This file is indexed.

/usr/include/CGAL/Compact_container.h is in libcgal-dev 4.5-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
// Copyright (c) 2003,2004,2007-2010  INRIA Sophia-Antipolis (France).
// Copyright (c) 2014  GeometryFactory Sarl (France)
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org); you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; either version 3 of the License,
// or (at your option) any later version.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL$
// $Id$
//
// Author(s)     : Sylvain Pion

#ifndef CGAL_COMPACT_CONTAINER_H
#define CGAL_COMPACT_CONTAINER_H

#include <CGAL/basic.h>
#include <CGAL/Default.h>

#include <iterator>
#include <algorithm>
#include <vector>
#include <cstring>

#include <CGAL/memory.h>
#include <CGAL/iterator.h>
#include <CGAL/CC_safe_handle.h>
#include <CGAL/Time_stamper.h>

#include <boost/mpl/if.hpp>

// An STL like container with the following properties :
// - to achieve compactness, it requires access to a pointer stored in T,
//   specified by a traits.  This pointer is supposed to be 4 bytes aligned
//   when the object is alive, otherwise, the container uses the 2 least
//   significant bits to store information in the pointer.
// - Ts are allocated in arrays of increasing size, which are linked together
//   by their first and last element.
// - the iterator looks at the famous 2 bits to know if it has to deal with
//   a free/used/boundary element.

// TODO :
// - Add .resize() (and proper copy of capacity_).
// - Add preconditions in input that real pointers need to have clean bits.
//   Also for the allocated memory alignment, and sizeof().
// - Do a benchmark before/after.
// - Check the end result with Valgrind.
// - The bit squatting mechanism will be reused for the conflict flag, maybe
//   it could be put out of the class.

// TODO low priority :
// - rebind<> the allocator
// - Exception safety guarantees
// - Thread safety guarantees
// - std requirements on iterators says all defined operations are constant
//   time amortized (it's not true here, maybe it could be with some work...)
// - all this is expected especially when there are not so many free objects
//   compared to the allocated elements.
// - Should block_size be selectable/hintable by .reserve() ?
// - would be nice to have a temporary_free_list (still active elements, but
//   which are going to be freed soon).  Probably it prevents compactness.
// - eventually something to copy this data structure, providing a way to
//   update the pointers (give access to a hash_map, at least a function that
//   converts an old pointer to the new one ?).  Actually it doesn't have to
//   be stuck to a particular DS, because for a list it's useful too...
// - Currently, end() can be invalidated on insert() if a new block is added.
//   It would be nice to fix this.  We could insert the new block at the
//   beginning instead ?  That would drop the property that iterator order
//   is preserved.  Maybe it's not a problem if end() is not preserved, after
//   all nothing is going to dereference it, it's just for comparing with
//   end() that it can be a problem.
//   Another way would be to have end() point to the end of an always
//   empty block (containing no usable element), and insert new blocks just
//   before this one.
//   Instead of having the blocks linked between them, the start/end pointers
//   could point back to the container, so that we can do more interesting
//   things (e.g. freeing empty blocks automatically) ?

namespace CGAL {

#define CGAL_GENERATE_MEMBER_DETECTOR(X)                                             \
template<typename T> class has_##X {                                          \
    struct Fallback { int X; };                                               \
    struct Derived : T, Fallback { };                                         \
                                                                              \
    template<typename U, U> struct Check;                                     \
                                                                              \
    typedef char ArrayOfOne[1];                                               \
    typedef char ArrayOfTwo[2];                                               \
                                                                              \
    template<typename U> static ArrayOfOne & func(                            \
                                            Check<int Fallback::*, &U::X> *); \
    template<typename U> static ArrayOfTwo & func(...);                       \
  public:                                                                     \
    typedef has_##X type;                                                     \
    enum { value = sizeof(func<Derived>(0)) == 2 };                           \
} // semicolon is after the macro call

#define CGAL_INIT_COMPACT_CONTAINER_BLOCK_SIZE 14
#define CGAL_INCREMENT_COMPACT_CONTAINER_BLOCK_SIZE 16

template<unsigned int first_block_size_, unsigned int block_size_increment>
struct Addition_size_policy
{
  static const unsigned int first_block_size = first_block_size_;

  template<typename Compact_container>
  static void increase_size(Compact_container& cc)
  { cc.block_size += block_size_increment; }

  template<typename Compact_container>
  static void get_index_and_block(typename Compact_container::size_type i,
                                  typename Compact_container::size_type& index,
                                  typename Compact_container::size_type& block)
  {
    typedef typename Compact_container::size_type ST;
    const ST TWO_M_N = 2*first_block_size_ - block_size_increment;
    ST delta = TWO_M_N*TWO_M_N + 8*block_size_increment*i;
    block= (static_cast<ST>(std::sqrt(static_cast<double>(delta))) - TWO_M_N)
      / (2*block_size_increment);

    if ( block==0 )
    { index = i + 1; }
    else
    {
      const typename Compact_container::size_type first_element_in_block =
        block*(first_block_size_+ (block_size_increment*(block - 1))/2);

      index=i - first_element_in_block + 1;
    }
  }
};

template<unsigned int k>
struct Constant_size_policy
{
  static const unsigned int first_block_size = k;

  template<typename Compact_container>
  static void increase_size(Compact_container& /*cc*/)
  {}

  template<typename Compact_container>
  static void get_index_and_block(typename Compact_container::size_type i,
                                  typename Compact_container::size_type& index,
                                  typename Compact_container::size_type& block)
  {
    block=i/k;
    index=(i%k)+1;
  }
};

