));

               if Nkind (Parent_Node) = N_Defining_Program_Unit_Name then
                  Parent_Node := Parent (Parent_Node);
               end if;

            end if;

            Parameter_Number :=
              List_Length (Parameter_Specifications (Parent_Node));

            if Operator_Chars = Name_Op_Add then

               if Parameter_Number = 1 then
                  return A_Defining_Unary_Plus_Operator;
               else
                  return A_Defining_Plus_Operator;
               end if;

            else -- Operator_Chars = "-"

               if Parameter_Number = 1 then
                  return A_Defining_Unary_Minus_Operator;
               else
                  return A_Defining_Minus_Operator;
               end if;

            end if;

         end if;

   end N_Defining_Operator_Symbol_Mapping;

   ---------------------------------
   -- N_Delay_Alternative_Mapping --
   ---------------------------------

   function N_Delay_Alternative_Mapping
     (Node : Node_Id)
      return Internal_Element_Kinds
   is
   begin
      --  Two Internal_Element_Kinds values may be possible:
      --    A_Select_Path
      --    An_Or_Path

      if Is_List_Member (Node) then
         --  a delay alternative in a selective accept statement,
         --  processing is the same as for N_Accept_Alternative

         return N_Accept_Alternative_Mapping (Node);

      else
         --  a relay alternative in a timed entry call

         return An_Or_Path;
      end if;
   end N_Delay_Alternative_Mapping;

   ---------------------------------------
   -- N_Derived_Type_Definition_Mapping --
   ---------------------------------------

   function N_Derived_Type_Definition_Mapping
     (Node : Node_Id)
      return Internal_Element_Kinds
   is
      Result : Internal_Element_Kinds := A_Derived_Type_Definition;
   begin
      --  Two Internal_Element_Kinds values may be possible:
      --   A_Derived_Type_Definition
      --   A_Derived_Record_Extension_Definition

--  --|A2005 start
      --  Plus the following values for Ada 2005:
      --   An_Ordinary_Interface
      --   A_Limited_Interface
      --   A_Task_Interface
      --   A_Protected_Interface
      --   A_Synchronized_Interface
--  --|A2005 end

      --  Implementation revised for Ada 2005

      if Interface_Present (Node) then

         if Limited_Present (Node) then
            Result := A_Limited_Interface;
         elsif Task_Present (Node) then
            Result := A_Task_Interface;
         elsif Protected_Present (Node) then
            Result := A_Protected_Interface;
         elsif Synchronized_Present (Node) then
            Result := A_Synchronized_Interface;
         else
            Result := An_Ordinary_Interface;
         end if;

      elsif Present (Record_Extension_Part (Node)) then
         Result := A_Derived_Record_Extension_Definition;
      end if;

      return Result;
--  --|A2005 end

   end N_Derived_Type_Definition_Mapping;

   -----------------------------
   -- N_Expanded_Name_Mapping --
   -----------------------------

   function N_Expanded_Name_Mapping
     (Node : Node_Id)
      return Internal_Element_Kinds
   is
      Context      : constant Node_Id   := Parent_Node;
      Context_Kind : constant Node_Kind := Nkind  (Context);
      Temp_Node    : Node_Id;

   begin
      --  The following Internal_Element_Kinds values may be possible:
      --
      --     A_Subtype_Indication
      --     A_Discrete_Subtype_Indication_As_Subtype_Definition
      --     A_Discrete_Subtype_Indication
      --     A_Selected_Component
      --     An_Identifier (we use this routine for An_Identifier node as well)
      --     A_Function_Call (F in F.X)
      --     An_Attribute_Reference

         case Context_Kind is
            --  special cases should be reorganized when complete ???

            when  N_Object_Declaration =>

               if Node = Object_Definition (Context) then
                  return A_Subtype_Indication;
               else
                  --  an initializing expression in an object declaration
                  goto Expr;
               end if;

            when  N_Derived_Type_Definition
                | N_Access_To_Object_Definition
                                                =>
--  --|A2005 start
               if Is_List_Member (Node) then
                  --  The node represents an interface name from some interface
                  --  list
                  if Nkind (Node) = N_Expanded_Name then
                     return A_Selected_Component;
                  else
                     return An_Identifier;
                  end if;

               else
                  return A_Subtype_Indication;
               end if;
--  --|A2005 end

            when N_Constrained_Array_Definition |
                 N_Entry_Declaration =>

               return A_Discrete_Subtype_Indication_As_Subtype_Definition;

            when N_Unconstrained_Array_Definition =>

               if Is_List_Member (Node) then
               --  this for sure means, that node represents one of index
               --  subtype definitions

                  --  CODE SHARING WITH N_IDENTIFIER MAPPING ITEM :-[#]

                  if Nkind (Node) = N_Expanded_Name then
                     return A_Selected_Component;
                  else
                     return An_Identifier;
                  end if;
               else
                  --  this is a component definition!
                  return A_Component_Definition;
               end if;

            when N_Index_Or_Discriminant_Constraint =>

               if Asis_Internal_Element_Kind (Context) =
                  An_Index_Constraint
               then
                  return A_Discrete_Subtype_Indication;
               end if;

            when N_Slice =>

               --       A.B(C.D) <- Context
               --       /     \
               --  Prefix    Discrete_Range

               if Node = Sinfo.Discrete_Range (Context) then
                  return A_Discrete_Subtype_Indication;
               end if;

            --  when N_??? => should be implemented

            when N_Selected_Component =>

               --  This corresponds to a special case: F.A, where F is
               --  a function call
               Temp_Node := Prefix (Context);

               if Is_Rewrite_Substitution (Temp_Node) and then
                  Nkind (Temp_Node) = N_Function_Call and then
                  Original_Node (Temp_Node) = Node
               then
                  return A_Function_Call;
               end if;

            when N_Parameter_Specification =>
               --  See FA13-008. In case if we have an implicit "/="
               --  declaration, and in the corresponding explicit "="
               --  declaration parameter type is defined by a 'Class attribute,
               --  in the parameter specification of "/=" the front-end uses
               --  the reference to the internal type entity node

               if Nkind (Node) = N_Identifier
                and then
                 not Comes_From_Source (Node)
                and then
                 Ekind (Entity (Node)) = E_Class_Wide_Type
               then
                  return A_Class_Attribute;
               end if;

            when others =>
               null;
         end case;

         --  general case, the following if statement is necessary because
         --  of sharing of this code between N_Expanded_Name and N_Identifier
         --  mapping items.

         --  IS THIS CODE SHARING A REALLY GOOD THING???

         <<Expr>> --  here we are analyzing the "ordinary" expression
         if Nkind (Node) = N_Expanded_Name then
            return A_Selected_Component;

         elsif Context_Kind /= N_Defining_Program_Unit_Name then

            if (Nkind (Node) in N_Has_Entity
               or else
                Nkind (Node) = N_Attribute_Definition_Clause)
              and then
                Entity_Present (Node)
              and then
               Ekind (Entity (Node)) = E_Enumeration_Literal
            then
               return An_Enumeration_Literal;
            else
               return An_Identifier;
            end if;

         else

            return An_Identifier;
         end if;

   end N_Expanded_Name_Mapping;

   ---------------------------------------
   -- N_Formal_Type_Declaration_Mapping --
   ---------------------------------------

   function N_Formal_Type_Declaration_Mapping
     (Node : Node_Id)
      return Internal_Element_Kinds
   is
   begin
      if Nkind (Sinfo.Formal_Type_Definition (Node)) =
         N_Formal_Incomplete_Type_Definition
      then
         return A_Formal_Incomplete_Type_Declaration;
      else
         return A_Formal_Type_Declaration;
      end if;
   end N_Formal_Type_Declaration_Mapping;

   ------------------------------------------
   -- N_Formal_Package_Declaration_Mapping --
   ------------------------------------------

   function N_Formal_Package_Declaration_Mapping
     (Node : Node_Id)
      return Internal_Element_Kinds
   is
   begin
      --  Two Internal_Element_Kinds values may be possible:
      --   A_Formal_Package_Declaration,
      --   A_Formal_Package_Declaration_With_Box

         if Box_Present (Node) then
            return A_Formal_Package_Declaration_With_Box;
         else
            return A_Formal_Package_Declaration;
         end if;

   end N_Formal_Package_Declaration_Mapping;

   ----------------------------------------------
   -- N_Formal_Private_Type_Definition_Mapping --
   ----------------------------------------------

   function N_Formal_Private_Type_Definition_Mapping
     (Node : Node_Id)
      return Internal_Element_Kinds
   is
   begin
      --  Two Internal_Element_Kinds values may be possible:
      --   A_Formal_Private_Type_Definition
      --   A_Formal_Tagged_Private_Type_Definition

         if Tagged_Present (Node) then
            return A_Formal_Tagged_Private_Type_Definition;
         else
            return A_Formal_Private_Type_Definition;
         end if;

   end N_Formal_Private_Type_Definition_Mapping;

   ---------------------------------------------
   -- N_Formal_Subprogram_Declaration_Mapping --
   ---------------------------------------------

   function N_Formal_Subprogram_Declaration_Mapping
     (Node : Node_Id)
      return Internal_Element_Kinds
   is
   begin
      --  Two Internal_Element_Kinds values may be possible:
      --    A_Formal_Procedure_Declaration
      --    A_Formal_Function_Declaration.

         if Nkind (Specification (Node)) = N_Function_Specification then
            return A_Formal_Function_Declaration;
         else
            return A_Formal_Procedure_Declaration;
         end if;

   end N_Formal_Subprogram_Declaration_Mapping;

   -----------------------------
   -- N_Function_Call_Mapping --
   -----------------------------

   function N_Function_Call_Mapping
     (Node : Node_Id)
      return Internal_Element_Kinds
   is
      Called_Name     : Node_Id;
      Called_Function : Node_Id                := Empty;
      Result          : Internal_Element_Kinds := A_Function_Call;
   begin
      --  Three Internal_Element_Kinds values may be possible:
      --     A_Function_Call (usual situation)
      --     A_Selected_Component
      --     An_Enumeration_Literal
      --  The last two cases correspond to a reference to an overloaded
      --  enumeration literal (either qualified or direct)

      if No (Parameter_Associations (Node)) then

         Called_Name := Sinfo.Name (Node);

         if Nkind (Called_Name) in N_Has_Entity then
            Called_Function := Entity (Called_Name);
         end if;

         if Nkind (Parent (Called_Function)) =
            N_Enumeration_Type_Definition
         then

            if Nkind (Called_Name) = N_Selected_Component or else -- ???
               Nkind (Called_Name) = N_Expanded_Name
            then
               Result := A_Selected_Component;
            elsif Nkind (Called_Name) = N_Identifier then
               Result := An_Enumeration_Literal;
            end if;

         end if;

      end if;

      return Result;

   end N_Function_Call_Mapping;

