This file is indexed.

/usr/lib/ocaml/batteries/batInt32.mli is in libbatteries-ocaml-dev 2.2-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
(*
 * BatInt32 - Extended 32-bit integers
 * Copyright (C) 1996 Xavier Leroy
 *               2007 Bluestorm <bluestorm dot dylc on-the-server gmail dot com>
 *               2008 David Teller
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version,
 * with the special exception on linking described in file LICENSE.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with this library; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 *)

(** 32-bit integers.

    This module provides operations on the type [int32]
    of signed 32-bit integers.  Unlike the built-in [int] type,
    the type [int32] is guaranteed to be exactly 32-bit wide on all
    platforms.  All arithmetic operations over [int32] are taken
    modulo 2{^32}.

    Any integer literal followed by [l] is taken to be an [int32].
    For instance, [1l] is {!Int32.one}.

    Performance notice: values of type [int32] occupy more memory
    space than values of type [int], and arithmetic operations on
    [int32] are generally slower than those on [int].  Use [int32]
    only when the application requires exact 32-bit arithmetic.


    This module extends Stdlib's
    {{:http://caml.inria.fr/pub/docs/manual-ocaml/libref/Int32.html}Int32}
    module, go there for documentation on the rest of the functions
    and types.

    @author Xavier Leroy (base module)
    @author Gabriel Scherer
    @author David Teller
*)
type t = int32

val zero : int32
(** The 32-bit integer 0. *)

val one : int32
(** The 32-bit integer 1. *)

val minus_one : int32
(** The 32-bit integer -1. *)

external neg : int32 -> int32 = "%int32_neg"
(** Unary negation. *)

external add : int32 -> int32 -> int32 = "%int32_add"
(** Addition. *)

external sub : int32 -> int32 -> int32 = "%int32_sub"
(** Subtraction. *)

external mul : int32 -> int32 -> int32 = "%int32_mul"
(** Multiplication. *)

external div : int32 -> int32 -> int32 = "%int32_div"
(** Integer division.
    This division rounds the real quotient of
    its arguments towards zero, as specified for {!Pervasives.(/)}.
    @raise Division_by_zero if the second argument is zero. *)

external rem : int32 -> int32 -> int32 = "%int32_mod"
(** Integer remainder.  If [y] is not zero, the result
    of [Int32.rem x y] satisfies the following property:
    [x = Int32.add (Int32.mul (Int32.div x y) y) (Int32.rem x y)].
    @raise Division_by_zero if the second argument is zero. *)


val modulo : int32 -> int32 -> int32
val pow  : int32 -> int32 -> int32
val min_num : int32
val max_num : int32

val succ : int32 -> int32
(** Successor.  [Int32.succ x] is [Int32.add x Int32.one]. *)

val pred : int32 -> int32
(** Predecessor.  [Int32.pred x] is [Int32.sub x Int32.one]. *)

val abs : int32 -> int32
(** Return the absolute value of its argument. *)

val max_int : int32
(** The greatest representable 32-bit integer, 2{^31} - 1. *)

val min_int : int32
(** The smallest representable 32-bit integer, -2{^31}. *)


external logand : int32 -> int32 -> int32 = "%int32_and"
(** Bitwise logical and. *)

external logor : int32 -> int32 -> int32 = "%int32_or"
(** Bitwise logical or. *)

external logxor : int32 -> int32 -> int32 = "%int32_xor"
(** Bitwise logical exclusive or. *)

val lognot : int32 -> int32
(** Bitwise logical negation *)

external shift_left : int32 -> int -> int32 = "%int32_lsl"
(** [Int32.shift_left x y] shifts [x] to the left by [y] bits.
    The result is unspecified if [y < 0] or [y >= 32]. *)

external shift_right : int32 -> int -> int32 = "%int32_asr"
(** [Int32.shift_right x y] shifts [x] to the right by [y] bits.
    This is an arithmetic shift: the sign bit of [x] is replicated
    and inserted in the vacated bits.
    The result is unspecified if [y < 0] or [y >= 32]. *)

external shift_right_logical : int32 -> int -> int32 = "%int32_lsr"
(** [Int32.shift_right_logical x y] shifts [x] to the right by [y] bits.
    This is a logical shift: zeroes are inserted in the vacated bits
    regardless of the sign of [x].
    The result is unspecified if [y < 0] or [y >= 32]. *)

val ( -- ) : t -> t -> t BatEnum.t
(** Enumerate an interval.

    [5l -- 10l] is the enumeration 5l,6l,7l,8l,9l,10l.
    [10l -- 5l] is the empty enumeration*)

val ( --- ) : t -> t -> t BatEnum.t
(** Enumerate an interval.