// The following base class can be used to easily add a squattable pointer
// to a class (maybe you loose a bit of compactness though).
// TODO : Shouldn't adding these bits be done automatically and transparently,
//        based on the traits class info ?
class Compact_container_base
{
  void * p;
public:
  Compact_container_base()
  : p(NULL) {}
  void *   for_compact_container() const { return p; }
  void * & for_compact_container()       { return p; }
};

// The traits class describes the way to access the pointer.
// It can be specialized.
template < class T >
struct Compact_container_traits {
  static void *   pointer(const T &t) { return t.for_compact_container(); }
  static void * & pointer(T &t)       { return t.for_compact_container(); }
};

namespace internal {
  template < class DSC, bool Const >
  class CC_iterator;

  CGAL_GENERATE_MEMBER_DETECTOR(increment_erase_counter);

  // A basic "no erase counter" strategy
  template <bool Has_erase_counter_tag>
  class Erase_counter_strategy {
  public:
    // Do nothing
    template <typename Element>
    static unsigned int erase_counter(const Element &) { return 0; }
    template <typename Element>
    static void set_erase_counter(Element &, unsigned int) {}
    template <typename Element>
    static void increment_erase_counter(Element &) {}
  };


  // A strategy managing an internal counter
  template <>
  class Erase_counter_strategy<true>
  {
  public:
    template <typename Element>
    static unsigned int erase_counter(const Element &e)
    {
      return e.erase_counter();
    }

    template <typename Element>
    static void set_erase_counter(Element &e, unsigned int c)
    {
      e.set_erase_counter(c);
    }

    template <typename Element>
    static void increment_erase_counter(Element &e)
    {
      e.increment_erase_counter();
    }
  };
}

template < class T,
           class Allocator_ = Default,
           class Increment_policy_ = Default,
           class TimeStamper_ = Default >
class Compact_container
{
  typedef Allocator_                                Al;
  typedef typename Default::Get< Al, CGAL_ALLOCATOR(T) >::type Allocator;
  typedef Increment_policy_                         Ip;
  typedef typename Default::Get< Ip, 
            Addition_size_policy<CGAL_INIT_COMPACT_CONTAINER_BLOCK_SIZE,
                             CGAL_INCREMENT_COMPACT_CONTAINER_BLOCK_SIZE> 
          >::type                                   Increment_policy;
  typedef TimeStamper_                              Ts;
  typedef Compact_container <T, Al, Ip, Ts>         Self;
  typedef Compact_container_traits <T>              Traits;
public:
  typedef typename Default::Get< TimeStamper_,
                                 CGAL::Time_stamper_impl<T> >::type
                                                    Time_stamper_impl;

  typedef T                                         value_type;
  typedef Allocator                                 allocator_type;
  typedef typename Allocator::reference             reference;
  typedef typename Allocator::const_reference       const_reference;
  typedef typename Allocator::pointer               pointer;
  typedef typename Allocator::const_pointer         const_pointer;
  typedef typename Allocator::size_type             size_type;
  typedef typename Allocator::difference_type       difference_type;
  typedef internal::CC_iterator<Self, false> iterator;
  typedef internal::CC_iterator<Self, true>  const_iterator;
  typedef std::reverse_iterator<iterator>           reverse_iterator;
  typedef std::reverse_iterator<const_iterator>     const_reverse_iterator;

  friend class internal::CC_iterator<Self, false>;
  friend class internal::CC_iterator<Self, true>;

  template<unsigned int first_block_size_, unsigned int block_size_increment>
    friend struct Addition_size_policy;
  template<unsigned int k> friend struct Constant_size_policy;

  explicit Compact_container(const Allocator &a = Allocator())
  : alloc(a)
  , time_stamper(new Time_stamper_impl())
  {
    init ();
  }

  template < class InputIterator >
  Compact_container(InputIterator first, InputIterator last,
                    const Allocator & a = Allocator())
  : alloc(a)
  , time_stamper(new Time_stamper_impl())
  {
    init();
    std::copy(first, last, CGAL::inserter(*this));
  }

  // The copy constructor and assignment operator preserve the iterator order
  Compact_container(const Compact_container &c)
  : alloc(c.get_allocator())
  , time_stamper(new Time_stamper_impl())
  {
    init();
    block_size = c.block_size;
    *time_stamper = *c.time_stamper;
    std::copy(c.begin(), c.end(), CGAL::inserter(*this));
  }

  Compact_container & operator=(const Compact_container &c)
  {
    if (&c != this) {
      Self tmp(c);
      swap(tmp);
    }
    return *this;
  }