   ----------------------------------------------
   -- N_Generic_Subprogram_Declaration_Mapping --
   ----------------------------------------------

   function N_Generic_Subprogram_Declaration_Mapping
     (Node : Node_Id)
      return Internal_Element_Kinds
   is
   begin
      --  Two Internal_Element_Kinds values may be possible:
      --  A_Generic_Procedure_Declaration and A_Generic_Function_Declaration

         if Nkind (Specification (Node)) = N_Function_Specification then
            return A_Generic_Function_Declaration;
         else
            return A_Generic_Procedure_Declaration;
         end if;

   end N_Generic_Subprogram_Declaration_Mapping;

--  |A2005 start
   -------------------------------------------
   -- N_Incomplete_Type_Declaration_Mapping --
   -------------------------------------------

   function N_Incomplete_Type_Declaration_Mapping
     (Node : Node_Id)
      return Internal_Element_Kinds
   is
      Result : Internal_Element_Kinds := An_Incomplete_Type_Declaration;
   begin
      if Tagged_Present (Node) then
         Result := A_Tagged_Incomplete_Type_Declaration;
      end if;

      return Result;
   end N_Incomplete_Type_Declaration_Mapping;
--  |A2005 end

   ------------------------------------------------
   -- N_Index_Or_Discriminant_Constraint_Mapping --
   ------------------------------------------------

   function N_Index_Or_Discriminant_Constraint_Mapping
     (Node : Node_Id)
      return Internal_Element_Kinds
   is

      First_Item : Node_Id;
      --  the first element in the list of discrete ranges or discriminant
      --  associations, this element is the only one used to determine the kind
      --  of the constraint being analyzed

      First_Item_Kind : Node_Kind;

      Type_Entity : Node_Id;
      --  Needed in case when we can not make the decision using the syntax
      --  information only. Represents the type or subtype entity to which the
      --  constraint is applied

   begin
      --  Two Internal_Element_Kinds values may be possible:
      --    An_Index_Constraint
      --    A_Discriminant_Constraint

      First_Item      := First (Constraints (Node));
      First_Item_Kind := Nkind (First_Item);

      --  analyzing the syntax structure of First_Item:

      if First_Item_Kind = N_Discriminant_Association then
         return A_Discriminant_Constraint;

      elsif First_Item_Kind = N_Subtype_Indication or else
            First_Item_Kind = N_Range
      then
         return An_Index_Constraint;

      elsif First_Item_Kind = N_Attribute_Reference then

         --  analyzing the attribute designator:
         if Attribute_Name (First_Item) = Name_Range then
            return An_Index_Constraint;
         else
            return A_Discriminant_Constraint;
         end if;

      elsif not (First_Item_Kind = N_Identifier or else
                 First_Item_Kind = N_Expanded_Name)
      then
         --  First_Item is an expression and it could not be interpreted as a
         --  subtype_mark from a discrete_subtype_indication, so what we have
         --  in this case is:
         return A_Discriminant_Constraint;
      end if;

      --  First_Item is of N_Identifier or N_Expanded_Name kind, and it may be
      --  either an expression in index constraint or a subtype mark in a
      --  discriminant constraint. In this case it is easier to analyze the
      --  type to which the constraint is applied, but not the constraint
      --  itself.

      Type_Entity := Entity (Sinfo.Subtype_Mark (Parent (Node)));

      while Ekind (Type_Entity) in Access_Kind loop
         Type_Entity := Directly_Designated_Type (Type_Entity);
      end loop;

      if Has_Discriminants (Type_Entity) then
         return A_Discriminant_Constraint;
      else
         return An_Index_Constraint;
      end if;

   end N_Index_Or_Discriminant_Constraint_Mapping;

   --------------------------------------
   -- N_Iterator_Specification_Mapping --
   --------------------------------------

   function N_Iterator_Specification_Mapping
     (Node : Node_Id)
      return Internal_Element_Kinds
   is
      Result : Internal_Element_Kinds := A_Generalized_Iterator_Specification;
   begin
      if Of_Present (Node) then
         Result := An_Element_Iterator_Specification;
      end if;

      return Result;
   end N_Iterator_Specification_Mapping;

   ------------------------------
   -- N_Loop_Statement_Mapping --
   ------------------------------

   function N_Loop_Statement_Mapping
     (Node : Node_Id)
      return Internal_Element_Kinds
   is
      Iteration : Node_Id;
   begin
      --  Three Internal_Element_Kinds values may be possible:
      --    A_Loop_Statement,
      --    A_While_Loop_Statement,
      --    A_For_Loop_Statement,

      Iteration := Iteration_Scheme (Node);

      if Present (Iteration) then

         if Present (Condition (Iteration)) then
            return A_While_Loop_Statement;
         else
            return A_For_Loop_Statement;
         end if;

      else
         return A_Loop_Statement;
      end if;

   end N_Loop_Statement_Mapping;

   ----------------------------------
   -- N_Number_Declaration_Mapping --
   ----------------------------------

   function N_Number_Declaration_Mapping
     (Node : Node_Id)
      return Internal_Element_Kinds
   is
   begin
      --  Two Internal_Element_Kinds values may be possible:
      --    An_Integer_Number_Declaration
      --    A_Real_Number_Declaration

         if Ekind (Defining_Identifier (Node)) = E_Named_Integer then
            return An_Integer_Number_Declaration;
         else
            return A_Real_Number_Declaration;
         end if;

   end N_Number_Declaration_Mapping;

   ----------------------------------
   -- N_Object_Declaration_Mapping --
   ----------------------------------

   function N_Object_Declaration_Mapping
     (Node : Node_Id)
      return Internal_Element_Kinds
   is
      Result : Internal_Element_Kinds;
   begin
      --  Three Internal_Element_Kinds values may be possible:
      --     A_Variable_Declaration,
      --     A_Constant_Declaration,
      --     A_Deferred_Constant_Declaration.
--  |A2005 start
      --     A_Return_Variable_Specification
      --     A_Return_Constant_Specification
--  |A2005 end

      if Nkind (Parent (Node)) = N_Extended_Return_Statement then
         if not Constant_Present (Node) then
            Result := A_Return_Variable_Specification;
         else
            Result := A_Return_Constant_Specification;
         end if;
      elsif not Constant_Present (Node) then
         Result := A_Variable_Declaration;
      elsif Present (Sinfo.Expression (Node)) then
         Result := A_Constant_Declaration;
      else
         Result := A_Deferred_Constant_Declaration;
      end if;

      return Result;

   end N_Object_Declaration_Mapping;

   -------------------------------
   -- N_Operator_Symbol_Mapping --
   -------------------------------

   function N_Operator_Symbol_Mapping
     (Node : Node_Id)
      return Internal_Element_Kinds
   is
      Tmp              : Node_Id;
      Operator_Chars   : constant Name_Id := Chars (Node);
      Parameter_Number : Nat range 1 .. 2;

      --  see the GNAT components Namet.ads and Snames.ads

      --  N_Defining_Operator_Symbol_Mapping uses just the same approach,
      --  so if there is any error in it, then both functions contain it

   begin
      --  The following Internal_Element_Kinds values may be possible:
      --
      --    A_And_Operator,                    -- and
      --    A_Or_Operator,                     -- or
      --    A_Xor_Operator,                    -- xor
      --    A_Equal_Operator,                  -- =
      --    A_Not_Equal_Operator,              -- /=
      --    A_Less_Than_Operator,              -- <
      --    A_Less_Than_Or_Equal_Operator,     -- <=
      --    A_Greater_Than_Operator,           -- >
      --    A_Greater_Than_Or_Equal_Operator,  -- >=
      --    A_Plus_Operator,                   -- +
      --    A_Minus_Operator,                  -- -
      --    A_Concatenate_Operator,            -- &
      --    A_Unary_Plus_Operator,             -- +
      --    A_Unary_Minus_Operator,            -- -
      --    A_Multiply_Operator,               -- *
      --    A_Divide_Operator,                 -- /
      --    A_Mod_Operator,                    -- mod
      --    A_Rem_Operator,                    -- rem
      --    A_Exponentiate_Operator,           -- **
      --    A_Abs_Operator,                    -- abs
      --    A_Not_Operator,                    -- not

         if Operator_Chars = Name_Op_And then
            return An_And_Operator;

         elsif Operator_Chars = Name_Op_Or then
            return An_Or_Operator;

         elsif Operator_Chars = Name_Op_Xor then
            return An_Xor_Operator;

         elsif Operator_Chars = Name_Op_Eq then
            return An_Equal_Operator;

         elsif Operator_Chars = Name_Op_Ne then
            return A_Not_Equal_Operator;

         elsif Operator_Chars = Name_Op_Lt then
            return A_Less_Than_Operator;

         elsif Operator_Chars = Name_Op_Le then
            return A_Less_Than_Or_Equal_Operator;

         elsif Operator_Chars = Name_Op_Gt then
            return A_Greater_Than_Operator;

         elsif Operator_Chars = Name_Op_Ge then
            return A_Greater_Than_Or_Equal_Operator;

         elsif Operator_Chars = Name_Op_Concat then
            return A_Concatenate_Operator;

         elsif Operator_Chars = Name_Op_Multiply then
            return A_Multiply_Operator;

         elsif Operator_Chars = Name_Op_Divide then
            return A_Divide_Operator;

         elsif Operator_Chars = Name_Op_Mod then
            return A_Mod_Operator;

         elsif Operator_Chars = Name_Op_Rem then
            return A_Rem_Operator;

         elsif Operator_Chars = Name_Op_Expon then
            return An_Exponentiate_Operator;

         elsif Operator_Chars = Name_Op_Abs then
            return An_Abs_Operator;

         elsif Operator_Chars = Name_Op_Not then
            return A_Not_Operator;

         else
            --  for + and - operator signs binary and unary cases
            --  should be distinguished

