This file is indexed.

/usr/include/CGAL/Circular_kernel_converter.h is in libcgal-dev 4.5-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
// Copyright (c) 2003-2008  INRIA Sophia-Antipolis (France).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org).
// You can redistribute it and/or modify it under the terms of the GNU
// General Public License as published by the Free Software Foundation,
// either version 3 of the License, or (at your option) any later version.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL$
// $Id$
//
// Author(s)     : Monique Teillaud, Sylvain Pion, Pedro Machado

// Partially supported by the IST Programme of the EU as a Shared-cost
// RTD (FET Open) Project under Contract No  IST-2000-26473 
// (ECG - Effective Computational Geometry for Curves and Surfaces) 
// and a STREP (FET Open) Project under Contract No  IST-006413 
// (ACS -- Algorithms for Complex Shapes)

#ifndef CGAL_CCIRCULAR_KERNEL_CONVERTER_H
#define CGAL_CCIRCULAR_KERNEL_CONVERTER_H 

#include <CGAL/Cartesian_converter.h>
#include <CGAL/Algebraic_kernel_converter.h>

// TODO :
// - we should have a better default than Cartesian_converter.

namespace CGAL {

template < class C1, class C2,
  class LK_converter = Cartesian_converter<C1, C2>,
  //typename C1::Linear_kernel, typename C2::Linear_kernel>,
  class AK_converter = Algebraic_kernel_converter<typename C1::Algebraic_kernel,
                                                  typename C2::Algebraic_kernel > >
class Circular_kernel_converter
  : public LK_converter
{
public:

	typedef C1                       		      Source_kernel;
	typedef C2                          		      Target_kernel;
//	typedef typename C1::Linear_kernel  		      L1;
//	typedef typename C2::Linear_kernel  		      L2;
	typedef LK_converter                		      Linear_kernel_converter;
	typedef AK_converter                		      Algebraic_kernel_converter;
	typedef typename Linear_kernel_converter::Number_type_converter       RT_type_converter;
	typedef typename Algebraic_kernel_converter::Root_of_type_converter   Root_of_type_converter;




#ifdef _MSC_VER
   bool operator()(bool b) const { return Linear_kernel_converter::operator()(b); }

    Bounded_side operator()(Bounded_side bs) const {
      return Linear_kernel_converter::operator()(bs);
    }

    Comparison_result operator()(Comparison_result cr) const {
      return Linear_kernel_converter::operator()(cr);
    }

    Angle operator()(Angle a) const { return Base::operator()(a); }

    Origin
    operator()(const Origin& o) const
    {
        return o;
    }

    Null_vector
    operator()(const Null_vector& n) const
    {
        return n;
    }

    Bbox_2
    operator()(const Bbox_2& b) const
    {
        return b;
    }

    Bbox_3
    operator()(const Bbox_3& b) const
    {
        return b;
    }

    typename C2::FT
    operator()(const typename C1::FT &a) const
    {
      return Linear_kernel_converter::operator()(a);
    }

    typename C2::Point_2
    operator()(const typename C1::Point_2 &a) const
    {
      return Linear_kernel_converter::operator()(a);
    }

    typename C2::Vector_2
    operator()(const typename C1::Vector_2 &a) const
    {
      return Linear_kernel_converter::operator()(a);
    }

    typename C2::Direction_2
    operator()(const typename C1::Direction_2 &a) const
    {
      return Linear_kernel_converter::operator()(a);
    }

    typename C2::Segment_2
    operator()(const typename C1::Segment_2 &a) const
    {
      return Linear_kernel_converter::operator()(a);
    }

    typename C2::Line_2
    operator()(const typename C1::Line_2 &a) const
    {
      return Linear_kernel_converter::operator()(a);
    }

    typename C2::Ray_2
    operator()(const typename C1::Ray_2 &a) const
    {
      return Linear_kernel_converter::operator()(a);
    }

    typename C2::Circle_2
    operator()(const typename C1::Circle_2 &a) const
    {
      return Linear_kernel_converter::operator()(a);
    }
#else
        using LK_converter::operator();
#endif


	typename C2::Circular_arc_point_2
	operator()(const typename C1::Circular_arc_point_2 &a) const
	{
		return typename C2::Circular_arc_point_2( typename C2::Circular_arc_point_2::Root_for_circles_2_2(
							     Root_of_type_converter()( a.x() ),
							     Root_of_type_converter()( a.y() )
	   	  )
	   );
	}


	typename C2::Circular_arc_2
	operator()(const typename C1::Circular_arc_2 &a) const
	{
		return typename C2::Circular_arc_2(operator()(a.supporting_circle()),
		                     	           operator()(a.source()),
		                     	           operator()(a.target()));	     
	}


	typename C2::Line_arc_2
	operator()(const typename C1::Line_arc_2 &a) const
	{
		return typename C2::Line_arc_2 (     operator()( a.supporting_line() ),
		                     		     operator()( a.source() ),
		                     		     operator()( a.target() ) );
	}
	

	  typename C2::Object_2
    operator()(const typename C1::Object_2 &obj) const
    {

      if (const typename C1::Circular_arc_2 * ptr = object_cast<typename C1::Circular_arc_2>(&obj)) {
        return make_object(operator()(*ptr));
      } else if (const typename C1::Circular_arc_point_2 * ptr = 
                 object_cast<typename C1::Circular_arc_point_2>(&obj)) {
        return make_object(operator()(*ptr));
      } else if (const std::pair<typename C1::Circular_arc_point_2,unsigned int> * ptr = 
                 object_cast<std::pair<typename C1::Circular_arc_point_2,unsigned int> >(&obj)) {
        return make_object(std::make_pair(operator()(ptr->first),ptr->second));
      } else if (const typename C1::Line_arc_2 * ptr = 
                 object_cast<typename C1::Line_arc_2>(&obj)) {
        return make_object(operator()(*ptr));
      }
      CGAL_error_msg("CircularK_converter is unable to determine what is wrapped in the Object");
      return Object();
	
    }
	

	
  std::vector<typename C2::Object_2>
  operator()(const std::vector<typename C1::Object_2>& v) const
  {
    std::vector<typename C2::Object_2> res;
    res.reserve(v.size());
    for(unsigned int i = 0; i < v.size(); i++){
      res.push_back(operator()(v[i]));
    }
    return res;
  }
	

        
  std::pair<typename C2::Line_arc_2,typename C2::Line_arc_2>
  operator()(const std::pair<typename C1::Line_arc_2,typename C1::Line_arc_2> &a) const
  {
    return std::make_pair (operator()( a.first ),
		           operator()( a.second ));
  }

  std::pair<typename C2::Circular_arc_2,typename C2::Circular_arc_2>
  operator()(const std::pair<typename C1::Circular_arc_2,typename C1::Circular_arc_2> &a) const
  {
    return std::make_pair (operator()( a.first ),
		           operator()( a.second ));
  }


}; 

} //namespace CGAL

#endif // CGAL_CCIRCULAR_KERNEL_CONVERTER_H