    [5l -- 10l] is the enumeration 5l,6l,7l,8l,9l,10l.
    [10l -- 5l] is the enumeration 10l,9l,8l,7l,6l,5l.*)

external of_int : int -> int32 = "%int32_of_int"
(** Convert the given integer (type [int]) to a 32-bit integer
    (type [int32]). *)

external to_int : int32 -> int = "%int32_to_int"
(** Convert the given 32-bit integer (type [int32]) to an
    integer (type [int]).  On 32-bit platforms, the 32-bit integer
    is taken modulo 2{^31}, i.e. the high-order bit is lost
    during the conversion.  On 64-bit platforms, the conversion
    is exact. *)

external of_float : float -> int32 = "caml_int32_of_float"
(** Convert the given floating-point number to a 32-bit integer,
    discarding the fractional part (truncate towards 0).
    The result of the conversion is undefined if, after truncation,
    the number is outside the range \[{!Int32.min_int}, {!Int32.max_int}\]. *)

external to_float : int32 -> float = "caml_int32_to_float"
(** Convert the given 32-bit integer to a floating-point number. *)

external of_int64 : int64 -> int32 = "%int64_to_int32"
(** Convert the given 64-bit integer (type [int64]) to a
    32-bit integer (type [int32]). The 64-bit integer
    is taken modulo 2{^32}, i.e. the top 32 bits are lost
    during the conversion.  *)

external to_int64 : int32 -> int64 = "%int64_of_int32"
(** Convert the given 32-bit integer (type [int32])
    to a 64-bit integer (type [int64]). *)

external of_nativeint : nativeint -> int32 = "%int32_of_nativeint"
(** Convert the given native integer (type [nativeint])
    to a 32-bit integer (type [int32]). On 64-bits platform
    the top 32 bits are lost. *)

external to_nativeint : int32 -> nativeint = "%int32_to_nativeint"
(** Convert the given 32-bit integer (type [int32]) to a
    native integer. *)

external of_string : string -> int32 = "caml_int32_of_string"
(** Convert the given string to a 32-bit integer.
    The string is read in decimal (by default) or in hexadecimal,
    octal or binary if the string begins with [0x], [0o] or [0b]
    respectively.
    @raise Failure if the given string is not
    a valid representation of an integer, or if the integer represented
    exceeds the range of integers representable in type [int32]. *)

val to_string : int32 -> string
(** Return the string representation of its argument, in signed decimal. *)

external bits_of_float : float -> int32 = "caml_int32_bits_of_float"
(** Return the internal representation of the given float according
    to the IEEE 754 floating-point ``single format'' bit layout.
    Bit 31 of the result represents the sign of the float;
    bits 30 to 23 represent the (biased) exponent; bits 22 to 0
    represent the mantissa. *)

external float_of_bits : int32 -> float = "caml_int32_float_of_bits"
(** Return the floating-point number whose internal representation,
    according to the IEEE 754 floating-point ``single format'' bit layout,
    is the given [int32]. *)

val of_byte : char -> int32
val to_byte : int32 -> char

val pack : string -> int -> int32 -> unit
(** [pack str off i] writes the little endian bit representation
    of [i] into string [str] at offset [off] *)

val pack_big : string -> int -> int32 -> unit
(** [pack_big str off i] writes the big endian bit
    representation of [i] into string [str] at offset [off] *)

val unpack : string -> int -> int32
(** [unpack str off] reads 4 bytes from string [str] starting at
    offset [off] as a little-endian int32 *)

val unpack_big : string -> int -> int32
(** [unpack str off] reads 4 bytes from string [str] starting at
    offset [off] as a big-endian int32 *)

val compare : t -> t -> int
(** The comparison function for 32-bit integers, with the same specification as
    {!Pervasives.compare}.  Along with the type [t], this function [compare]
    allows the module [Int32] to be passed as argument to the functors
    {!Set.Make} and {!Map.Make}. *)

val equal : t -> t -> bool
(** Equality function for 32-bit integers, useful for {!HashedType}. *)

val ord : t -> t -> BatOrd.order

(**/**)

(** {6 Deprecated functions} *)

external format : string -> int32 -> string = "caml_int32_format"
(** [Int32.format fmt n] return the string representation of the
    32-bit integer [n] in the format specified by [fmt].
    [fmt] is a [Printf]-style format consisting of exactly
    one [%d], [%i], [%u], [%x], [%X] or [%o] conversion specification.
    This function is deprecated; use {!Printf.sprintf} with a [%lx] format
    instead. *)

(**/**)

val ( + ) : t -> t -> t
val ( - ) : t -> t -> t
val ( * ) : t -> t -> t
val ( / ) : t -> t -> t
val ( ** ) : t -> t -> t
(* Available only in `Compare` submodule, as they override the polymorphic compare
   val ( <> ) : t -> t -> bool
   val ( >= ) : t -> t -> bool
   val ( <= ) : t -> t -> bool
   val ( > ) : t -> t -> bool
   val ( < ) : t -> t -> bool
   val ( = ) : t -> t -> bool
*)
val operations : t BatNumber.numeric

(** {6 Submodules grouping all infix operators} *)

module Infix : BatNumber.Infix with type bat__infix_t = t
module Compare : BatNumber.Compare with type bat__compare_t = t


(** {6 Boilerplate code}*)

(** {7 Printing}*)

val print: 'a BatInnerIO.output -> t -> unit
(** prints as decimal string *)

val print_hex: 'a BatInnerIO.output -> t -> unit
  (** prints as hex string *)