            --  A simple case - we have an entity:

            if Entity_Present (Node) then
               Tmp := Entity (Node);

               if First_Entity (Tmp) = Last_Entity (Tmp) then
                  Parameter_Number := 1;
               else
                  Parameter_Number := 2;
               end if;

            else

               Parent_Node := Parent (Node);

               if Nkind (Parent_Node) = N_Integer_Literal or else
                  Nkind (Parent_Node) = N_Real_Literal
               then
                  --  Static expression of the form "+"(1, 2) rewritten into
                  --  a literal value
                  Parent_Node := Original_Node (Parent_Node);
               end if;

               --  we have to do this assignment also here, because this
               --  function may be called outside Node_To_Element
               --  convertors

               --  because of the possible tree rewriting, the parent node
               --  may be either of N_Function_Call or of N_Op_Xxx type)

               --  it can be also of N_Formal_Subprogram_Declaration kind,
               --  or even of N_Expanded_Name kind,

               while Nkind (Parent_Node) = N_Expanded_Name loop
                  Parent_Node := Parent (Parent_Node);

                  if Nkind (Parent_Node) = N_Integer_Literal or else
                     Nkind (Parent_Node) = N_Real_Literal
                  then
                     --  Static expression of the form
                     --       Prefix_Name."+"(1, 2)
                     --  rewritten into a literal value
                     Parent_Node := Original_Node (Parent_Node);
                  end if;

               end loop;

               case Nkind (Parent_Node) is
                  when N_Op_Plus |
                       N_Op_Minus =>
                     Parameter_Number := 1;

                  when N_Op_Add      |
                       N_Op_Subtract =>
                     Parameter_Number := 2;

                  when N_Function_Call =>
                     Parameter_Number :=
                       List_Length (Parameter_Associations (Parent_Node));

                  when N_Subprogram_Renaming_Declaration |
                       N_Formal_Subprogram_Declaration   =>
                     Parameter_Number := List_Length
                       (Parameter_Specifications
                         (Specification (Parent_Node)));

                  when N_Indexed_Component =>
                     Parameter_Number := List_Length
                       (Sinfo.Expressions (Parent_Node));

                  when N_Pragma_Argument_Association =>
                     --  this is for pragma inline ("+");
                     Parameter_Number := 2;
                     --  this choice is somewhat arbitrary :)
                  when N_Generic_Association =>
                     Tmp := Defining_Gen_Parameter (Node);

                     Parameter_Number := List_Length
                        (Parameter_Specifications (Parent (Tmp)));
                  when N_Handled_Sequence_Of_Statements =>
                     --  End label
                     Parameter_Number := List_Length
                        (Parameter_Specifications
                           (Specification (Parent (Parent_Node))));

                  when others =>
                     --  Impossible case
                     raise Internal_Implementation_Error;
               end case;

            end if;

            if Operator_Chars = Name_Op_Add then
               if Parameter_Number = 1 then
                  return A_Unary_Plus_Operator;
               else
                  return A_Plus_Operator;
               end if;
            else -- Operator_Chars = "-"
               if Parameter_Number = 1 then
                  return A_Unary_Minus_Operator;
               else
                  return A_Minus_Operator;
               end if;
            end if;

         end if;

   end N_Operator_Symbol_Mapping;

   ----------------------
   -- N_Pragma_Mapping --
   ----------------------

   function N_Pragma_Mapping
     (Node : Node_Id)
      return Internal_Element_Kinds
   is
      Pragma_Chars : constant Name_Id := Pragma_Name (Node);

   begin

      -- Language-Defined Pragmas --

      if    Pragma_Chars = Name_All_Calls_Remote then
         return An_All_Calls_Remote_Pragma;      -- I.2.3(6)

      elsif Pragma_Chars = Name_Asynchronous then
         return An_Asynchronous_Pragma;          -- I.4.1(3)

      elsif Pragma_Chars = Name_Atomic then
         return An_Atomic_Pragma;                 -- G.5(3)

      elsif Pragma_Chars = Name_Atomic_Components then
         return An_Atomic_Components_Pragma;      -- G.5(3)

      elsif Pragma_Chars = Name_Attach_Handler then
         return An_Attach_Handler_Pragma;         -- G.3.1(3)

      elsif Pragma_Chars = Name_Controlled then
         return A_Controlled_Pragma;              -- 13.11.3(3), B(12)

      elsif Pragma_Chars = Name_Convention then
         return A_Convention_Pragma;              -- B(16), M.1(5)

      elsif Pragma_Chars = Name_Discard_Names then
         return A_Discard_Names_Pragma;           -- C.5(2)

      elsif Pragma_Chars = Name_Elaborate then
         return An_Elaborate_Pragma;              -- 10.2.1(20)

      elsif Pragma_Chars = Name_Elaborate_All then
         return An_Elaborate_All_Pragma;          -- 10.2.1(19), B(8)

      elsif Pragma_Chars = Name_Elaborate_Body then
         return An_Elaborate_Body_Pragma;         -- 10.2.1(21), B(9)

      elsif Pragma_Chars = Name_Export then
         return An_Export_Pragma;                 -- B(15), M.1(5)

      elsif Pragma_Chars = Name_Import then
         return An_Import_Pragma;                 -- B(14), M.1(5)

      elsif Pragma_Chars = Name_Inline then
         return An_Inline_Pragma;                 -- 6.3.2(4), B(5)

      elsif Pragma_Chars = Name_Inspection_Point then
         return An_Inspection_Point_Pragma;       -- L.2.2(2)

      elsif Pragma_Chars = Name_Interrupt_Handler then
         return An_Interrupt_Handler_Pragma;      -- G.3.1(2)

      elsif Pragma_Chars = Name_Interrupt_Priority then
         return An_Interrupt_Priority_Pragma;     -- H.1(4)

      elsif Pragma_Chars = Name_Linker_Options then
         return A_Linker_Options_Pragma;          -- B.1(8)

      elsif Pragma_Chars = Snames.Name_List then
         return A_List_Pragma;                    -- 2.8(18), B(2)

      elsif Pragma_Chars = Name_Locking_Policy then
         return A_Locking_Policy_Pragma;          -- H.3(3)

      elsif Pragma_Chars = Name_Normalize_Scalars then
         return A_Normalize_Scalars_Pragma;       -- L.1.1(2)

      elsif Pragma_Chars = Name_Optimize then
         return An_Optimize_Pragma;               -- 2.8(18), B(4)

      elsif Pragma_Chars = Name_Pack then
         return A_Pack_Pragma;                    -- 13.2(2), B(11)

      elsif Pragma_Chars = Name_Page then
         return A_Page_Pragma;                    -- 2.8(18), B(3)

      elsif Pragma_Chars = Name_Preelaborate then
         return A_Preelaborate_Pragma;            -- 10.2.1(3), B(6)

      elsif Pragma_Chars = Name_Priority then
         return A_Priority_Pragma;                -- H.1(3)

      elsif Pragma_Chars = Name_Pure then
         return A_Pure_Pragma;                    -- 10.2.1(13), B(7)

      elsif Pragma_Chars = Name_Queuing_Policy then
         return A_Queuing_Policy_Pragma;          -- H.4(3)

      elsif Pragma_Chars = Name_Remote_Call_Interface then
         return A_Remote_Call_Interface_Pragma;   -- I.2.3(4)

      elsif Pragma_Chars = Name_Remote_Types then
         return A_Remote_Types_Pragma;            -- I.2.2(4)

      elsif Pragma_Chars = Name_Restrictions then
         return A_Restrictions_Pragma;            -- 13.12(2), B(13)

      elsif Pragma_Chars = Name_Reviewable then
         return A_Reviewable_Pragma;              -- L.2.1(2)

      elsif Pragma_Chars = Name_Shared_Passive then
         return A_Shared_Passive_Pragma;          -- I.2.1(4)

      elsif Pragma_Chars = Name_Storage_Size then
         --  the same name entry as for 'Storage_Size attribute!
         return A_Storage_Size_Pragma;          -- 13.3(62)

      elsif Pragma_Chars = Name_Suppress then
         return A_Suppress_Pragma;                -- 11.5(4), B(10)

      elsif Pragma_Chars = Name_Task_Dispatching_Policy then
         return A_Task_Dispatching_Policy_Pragma; -- H.2.2(2)

      elsif Pragma_Chars = Name_Volatile then
         return A_Volatile_Pragma;                -- G.5(3)

      elsif Pragma_Chars = Name_Volatile_Components then
         return A_Volatile_Components_Pragma;     -- G.5(3)

--  --|A2005 start
--  New Ada 2005 pragmas. To be alphabetically ordered later
      elsif Pragma_Chars = Name_Assert           then
         return An_Assert_Pragma;
      elsif Pragma_Chars = Name_Assertion_Policy then
         return An_Assertion_Policy_Pragma;
      elsif Pragma_Chars = Name_Detect_Blocking  then
         return A_Detect_Blocking_Pragma;
      elsif Pragma_Chars = Name_No_Return  then
         return A_No_Return_Pragma;
--    A_Partition_Elaboration_Policy_Pragma  - not implemented yet!

      elsif Pragma_Chars = Name_Preelaborable_Initialization  then
         return A_Preelaborable_Initialization_Pragma;
      elsif Pragma_Chars = Name_Priority_Specific_Dispatching  then
         return A_Priority_Specific_Dispatching_Pragma;
      elsif Pragma_Chars = Name_Profile  then
         return A_Profile_Pragma;
      elsif Pragma_Chars = Name_Relative_Deadline  then
         return A_Relative_Deadline_Pragma;
      elsif Pragma_Chars = Name_Unchecked_Union  then
         return An_Unchecked_Union_Pragma;
      elsif Pragma_Chars = Name_Unsuppress  then
         return An_Unsuppress_Pragma;

--  --|A2005 end

--  --|A2012 start
      --  New Ada 2012 pragmas. To be alphabetically ordered later
      elsif Pragma_Chars = Name_Default_Storage_Pool then
         return A_Default_Storage_Pool_Pragma;
      elsif Pragma_Chars = Name_Dispatching_Domain then
         return A_Dispatching_Domain_Pragma;
      elsif Pragma_Chars = Name_CPU then
         return A_CPU_Pragma;
      elsif Pragma_Chars = Name_Independent then
         return An_Independent_Pragma;
      elsif Pragma_Chars = Name_Independent_Components then
         return A_Independent_Components_Pragma;
      --  To be continued...
--  --|A2012 end

      -- Implementation(GNAT)-Defined Pragmas --

      elsif Pragma_Chars in
              First_Pragma_Name .. Last_Pragma_Name |
              Name_AST_Entry                        |
              Name_Interface
      then
         --  We have already checked for all the standard pragma names, so
         --  all the rest known as pragma name should be GNAT-specific pragmas.
         return An_Implementation_Defined_Pragma; -- Vendor Appendix M
      else
         return An_Unknown_Pragma;         -- Unknown to the compiler.
      end if;

   end N_Pragma_Mapping;

   ----------------------------------------
   -- N_Procedure_Call_Statement_Mapping --
   ----------------------------------------

   function N_Procedure_Call_Statement_Mapping
     (Node : Node_Id)
      return Internal_Element_Kinds
   is
      Parent_N : Node_Id                := Parent (Parent (Node));
      Result   : Internal_Element_Kinds := A_Procedure_Call_Statement;
   begin
      --  The only special case we have to process is a procedure call that is
      --  an argument of a pragma Debug. To satisfy the Ada syntax, we have to
      --  classify it as A_Function_Call (see G330-002).

      if Nkind (Parent_N) = N_Block_Statement
        and then
         not Comes_From_Source (Parent_N)
      then
         Parent_N := Parent (Parent_N);

         if Nkind (Parent_N) = N_If_Statement
           and then
            Nkind (Original_Node (Parent_N)) = N_Pragma
           and then
            Pragma_Name (Original_Node (Parent_N)) = Name_Debug
         then
            Result := A_Function_Call;
         end if;

      end if;

      return Result;
   end N_Procedure_Call_Statement_Mapping;

   -------------------------------------
   -- N_Quantified_Expression_Mapping --
   -------------------------------------

   function N_Quantified_Expression_Mapping
     (Node : Node_Id)
      return Internal_Element_Kinds
   is
      Result : Internal_Element_Kinds := A_For_Some_Quantified_Expression;
   begin
      if All_Present (Node) then
         Result := A_For_All_Quantified_Expression;
      end if;

      return Result;
   end N_Quantified_Expression_Mapping;

   --------------------------------
   -- N_Range_Constraint_Mapping --
   --------------------------------

   function N_Range_Constraint_Mapping
     (Node : Node_Id)
      return Internal_Element_Kinds
   is
   begin
      --  Two Internal_Element_Kinds values may be possible:
      --   A_Range_Attribute_Reference
      --   A_Simple_Expression_Range

         if Nkind (Original_Node (Range_Expression (Node))) = N_Range then
            return A_Simple_Expression_Range;
         else
            return A_Range_Attribute_Reference;
         end if;

   end N_Range_Constraint_Mapping;

   ---------------------
   -- N_Range_Mapping --
   ---------------------

   function N_Range_Mapping (Node : Node_Id) return Internal_Element_Kinds is
      Context_Kind : constant Node_Kind := Nkind (Original_Node (Parent_Node));
   begin
      --  The following Internal_Element_Kinds values may be possible:
      --     A_Discrete_Simple_Expression_Range_As_Subtype_Definition
      --     A_Discrete_Simple_Expression_Range
      --     ???
      --     Other values should be added during constructing the
      --     full implementation

         case Context_Kind is

         when   N_Constrained_Array_Definition
              | N_Entry_Declaration =>

            return A_Discrete_Simple_Expression_Range_As_Subtype_Definition;

         when   N_Index_Or_Discriminant_Constraint |
                N_Slice                            |
                N_Case_Statement_Alternative       |
                N_Component_Association
                =>

            return A_Discrete_Simple_Expression_Range;

         when N_In     |
              N_Not_In =>
            return A_Simple_Expression_Range;
         when others => -- not implemented cases (???)

            Not_Implemented_Mapping (Nkind (Node));

         end case;

   end N_Range_Mapping;

   ---------------------------------
   -- N_Record_Definition_Mapping --
   ---------------------------------

   function N_Record_Definition_Mapping
     (Node : Node_Id)
      return Internal_Element_Kinds
   is
      Result    : Internal_Element_Kinds := A_Record_Type_Definition;
      Is_Formal : constant Boolean       :=
        Nkind (Original_Node (Parent (Node))) = N_Formal_Type_Declaration;
   begin
      --  Two Internal_Element_Kinds values may be possible (Ada 95):
      --   A_Record_Type_Definition
      --   A_Tagged_Record_Type_Definition

--  --|A2005 start
      --  Plus the following values for Ada 2005:
      --
      --   An_Ordinary_Interface
      --   A_Limited_Interface
      --   A_Task_Interface
      --   A_Protected_Interface
      --   A_Synchronized_Interface
      --
      --   A_Formal_Ordinary_Interface
      --   A_Formal_Limited_Interface
      --   A_Formal_Task_Interface
      --   A_Formal_Protected_Interface
      --   A_Formal_Synchronized_Interface
--  --|A2005 end

      --  Implementation revised for Ada 2005

      if Interface_Present (Node) then

         if Limited_Present (Node) then

            if Is_Formal then
               Result := A_Formal_Limited_Interface;
            else
               Result := A_Limited_Interface;
            end if;

         elsif Task_Present (Node) then

            if Is_Formal then
               Result := A_Formal_Task_Interface;
            else
               Result := A_Task_Interface;
            end if;

         elsif Protected_Present (Node) then

            if Is_Formal then
               Result := A_Formal_Protected_Interface;
            else
               Result := A_Protected_Interface;
            end if;

         elsif Synchronized_Present (Node) then

            if Is_Formal then
               Result := A_Formal_Synchronized_Interface;
            else
               Result := A_Synchronized_Interface;
            end if;

         else

            if Is_Formal then
               Result := A_Formal_Ordinary_Interface;
            else
               Result := An_Ordinary_Interface;
            end if;

         end if;

      elsif Tagged_Present (Node) then
         Result := A_Tagged_Record_Type_Definition;
      end if;

      return Result;
--  --|A2005 end
   end N_Record_Definition_Mapping;

   ---------------------------------
   -- N_Requeue_Statement_Mapping --
   ---------------------------------

   function N_Requeue_Statement_Mapping
     (Node : Node_Id)
      return Internal_Element_Kinds
   is
   begin
      --  Two Internal_Element_Kinds values may be possible:
      --   A_Requeue_Statement
      --   A_Requeue_Statement_With_Abort

      if Abort_Present (Node) then
         return A_Requeue_Statement_With_Abort;
      else
         return A_Requeue_Statement;
      end if;

   end N_Requeue_Statement_Mapping;

   -------------------------------
   -- N_Subprogram_Body_Mapping --
   -------------------------------

   function N_Subprogram_Body_Mapping
     (Node : Node_Id)
      return Internal_Element_Kinds
   is
   begin
      --  Two Internal_Element_Kinds values may be possible:
      --  A_Procedure_Body_Declaration and A_Function_Body_Declaration

         if Nkind (Specification (Node)) = N_Function_Specification then
            return A_Function_Body_Declaration;
         else
            return A_Procedure_Body_Declaration;
         end if;

   end N_Subprogram_Body_Mapping;

   ------------------------------------
   -- N_Subprogram_Body_Stub_Mapping --
   ------------------------------------

   function N_Subprogram_Body_Stub_Mapping
     (Node : Node_Id)
      return Internal_Element_Kinds
   is
   begin
      --  Two Internal_Element_Kinds values may be possible:
      --  A_Procedure_Body_Stub and A_Function_Body_Stub,

         if Nkind (Specification (Node)) = N_Function_Specification then
            return A_Function_Body_Stub;
         else
            return A_Procedure_Body_Stub;
         end if;

   end N_Subprogram_Body_Stub_Mapping;

   --------------------------------------
   -- N_Subprogram_Declaration_Mapping --
   --------------------------------------

   function N_Subprogram_Declaration_Mapping
     (Node : Node_Id)
      return Internal_Element_Kinds
   is
   begin
      --  Two Internal_Element_Kinds values may be possible:
      --    A_Procedure_Declaration
      --    A_Function_Declaration

         if Nkind (Specification (Node)) = N_Function_Specification then
            return A_Function_Declaration;
--  --|A2005 start
         elsif Null_Present (Specification (Node)) then
            return A_Null_Procedure_Declaration;
--  --|A2005 end
         else
            return A_Procedure_Declaration;
         end if;

   end N_Subprogram_Declaration_Mapping;

   -----------------------------------------------
   -- N_Subprogram_Renaming_Declaration_Mapping --
   -----------------------------------------------

   function N_Subprogram_Renaming_Declaration_Mapping
     (Node : Node_Id)
      return Internal_Element_Kinds
   is
   begin
      --  Two Internal_Element_Kinds values may be possible:
      --  A_Procedure_Renaming_Declaration and A_Function_Renaming_Declaration

      if Nkind (Specification (Node)) = N_Function_Specification then
         return A_Function_Renaming_Declaration;
      else
         return A_Procedure_Renaming_Declaration;
      end if;
   end N_Subprogram_Renaming_Declaration_Mapping;

   ----------------------------------
   -- N_Subtype_Indication_Mapping --
   ----------------------------------

   function N_Subtype_Indication_Mapping
     (Node : Node_Id)
      return Internal_Element_Kinds
   is
   begin
      --  The following Internal_Element_Kinds values may be possible:
      --     A_Discrete_Subtype_Indication_As_Subtype_Definition
      --     A_Discrete_Subtype_Indication
      --     A_Subtype_Indication

      case Nkind (Parent_Node) is

         when   N_Constrained_Array_Definition =>

            if Is_List_Member (Node) then
               return A_Discrete_Subtype_Indication_As_Subtype_Definition;
            end if;

         when N_Entry_Declaration =>
            return A_Discrete_Subtype_Indication_As_Subtype_Definition;

         when   N_Index_Or_Discriminant_Constraint |
                N_Slice                        =>

            return A_Discrete_Subtype_Indication;
         when others =>
            null;
      end case;

      return A_Subtype_Indication;
   end N_Subtype_Indication_Mapping;

   -------------------------------
   -- N_Use_Type_Clause_Mapping --
   -------------------------------

   function N_Use_Type_Clause_Mapping
     (Node : Node_Id)
      return Internal_Element_Kinds
   is
   begin
      if All_Present (Node) then
         return A_Use_All_Type_Clause;
      else
         return A_Use_Type_Clause;
      end if;
   end N_Use_Type_Clause_Mapping;

   ----------------------
   -- N_To_E_List_New  --
   ----------------------

   function N_To_E_List_New
     (List             : List_Id;
      Include_Pragmas  : Boolean                := False;
      Starting_Element : Asis.Element           := Asis.Nil_Element;
      Node_Knd         : Node_Kind              := N_Empty;
      Internal_Kind    : Internal_Element_Kinds := Not_An_Element;
      Special_Case     : Special_Cases          := Not_A_Special_Case;
      Norm_Case        : Normalization_Cases    := Is_Not_Normalized;
      In_Unit          : Asis.Compilation_Unit  := Asis.Nil_Compilation_Unit)
      return Asis.Element_List
   is
   begin

      Set_Element_List
        (List,
         Include_Pragmas,
         Starting_Element,
         Node_Knd,
         Internal_Kind,
         Special_Case,
         Norm_Case,
         In_Unit);

      return Asis.Association_List
               (Internal_Asis_Element_Table.Table
                  (1 .. Internal_Asis_Element_Table.Last));

   end N_To_E_List_New;

   ----------------------------------------------
   -- N_Unconstrained_Array_Definition_Mapping --
   ----------------------------------------------

   function N_Unconstrained_Array_Definition_Mapping
     (Node : Node_Id)
      return Internal_Element_Kinds
   is
   begin
      --  Two Internal_Element_Kinds values may be possible:
      --   An_Unconstrained_Array_Definition
      --   A_Formal_Unconstrained_Array_Definition

      if Nkind (Parent (Node)) = N_Formal_Type_Declaration then
         return A_Formal_Unconstrained_Array_Definition;
      else
         return An_Unconstrained_Array_Definition;
      end if;

   end N_Unconstrained_Array_Definition_Mapping;

   ----------------
   -- No_Mapping --
   ----------------

   procedure No_Mapping (Node : Node_Id) is
   begin
      --  This function should never be called!
      raise Internal_Implementation_Error;
   end No_Mapping;

   -------------------------
   -- Node_To_Element_New --
   -------------------------

   function Node_To_Element_New
     (Node                     : Node_Id;
      Node_Field_1             : Node_Id                := Empty;
      Node_Field_2             : Node_Id                := Empty;
      Starting_Element         : Asis.Element           := Asis.Nil_Element;
      Internal_Kind            : Internal_Element_Kinds := Not_An_Element;
      Spec_Case                : Special_Cases          := Not_A_Special_Case;
      Norm_Case                : Normalization_Cases    := Is_Not_Normalized;
      Considering_Parent_Count : Boolean                := True;
      Using_Original_Node      : Boolean                := True;
      Inherited                : Boolean                := False;
      In_Unit                  : Asis.Compilation_Unit  :=
         Asis.Nil_Compilation_Unit)
      return Asis.Element
   is
      Arg_Node                 : Node_Id                := Node;
      R_Node                   : Node_Id;
      Res_Node                 : Node_Id;
      Res_Node_Field_1         : Node_Id                := Empty;
      Res_Node_Field_2         : Node_Id                := Empty;
      Res_Internal_Kind        : Internal_Element_Kinds := Internal_Kind;
      Res_Enclosing_Unit       : Asis.Compilation_Unit;
      Res_Is_Part_Of_Implicit  : Boolean                := False;
      Res_Is_Part_Of_Inherited : Boolean                := False;
      Res_Is_Part_Of_Instance  : Boolean                := False;
      Res_Spec_Case            : Special_Cases          := Spec_Case;
      Res_Char_Code            : Char_Code              := 0;
      Res_Parenth_Count        : Nat                    := 0;

      Tmp                      : Node_Id;
   begin

      --  first, check if Node is not Empty and return Nil_Element otherwise:
      if No (Arg_Node) then
         return Nil_Element;
      end if;

      --  A special case: skip artificial type conversion the front-end creates
      --  for a function call that uses a prefixed notation. In this case
      --  we have to go to the argument of this type conversion, because the
      --  original node corresponding to the conversion is not properly
      --  decorated.

      if Nkind (Arg_Node) = N_Type_Conversion
        and then
         Is_Rewrite_Substitution (Arg_Node)
        and then
         Nkind (Original_Node (Arg_Node)) in
           N_Function_Call | N_Indexed_Component | N_Selected_Component
        and then
         Is_Rewritten_Function_Prefix_Notation (Sinfo.Expression (Arg_Node))
      then
         Arg_Node := Sinfo.Expression (Arg_Node);
      end if;

      if Using_Original_Node
        and then
         Is_Rewrite_Substitution (Arg_Node)
        and then
         not Is_Rewritten_Function_Prefix_Notation (Arg_Node)
      then
         --  Note that for a function call in Object.Operation notation we do
         --  not use the original node at all, because the original tree
         --  structure is not properly decorated and analyzed, but the
         --  rewritten subtree contains all we need

         Res_Node := Original_Node (Arg_Node);

         if Is_Rewrite_Substitution (Res_Node) then
            Res_Node := Original_Node (Res_Node);
         end if;

      else
         Res_Node := Arg_Node;
      end if;

      --  setting the global Parent_Node  needed for computing the kind of
      --  the returned Element
      Parent_Node := Parent (Arg_Node);

      if not Is_Nil (Starting_Element) then
         --  We need this to define the enclosing unit for the new Element
         Res_Spec_Case := Special_Case (Starting_Element);
      end if;

      --  setting result's enclosing unit:
      if Exists (In_Unit) then
         --  if In_Unit is set, we take information about the result's
         --  enclosing unit from it, unless we have to create a configuration
         --  pragma or component thereof.

         if Spec_Case = Configuration_File_Pragma then
            Res_Enclosing_Unit := Get_Configuration_CU (In_Unit);
         else
            Res_Enclosing_Unit := In_Unit;
         end if;

      elsif not Is_Nil (Starting_Element) then
         --  if Starting_Element is set, but In_Unit is not, we take
         --  information about the result's enclosing unit from
         --  Starting_Element
         Res_Enclosing_Unit := Encl_Unit  (Starting_Element);
      else
         --  we can be here only if both Starting_Element and In_Unit are
         --  nor set. This is definitely an error.
         raise Internal_Implementation_Error;
      end if;

      --  if Starting_Element is set, we "transfer" everything what is
      --  possible from it to the result:
      if not Is_Nil (Starting_Element) then

         if Nkind (Res_Node) = N_Null_Statement
           and then
            not (Comes_From_Source (Res_Node))
         then
            --  Implicit NULL statement'floating' labels are attached to
            Res_Is_Part_Of_Implicit := True;

         elsif Nkind (Res_Node) = N_Label then
            --  Needed in case of 'floating' labels
            Res_Is_Part_Of_Implicit := False;
         else
            Res_Is_Part_Of_Implicit  := Is_From_Implicit  (Starting_Element);
         end if;

         Res_Is_Part_Of_Inherited := Is_From_Inherited (Starting_Element);
         Res_Is_Part_Of_Instance  := Is_From_Instance  (Starting_Element);
         --  Res_Spec_Case is already set!

         if Present (Node_Field_1_Value (Starting_Element)) then
            Res_Node_Field_1 := Node_Field_1_Value (Starting_Element);
            pragma Assert (Get_Current_Tree = Encl_Tree (Starting_Element));
            --  We can not use Asis.Set_Get.Node_Field_1 here, because it
            --  might reset the tree.
         end if;

         if Present (Node_Field_2_Value (Starting_Element)) then
            Res_Node_Field_2 := Node_Field_2_Value (Starting_Element);
            pragma Assert (Get_Current_Tree = Encl_Tree (Starting_Element));
            --  We can not use Asis.Set_Get.Node_Field_2 here, because it
            --  might reset the tree.
         end if;

         if Internal_Kind = A_Defining_Character_Literal or else
            Internal_Kind = An_Enumeration_Literal_Specification
         then
            --  We keep Character_Code unless the result is type definition
            --  (it that case keeping Character_Code would make Is_Equal test
            --  not work properly
            Res_Char_Code := Character_Code (Starting_Element);
         end if;

         if Res_Spec_Case in Expanded_Spec then
            --  We have to reset Res_Spec_Case from
            --  Expanded_Package_Instantiation or
            --  Expanded_Subprogram_Instantiation to Not_A_Special_Case;
            --  because only (the whole) expanded generic declarations can have
            --  the value of Special_Case from Expanded_Spec
            Res_Spec_Case := Not_A_Special_Case;
         end if;

      elsif Res_Spec_Case in Expanded_Spec then
         Res_Is_Part_Of_Implicit  := False;

      else

         if Is_From_Instance (Original_Node (Arg_Node))            or else
            Is_Name_Of_Expanded_Subprogram (Res_Node)              or else
            Part_Of_Pass_Generic_Actual (Original_Node (Arg_Node)) or else
            Is_Stub_To_Body_Instanse_Replacement (Arg_Node)        or else
            Spec_Case = Expanded_Package_Instantiation             or else
            Spec_Case = Expanded_Subprogram_Instantiation
         then
            Res_Is_Part_Of_Instance := True;
         end if;

         if Inherited then
            Res_Is_Part_Of_Inherited := True;
            Res_Is_Part_Of_Implicit  := True;
         end if;

         if not Comes_From_Source (Res_Node)
           and then
            (not Part_Of_Pass_Generic_Actual (Res_Node)
            or else
             Norm_Case = Is_Normalized_Defaulted_For_Box)
           and then
             not Is_Name_Of_Expanded_Subprogram (Res_Node)
         then
            Res_Is_Part_Of_Implicit  := True;
         end if;

      end if;

      --   This patch below is really terrible!!! requires revising!!!
      --  ???
      if Spec_Case = Expanded_Package_Instantiation or else
         Spec_Case = Expanded_Subprogram_Instantiation
      then
         Res_Is_Part_Of_Instance := True;
      end if;

      --  if Spec_Case is set explicitly, we should set (or reset)
      --  Res_Spec_Case from it

      if Spec_Case /= Not_A_Special_Case then
         Res_Spec_Case := Spec_Case;
      end if;

      --  computing the kind of the result and correcting Special_Case,
      --  if needed

      if Res_Internal_Kind = Not_An_Element then
         --  Res_Internal_Kind is initialized by the value of the
         --  Internal_Kind parameter. If this value differs from
         --  Not_An_Element, we simply does not change it

         if Considering_Parent_Count and then
            Parenth_Count (Res_Node, Arg_Node) > 0
         then
            --  special processing for A_Parenthesized_Expression
            Res_Internal_Kind := A_Parenthesized_Expression;

            if Parenth_Count (Res_Node, Arg_Node) > 0 then
               Res_Parenth_Count := Parenth_Count (Res_Node, Arg_Node);
            else
               --  (conditional expression)
               Res_Parenth_Count := 1;
            end if;
         else
            --  from Sinfo (spec, rev. 1.334):
      ---------------------------------
      -- 9.5.3  Entry Call Statement --
      ---------------------------------

      --  ENTRY_CALL_STATEMENT ::= entry_NAME [ACTUAL_PARAMETER_PART];

      --  The parser may generate a procedure call for this construct. The
      --  semantic pass must correct this misidentification where needed.

            if Res_Node /= Arg_Node and then
               ((Nkind (Res_Node) = N_Procedure_Call_Statement and then
                  Nkind (Arg_Node)  = N_Entry_Call_Statement   and then
                  not Is_Protected_Procedure_Call (Arg_Node))
                or else
                 (Nkind (Res_Node) = N_Explicit_Dereference and then
                  Nkind (Arg_Node) = N_Function_Call))
            then
               Res_Node := Arg_Node;  --  ???
               --  There is no need to keep the original structure in this
               --  case, it is definitely wrong

               if Nkind (Arg_Node) = N_Entry_Call_Statement then
                  Res_Internal_Kind := An_Entry_Call_Statement;
               else
                  Res_Internal_Kind := A_Function_Call;
               end if;

            else

               if (Nkind (Arg_Node) = N_Integer_Literal or else
                   Nkind (Arg_Node) = N_Real_Literal)
                  and then
                  ((not Is_Rewrite_Substitution (Arg_Node))
                   or else
                    Nkind (Original_Node (Arg_Node)) = N_Identifier)
                  and then
                   Comes_From_Source (Arg_Node) = False
                  and then
                   Is_Static_Expression (Arg_Node)
                  and then
                   Present (Original_Entity (Arg_Node))
               then
                  --  See BB10-002: The special case of named numbers rewritten
                  --  into numeric literals.
                  Res_Spec_Case     := Rewritten_Named_Number;
                  Res_Internal_Kind := An_Identifier;
               else
                  Res_Internal_Kind := Asis_Internal_Element_Kind (Res_Node);
               end if;

            end if;

         end if;

      end if;

      --  and now we have to check if the Element to be returned is from the
      --  Standard package, and if it is, we have to correct Res_Spec_Case:

      if Res_Spec_Case = Not_A_Special_Case and then
         Sloc (Res_Node) <= Standard_Location
      then

         if Nkind (Arg_Node) = N_Defining_Character_Literal then
            Res_Spec_Case := Stand_Char_Literal;
         else
            Res_Spec_Case := Explicit_From_Standard;
         end if;

      end if;

      if Res_Spec_Case = Explicit_From_Standard or else
         Res_Spec_Case = Stand_Char_Literal
      then
         Res_Is_Part_Of_Implicit := False;
      end if;

      if Nkind (Arg_Node) = N_Function_Call and then
         (Res_Internal_Kind = A_Selected_Component or else
          Res_Internal_Kind = An_Enumeration_Literal)
      then
         --  a reference to an overloaded enumeration literal represented as a
         --  function call, we have to go one step down:
         R_Node := Sinfo.Name (Arg_Node);
         Res_Node := R_Node;
      else
         R_Node := Arg_Node;

         Tmp := Original_Node (R_Node);

      --  There is a special case of library-level package instantiation:
      --  the expanded spec is based on a body node, and the instantiation
      --  node is rewritten more then once.

         while Is_Rewrite_Substitution (Tmp) loop
            R_Node := Tmp;
            Tmp := Original_Node (R_Node);
         end loop;
      end if;

      if Present (Node_Field_1) then
         Res_Node_Field_1 := Node_Field_1;
      end if;

      if Present (Node_Field_2) then
         Res_Node_Field_2 := Node_Field_2;
      end if;

      if Res_Spec_Case = From_Limited_View then
         Res_Is_Part_Of_Implicit := True;
      end if;

      return Set_Element (
          Node           => Res_Node,
          R_Node         => R_Node,
          Node_Field_1   => Res_Node_Field_1,
          Node_Field_2   => Res_Node_Field_2,
          Encl_Unit      => Res_Enclosing_Unit,
          Int_Kind       => Res_Internal_Kind,
          Implicit       => Res_Is_Part_Of_Implicit,
          Inherited      => Res_Is_Part_Of_Inherited,
          Instance       => Res_Is_Part_Of_Instance,
          Spec_Case      => Res_Spec_Case,
          Norm_Case      => Norm_Case,
          Par_Count      => Res_Parenth_Count,
          Character_Code => Res_Char_Code);

   end Node_To_Element_New;

   --------------------
   -- Normalize_Name --
   --------------------

   procedure Normalize_Name (Capitalized : Boolean := False) is
   begin
      if Namet.Name_Len = 0 then
         return;
      end if;

      Namet.Name_Buffer (1) := To_Upper (Namet.Name_Buffer (1));

      for I in 1 .. Namet.Name_Len - 1 loop

         if Capitalized or else
            Namet.Name_Buffer (I) = '_'
         then
            Namet.Name_Buffer (I + 1) := To_Upper (Namet.Name_Buffer (I + 1));
         end if;

      end loop;
   end Normalize_Name;

   -----------------------------
   -- Normalized_Namet_String --
   -----------------------------

   function Normalized_Namet_String (Node : Node_Id) return String is
      Capitalize : Boolean := False;
   begin
      Namet.Get_Name_String (Chars (Node));

      if Node = Standard_ASCII              or else
         Node in SE (S_LC_A) .. SE (S_LC_Z) or else
         Node in SE (S_NUL) .. SE (S_US)    or else
         Node =  SE (S_DEL)
      then
         Capitalize := True;
      end if;

      Normalize_Name (Capitalize);

      return Namet.Name_Buffer (1 .. Namet.Name_Len);
   end Normalized_Namet_String;

   -----------------------------
   -- Not_Implemented_Mapping --
   -----------------------------

   function Not_Implemented_Mapping
     (Node : Node_Id)
      return Internal_Element_Kinds is
   begin
      Not_Implemented_Yet (Diagnosis =>
                        "AST Node -> Asis.Element mapping for the "
                      &   Node_Kind'Image (Nkind (Node))
                      & " Node Kind value has not been implemented yet");
      return Not_An_Element; -- to make the code syntactically correct;
   end Not_Implemented_Mapping;

   procedure Not_Implemented_Mapping (Source_Node_Kind : Node_Kind) is
   begin
      Not_Implemented_Yet (Diagnosis =>
                        "AST Node -> Asis.Element mapping for the "
                      &   Node_Kind'Image (Source_Node_Kind)
                      & " Node Kind value has not been implemented yet");
   end Not_Implemented_Mapping;

   ----------------------------------
   -- Ordinary_Inclusion_Condition --
   ----------------------------------

   function Ordinary_Inclusion_Condition (Node : Node_Id) return Boolean is
      O_Node   : constant Node_Id   := Original_Node (Node);
      Arg_Kind : constant Node_Kind := Nkind (Node);

      Result   : Boolean := True;
   begin

      if Is_Rewrite_Insertion (Node)                   or else
         May_Be_Included_Switch (Nkind (Node)) = False or else

        (Nkind (Node) = N_With_Clause
         and then
         Implicit_With (Node))                        or else

        (Nkind (Node) = N_Entry_Call_Statement
         and then
         Node = O_Node)
      then
         Result := False;

      elsif not Comes_From_Source (O_Node) then

         if Arg_Kind = N_Null_Statement then
            --  We have to include implicit null statements 'floating' labels
            --  are attached to
            if not (No (Next (Node))
                  and then
                    Present (Prev (Node))
                  and then
                    Nkind (Prev (Node)) = N_Label
                  and then
                    Comes_From_Source (Prev (Node)))
            then
               Result := False;
            end if;
         elsif Arg_Kind = N_Object_Renaming_Declaration then
            --  For FB02-008

            if (Nkind (Sinfo.Name (Node)) = N_Identifier
               and then
                Is_Internal_Name (Chars (Sinfo.Name (Node))))
             or else
               (Nkind (Sinfo.Subtype_Mark (Node)) = N_Identifier
               and then
                Is_Internal_Name (Chars (Sinfo.Subtype_Mark (Node))))
            then
               Result := False;
            end if;

         elsif not ((Arg_Kind = N_Object_Declaration
                 and then
                  not Is_Internal_Name (Chars (Defining_Identifier (O_Node))))
                or else
                 Arg_Kind = N_Component_Declaration
                or else
                 Arg_Kind = N_Discriminant_Specification
                or else
                 Arg_Kind = N_Parameter_Specification
                or else
                 Arg_Kind = N_Component_Association
                or else

                 ((Arg_Kind = N_Integer_Literal
                  or else
                   Arg_Kind = N_Real_Literal)
                     and then
                  Is_Static_Expression (Node))
                  --  This condition describes the special case of a named
                  --  number rewritten into a literal node, see BB10-002

                or else

                 Sloc (Node) <= Standard_Location
                or else
                 Is_Rewritten_Function_Prefix_Notation (Parent (Node))
                or else
                 Pass_Generic_Actual (Node)
                or else
                 (Arg_Kind = N_Explicit_Dereference
                  and then
                  Nkind (O_Node) = N_Function_Call))
         then
            Result := False;
         end if;

      end if;

      return Result;

   end Ordinary_Inclusion_Condition;

   -------------------
   -- Parenth_Count --
   -------------------

   function Parenth_Count
     (N          : Node_Id;
      Original_N : Node_Id)
      return       Nat
   is
      Result : Nat := Paren_Count (N);
   begin

      if Result > 0 and then
         Nkind (Original_Node (Parent (Original_N))) = N_Qualified_Expression
      then
         Result := Result - 1;
      end if;

      return Result;

   end Parenth_Count;

   -----------------------------------------
   -- Set_Concurrent_Inherited_Components --
   -----------------------------------------

   procedure Set_Concurrent_Inherited_Components
     (Type_Def      : Asis.Element;
      Include_Discs : Boolean := True)
   is
      Type_Entity    : Entity_Id;
      Next_Comp_Node : Node_Id;
   begin

      Asis_Element_Table.Init;

      Type_Entity := Defining_Identifier (Parent (R_Node (Type_Def)));

      if Present (First_Entity (Type_Entity)) then

         if Include_Discs then
            Next_Comp_Node := First_Entity (Type_Entity);

            while Ekind (Next_Comp_Node) = E_Discriminant loop

               Asis_Element_Table.Append
                 (Node_To_Element_New
                    (Node             => Parent (Next_Comp_Node),
                     Starting_Element => Type_Def));

               Set_Node_Field_2
                 (Asis_Element_Table.Table (Asis_Element_Table.Last),
                  Next_Comp_Node);
               --  This is needed to unify the processing of inherited
               --  discriminants in Asis.Declarations.Names

               Next_Comp_Node := Next_Entity (Next_Comp_Node);
            end loop;

         end if;

         --  To set all the non-discriminant components, we have to go to the
         --  definition of the root concurrent type and to traverse it to
         --  grab all this components, because the (non-discrimiinant)
         --  entities attached to the entity of the derived concurrent type
         --  are artificial entities created for further tree expansion

         while Type_Entity /= Etype (Type_Entity) loop
            Type_Entity := Etype (Type_Entity);
         end loop;

         Type_Entity := Parent (Type_Entity);

         if Nkind (Type_Entity) = N_Task_Type_Declaration then
            Type_Entity := Task_Definition (Type_Entity);
         else
            Type_Entity := Protected_Definition (Type_Entity);
         end if;

         Next_Comp_Node :=
            First_Non_Pragma (Visible_Declarations (Type_Entity));

         while Present (Next_Comp_Node) loop

            Asis_Element_Table.Append
              (Node_To_Element_New
                 (Node             => Next_Comp_Node,
                  Starting_Element => Type_Def));

            Next_Comp_Node := Next_Non_Pragma (Next_Comp_Node);
         end loop;

         if Present (Private_Declarations (Type_Entity)) then
            Next_Comp_Node :=
               First_Non_Pragma (Private_Declarations (Type_Entity));

            while Present (Next_Comp_Node) loop

               Asis_Element_Table.Append
                 (Node_To_Element_New
                    (Node             => Next_Comp_Node,
                     Starting_Element => Type_Def));

               Next_Comp_Node := Next_Non_Pragma (Next_Comp_Node);
            end loop;

         end if;

      end if;

   end Set_Concurrent_Inherited_Components;

   ----------------------
   -- Set_Element_List --
   ----------------------

   --  At the moment, the implementation is just a copy from N_To_E_List_New
   --  with changes related to building the result list in Element Table

   procedure Set_Element_List
     (List             : List_Id;
      Include_Pragmas  : Boolean                := False;
      Starting_Element : Asis.Element           := Asis.Nil_Element;
      Node_Knd         : Node_Kind              := N_Empty;
      Internal_Kind    : Internal_Element_Kinds := Not_An_Element;
      Special_Case     : Special_Cases          := Not_A_Special_Case;
      Norm_Case        : Normalization_Cases    := Is_Not_Normalized;
      In_Unit          : Asis.Compilation_Unit  := Asis.Nil_Compilation_Unit;
      Append           : Boolean                := False)
   is
      List_El       : Node_Id;
      List_El_Kind  : Node_Kind;

      function First_List_Element (List : List_Id) return Node_Id;
      --  returns the first element of List, taking into account
      --  the value of Include_Pragmas
      function Next_List_Element (Node : Node_Id) return Node_Id;
      --  returns the first element of List, taking into account
      --  the value of Include_Pragmas

      procedure Skip_Pragmas (N : in out Node_Id);
      --  Supposes that Is_List_Member (N). If N is of N_Pragma kind and if
      --  Include_Pragmas is set OFF, moves N to the next element of the same
      --  list that is not of N_Pragma kinds or set it to Empty if there is no
      --  such node. We can not just use Nlists.First_Non_Pragma and
      --  Nlists.Next_Non_Pragma, because they also skip N_Null_Statement
      --  nodes.

      ------------------------
      -- First_List_Element --
      ------------------------

      function First_List_Element (List : List_Id) return Node_Id is
         Result : Node_Id;
      begin

         Result := First (List);
         Skip_Pragmas (Result);

         if Is_Rewrite_Substitution (Result)
           and then
            Nkind (Result) = N_Loop_Statement
           and then
            Nkind (Original_Node (Result)) = N_Goto_Statement
         then
            --  This is the case when infinite loop implemented as
            --
            --    <<Target>> ...
            --       ...
            --    goto Target;
            --
            --  Is rewritten into N_Loop_Statement

            if not Is_Empty_List (Statements (Result)) then
               Result := First (Statements (Result));
            end if;

         end if;

         return Result;

      end First_List_Element;

      -----------------------
      -- Next_List_Element --
      -----------------------

      function Next_List_Element (Node : Node_Id) return Node_Id is
         Tmp    : Node_Id;
         Result : Node_Id;
      begin

         Result := Next (Node);
         Skip_Pragmas (Result);

         if Is_Rewrite_Substitution (Result)
           and then
            Nkind (Result) = N_Loop_Statement
           and then
            Nkind (Original_Node (Result)) = N_Goto_Statement
         then
            --  This is the case when infinite loop implemented as
            --
            --    <<Target>> ...
            --       ...
            --    goto Target;
            --
            --  Is rewritten into N_Loop_Statement

            if not Is_Empty_List (Statements (Result)) then
               Result := First (Statements (Result));
            end if;

         end if;

         if No (Result) then
            Tmp := Parent (Node);

            if Is_Rewrite_Substitution (Tmp)
              and then
               Nkind (Tmp) = N_Loop_Statement
              and then
               Nkind (Original_Node (Tmp)) = N_Goto_Statement
            then
               --  We have just finished traversing of the artificial loop
               --  statement created for goto, so it's tome to
               --  return this goto itself. Note, that we are returning the
               --  rewritten N_Loop_Statement to keep list and parent
               --  references

               Result := Tmp;
            end if;

         end if;

         return Result;

      end Next_List_Element;

      ------------------
      -- Skip_Pragmas --
      ------------------

      procedure Skip_Pragmas (N : in out Node_Id) is
      begin

         if not Include_Pragmas then

            while Present (N)
               and then
                  Nkind (Original_Node (N)) = N_Pragma
            loop
               N := Next (N);
            end loop;

         end if;

      end Skip_Pragmas;

   begin

      if not Append then
         Internal_Asis_Element_Table.Init;
      end if;

      if No (List) or else Is_Empty_List (List) then
         return;
      end if;

      List_El := First_List_Element (List);

      while Present (List_El) loop

         if Debug_Flag_L then
            Write_Node (N      => List_El,
                        Prefix => "Set_Element_List debug info-> ");
            Write_Str ("May_Be_Included is ");
            Write_Str (Boolean'Image (May_Be_Included (List_El)));
            Write_Eol;
            Write_Eol;
         end if;

         List_El_Kind := Nkind (List_El);

         if May_Be_Included (List_El) and then
            not ((Node_Knd /= N_Empty) and then (List_El_Kind /= Node_Knd))
         then

            Internal_Asis_Element_Table.Append
              (Node_To_Element_New
                 (Starting_Element => Starting_Element,
                  Node             => List_El,
                  Internal_Kind    => Internal_Kind,
                  Spec_Case        => Special_Case,
                  Norm_Case        => Norm_Case,
                  In_Unit          => In_Unit));

            if List_El_Kind = N_Object_Declaration         or else
               List_El_Kind = N_Number_Declaration         or else
               List_El_Kind = N_Discriminant_Specification or else
               List_El_Kind = N_Component_Declaration      or else
               List_El_Kind = N_Parameter_Specification    or else
               List_El_Kind = N_Exception_Declaration      or else
               List_El_Kind = N_Formal_Object_Declaration  or else
               List_El_Kind = N_With_Clause
            then
               Skip_Normalized_Declarations (List_El);
            end if;

         end if;

         List_El := Next_List_Element (List_El);
      end loop;

   end Set_Element_List;

   ---------------------------------
   -- Set_Inherited_Discriminants --
   ---------------------------------

   procedure Set_Inherited_Discriminants (Type_Def : Asis.Element) is
      Next_Discr_Elmt : Elmt_Id;
      Next_Elem_Node  : Node_Id;
   begin
      Next_Elem_Node := Defining_Identifier (Parent (R_Node (Type_Def)));

      if Present (Stored_Constraint (Next_Elem_Node)) then
         Asis_Element_Table.Init;

         Next_Discr_Elmt := First_Elmt (Stored_Constraint (Next_Elem_Node));

         while Present (Next_Discr_Elmt) loop
            Next_Elem_Node  := Parent (Entity (Node (Next_Discr_Elmt)));

            Asis_Element_Table.Append
              (Node_To_Element_New
                 (Node             => Next_Elem_Node,
                  Internal_Kind    => A_Discriminant_Specification,
                  Starting_Element => Type_Def));

            Next_Discr_Elmt := Next_Elmt (Next_Discr_Elmt);

         end loop;
      end if;

   end Set_Inherited_Discriminants;

   ------------------------------
   -- Set_Inherited_Components --
   ------------------------------

   procedure Set_Inherited_Components
     (Type_Def      : Asis.Element;
      Include_Discs : Boolean := True)
   is
      Next_Comp_Node : Node_Id;

      function Is_Implicit_Component (E : Entity_Id) return Boolean;
      --  Checks if E is an entity representing implicit inherited
      --  component

      function Is_Implicit_Component (E : Entity_Id) return Boolean is
         Result : Boolean := False;
      begin

         if Ekind (E) = E_Component then
            Result :=
              (E /= Original_Record_Component (E)) or else
              not Comes_From_Source (Parent (E));

         elsif Ekind (E) = E_Discriminant and then Include_Discs then
            Result := not Is_Completely_Hidden (E);
         end if;

         return Result;
      end Is_Implicit_Component;

   begin

      Asis_Element_Table.Init;

      Next_Comp_Node := R_Node (Type_Def);

      if Nkind (Next_Comp_Node) /= N_Private_Extension_Declaration then
         Next_Comp_Node := Parent (Next_Comp_Node);
      end if;

      Next_Comp_Node := Defining_Identifier (Next_Comp_Node);

      if Ekind (Next_Comp_Node) = E_Record_Subtype then
         --  For subtypes we may have components depending on discriminants
         --  skipped in case of static discriminant constraints
         Next_Comp_Node := Etype (Next_Comp_Node);
      end if;

      if Present (First_Entity (Next_Comp_Node)) then

         Next_Comp_Node := First_Entity (Next_Comp_Node);

         while Present (Next_Comp_Node) loop

            if Is_Implicit_Component (Next_Comp_Node) then

               Asis_Element_Table.Append
                 (Node_To_Element_New
                    (Node             => Parent (Next_Comp_Node),
                     Starting_Element => Type_Def));

               Set_Node_Field_2
                 (Asis_Element_Table.Table (Asis_Element_Table.Last),
                  Next_Comp_Node);
               Set_From_Implicit
                  (Asis_Element_Table.Table (Asis_Element_Table.Last), True);
               Set_From_Inherited
                  (Asis_Element_Table.Table (Asis_Element_Table.Last), True);
            end if;

            Next_Comp_Node := Next_Entity (Next_Comp_Node);

         end loop;

      end if;

   end Set_Inherited_Components;

   ----------------------------
   -- Set_Inherited_Literals --
   ----------------------------

   procedure Set_Inherited_Literals (Type_Def : Asis.Element) is
      Next_Literal_Node : Node_Id;
      Res_Etype         : Entity_Id;
      Encl_Type         : constant Node_Id := Parent (R_Node (Type_Def));
   begin

      Asis_Element_Table.Init;

      Next_Literal_Node := Defining_Identifier (Parent (R_Node (Type_Def)));

      if Present (First_Literal (Next_Literal_Node)) then

         Next_Literal_Node := First_Literal (Next_Literal_Node);
         Res_Etype         := Etype (Next_Literal_Node);

         while Present (Next_Literal_Node) and then
               Etype (Next_Literal_Node) = Res_Etype
         loop

            Asis_Element_Table.Append
              (Node_To_Element_New
                 (Node             => Next_Literal_Node,
                  Internal_Kind    => An_Enumeration_Literal_Specification,
                  Starting_Element => Type_Def));

            Set_Node_Field_1
               (Asis_Element_Table.Table (Asis_Element_Table.Last),
                Encl_Type);

            Set_From_Implicit
               (Asis_Element_Table.Table (Asis_Element_Table.Last), True);
            Set_From_Inherited
               (Asis_Element_Table.Table (Asis_Element_Table.Last), True);

            Next_Literal_Node := Next_Entity (Next_Literal_Node);

         end loop;

      else
         Not_Implemented_Yet
           (Diagnosis =>
           "Asis.Definitions.Implicit_Inherited_Declarations "
           & "(derived from Standard character type)");

      end if;

   end Set_Inherited_Literals;

   ----------------------------------
   -- Skip_Normalized_Declarations --
   ----------------------------------

   procedure Skip_Normalized_Declarations (Node : in out Node_Id) is
      Arg_Kind : constant Node_Kind := Nkind (Node);
   begin
      loop

         if Arg_Kind = N_Object_Declaration         or else
            Arg_Kind = N_Number_Declaration         or else
            Arg_Kind = N_Discriminant_Specification or else
            Arg_Kind = N_Component_Declaration      or else
            Arg_Kind = N_Parameter_Specification    or else
            Arg_Kind = N_Exception_Declaration      or else
            Arg_Kind = N_Formal_Object_Declaration
         then

            if More_Ids (Node) then
               Node := Next (Node);

               while Nkind (Node) /= Arg_Kind loop
                  --  some implicit subtype declarations may be inserted by
                  --  the compiler in between the normalized declarations, so:
                  Node := Next (Node);
               end loop;

            else
               return;
            end if;

         else
            --  Arg_Kind = N_With_Clause.
            --  Note that we should skip implicit clauses that can be added by
            --  front-end.
            if Comes_From_Source (Node) and then Last_Name (Node) then
               return;
            else
               Node := Next (Node);
            end if;

         end if;

      end loop;
   end Skip_Normalized_Declarations;

   -------------------------------
   -- Subprogram_Attribute_Kind --
   -------------------------------

   function Subprogram_Attribute_Kind
     (Node : Node_Id)
      return Internal_Element_Kinds
   is
      Attribute_Chars : Name_Id;
   begin

      Attribute_Chars := Attribute_Name (Node);

      --  language-defined attributes which are functions:

      if Attribute_Chars = Name_Adjacent             then
         return An_Adjacent_Attribute;
      elsif Attribute_Chars = Name_Ceiling           then
         return A_Ceiling_Attribute;
      elsif Attribute_Chars = Name_Compose           then
         return A_Compose_Attribute;
      elsif Attribute_Chars = Name_Copy_Sign         then
         return A_Copy_Sign_Attribute;
      elsif Attribute_Chars = Name_Exponent          then
         return An_Exponent_Attribute;
      elsif Attribute_Chars = Name_Floor             then
         return A_Floor_Attribute;
      elsif Attribute_Chars = Name_Fraction          then
         return A_Fraction_Attribute;
      elsif Attribute_Chars = Name_Image             then
         return An_Image_Attribute;
      elsif Attribute_Chars = Name_Input             then
         return An_Input_Attribute;
      elsif Attribute_Chars = Name_Leading_Part      then
         return A_Leading_Part_Attribute;
      elsif Attribute_Chars = Name_Machine           then
         return A_Machine_Attribute;
      elsif Attribute_Chars = Name_Max               then
         return A_Max_Attribute;
      elsif Attribute_Chars = Name_Min               then
         return A_Min_Attribute;
      elsif Attribute_Chars = Name_Model             then
         return A_Model_Attribute;
      elsif Attribute_Chars = Name_Pos               then
         return A_Pos_Attribute;
      elsif Attribute_Chars = Name_Pred              then
         return A_Pred_Attribute;
      elsif Attribute_Chars = Name_Remainder         then
         return A_Remainder_Attribute;
      elsif Attribute_Chars = Name_Round             then
         return A_Round_Attribute;
      elsif Attribute_Chars = Name_Rounding          then
         return A_Rounding_Attribute;
      elsif Attribute_Chars = Name_Scaling           then
         return A_Scaling_Attribute;
      elsif Attribute_Chars = Name_Succ              then
         return A_Succ_Attribute;
      elsif Attribute_Chars = Name_Truncation        then
         return A_Truncation_Attribute;
      elsif Attribute_Chars = Name_Unbiased_Rounding then
         return An_Unbiased_Rounding_Attribute;
      elsif Attribute_Chars = Name_Val               then
         return A_Val_Attribute;
      elsif Attribute_Chars = Name_Value             then
         return A_Value_Attribute;
      elsif Attribute_Chars = Name_Wide_Image        then
         return A_Wide_Image_Attribute;
      elsif Attribute_Chars = Name_Wide_Value        then
         return A_Wide_Value_Attribute;

--  |A2005 start

            --  Ada 2005 attributes that are functions:
      elsif Attribute_Chars = Name_Machine_Rounding  then
         return A_Machine_Rounding_Attribute;
      elsif Attribute_Chars = Name_Mod               then
         return A_Mod_Attribute;
      elsif Attribute_Chars = Name_Wide_Wide_Image   then
         return A_Wide_Wide_Image_Attribute;
      elsif Attribute_Chars = Name_Wide_Wide_Value   then
         return A_Wide_Wide_Value_Attribute;
--  |A2005 end

--  |A2012 start
            --  Ada 2012 attributes that are functions:
      elsif Attribute_Chars = Name_Overlaps_Storage  then
         return An_Overlaps_Storage_Attribute;
--  |A2012 end

      --  language-defined attributes which are procedures:

      elsif Attribute_Chars = Name_Output then
         return An_Output_Attribute;
      elsif Attribute_Chars = Name_Read then
         return A_Read_Attribute;
      elsif Attribute_Chars = Name_Write then
         return A_Write_Attribute;

               -- Implementation Dependent Attributes-Functions --

      elsif Attribute_Chars = Name_Asm_Input         or else
            Attribute_Chars = Name_Asm_Output        or else
            Attribute_Chars = Name_Enum_Rep          or else
            Attribute_Chars = Name_Enum_Val          or else
            Attribute_Chars = Name_Fixed_Value       or else
            Attribute_Chars = Name_Integer_Value     or else
            Attribute_Chars = Name_Ref
      then
         return An_Implementation_Defined_Attribute;
      else
         return An_Unknown_Attribute;
      end if;

   end Subprogram_Attribute_Kind;

   -----------------
   -- Ureal_Image --
   -----------------

   function Ureal_Image (N : Node_Id) return String is
      Result  : String (1 .. 256);
      Res_Len : Natural range 0 .. 256 := 0;

      Real : constant Ureal  := Realval (N);
      Nom  : constant Uint   := Norm_Num (Real);
      Den  : constant Uint   := Norm_Den (Real);
      Dot_Outputed : Boolean := False;
   begin
      if UR_Is_Negative (Real) then
         Res_Len := Res_Len + 1;
         Result (Res_Len) := '(';
         Res_Len := Res_Len + 1;
         Result (Res_Len) := '-';
      end if;

      UI_Image (Nom, Decimal);
      for I in 1 .. UI_Image_Length loop
         if UI_Image_Buffer (I) = 'E' then
            Res_Len := Res_Len + 1;
            Result (Res_Len) := '.';
            Res_Len := Res_Len + 1;
            Result (Res_Len) := '0';
            Res_Len := Res_Len + 1;
            Result (Res_Len) := 'E';
            Dot_Outputed := True;
         else
            Res_Len := Res_Len + 1;
            Result (Res_Len) := UI_Image_Buffer (I);
         end if;
      end loop;
      if not Dot_Outputed then
         Res_Len := Res_Len + 1;
         Result (Res_Len) := '.';
         Res_Len := Res_Len + 1;
         Result (Res_Len) := '0';
      end if;
      Dot_Outputed := False;

      Res_Len := Res_Len + 1;
      Result (Res_Len) := '/';

      UI_Image (Den, Decimal);
      for I in 1 .. UI_Image_Length loop
         if UI_Image_Buffer (I) = 'E' then
            Res_Len := Res_Len + 1;
            Result (Res_Len) := '.';
            Res_Len := Res_Len + 1;
            Result (Res_Len) := '0';
            Res_Len := Res_Len + 1;
            Result (Res_Len) := 'E';
            Dot_Outputed := True;
         else
            Res_Len := Res_Len + 1;
            Result (Res_Len) := UI_Image_Buffer (I);
         end if;
      end loop;
      if not Dot_Outputed then
         Res_Len := Res_Len + 1;
         Result (Res_Len) := '.';
         Res_Len := Res_Len + 1;
         Result (Res_Len) := '0';
      end if;

      if UR_Is_Negative (Real) then
         Res_Len := Res_Len + 1;
         Result (Res_Len) := ')';
      end if;

      return Result (1 .. Res_Len);
   end Ureal_Image;

end A4G.Mapping;