  ~Compact_container()
  {
    clear();
    delete time_stamper;
  }

  bool is_used(size_type i) const
  {
    typename Self::size_type block_number, index_in_block;
    Increment_policy::template get_index_and_block<Self>(i,
                                                         index_in_block,
                                                         block_number);
    return (type(&all_items[block_number].first[index_in_block])
                 == USED);
  }

  const T& operator[] (size_type i) const
  {
    CGAL_assertion( is_used(i) );

    typename Self::size_type block_number, index_in_block;
    Increment_policy::template get_index_and_block<Self>(i,
                                                         index_in_block,
                                                         block_number);
    return all_items[block_number].first[index_in_block];
  }

  T& operator[] (size_type i)
  {
    CGAL_assertion( is_used(i) );

    typename Self::size_type block_number, index_in_block;
    Increment_policy::template get_index_and_block<Self>(i,
                                                         index_in_block,
                                                         block_number);
    return all_items[block_number].first[index_in_block];
  }

  void swap(Self &c)
  {
    std::swap(alloc, c.alloc);
    std::swap(capacity_, c.capacity_);
    std::swap(size_, c.size_);
    std::swap(block_size, c.block_size);
    std::swap(first_item, c.first_item);
    std::swap(last_item, c.last_item);
    std::swap(free_list, c.free_list);
    all_items.swap(c.all_items);
    std::swap(time_stamper, c.time_stamper);
  }

  iterator begin() { return iterator(first_item, 0, 0); }
  iterator end()   { return iterator(last_item, 0); }

  const_iterator begin() const { return const_iterator(first_item, 0, 0); }
  const_iterator end()   const { return const_iterator(last_item, 0); }

  reverse_iterator rbegin() { return reverse_iterator(end()); }
  reverse_iterator rend()   { return reverse_iterator(begin()); }

  const_reverse_iterator
  rbegin() const { return const_reverse_iterator(end()); }
  const_reverse_iterator
  rend()   const { return const_reverse_iterator(begin()); }

  // Boost.Intrusive interface
  iterator iterator_to(reference value) const {
    return iterator(&value, 0);
  }
  const_iterator iterator_to(const_reference value) const {
    return const_iterator(&value, 0);
  }
  static iterator s_iterator_to(reference value) {
    return iterator(&value, 0);
  }
  static const_iterator s_iterator_to(const_reference value) {
    return const_iterator(&value, 0);
  }

  // Special insert methods that construct the objects in place
  // (just forward the arguments to the constructor, to optimize a copy).
#ifndef CGAL_CFG_NO_CPP0X_VARIADIC_TEMPLATES
  template < typename... Args >
  iterator
  emplace(const Args&... args)
  {
    if (free_list == NULL)
      allocate_new_block();

    pointer ret = free_list;
    free_list = clean_pointee(ret);
    new (ret) value_type(args...);
    CGAL_assertion(type(ret) == USED);
    ++size_;
    time_stamper->set_time_stamp(ret);
    return iterator(ret, 0);
  }
#else
  // inserts a default constructed item.
  iterator emplace()
  {
    if (free_list == NULL)
      allocate_new_block();

    pointer ret = free_list;
    free_list = clean_pointee(ret);
    new (ret) value_type();
    CGAL_assertion(type(ret) == USED);
    ++size_;
    time_stamper->set_time_stamp(ret);
    return iterator(ret, 0);
  }

  template < typename T1 >
  iterator
  emplace(const T1 &t1)
  {
    if (free_list == NULL)
      allocate_new_block();

    pointer ret = free_list;
    free_list = clean_pointee(ret);
    new (ret) value_type(t1);
    CGAL_assertion(type(ret) == USED);
    ++size_;
    time_stamper->set_time_stamp(ret);
    return iterator(ret, 0);
  }

  template < typename T1, typename T2 >
  iterator
  emplace(const T1 &t1, const T2 &t2)
  {
    if (free_list == NULL)
      allocate_new_block();

    pointer ret = free_list;
    free_list = clean_pointee(ret);
    new (ret) value_type(t1, t2);
    CGAL_assertion(type(ret) == USED);
    ++size_;
    time_stamper->set_time_stamp(ret);
    return iterator(ret, 0);
  }

  template < typename T1, typename T2, typename T3 >
  iterator
  emplace(const T1 &t1, const T2 &t2, const T3 &t3)
  {
    if (free_list == NULL)
      allocate_new_block();

    pointer ret = free_list;
    free_list = clean_pointee(ret);
    new (ret) value_type(t1, t2, t3);
    CGAL_assertion(type(ret) == USED);
    ++size_;
    time_stamper->set_time_stamp(ret);
    return iterator(ret, 0);
  }

  template < typename T1, typename T2, typename T3, typename T4 >
  iterator
  emplace(const T1 &t1, const T2 &t2, const T3 &t3, const T4 &t4)
  {
    if (free_list == NULL)
      allocate_new_block();

    pointer ret = free_list;
    free_list = clean_pointee(ret);
    new (ret) value_type(t1, t2, t3, t4);
    CGAL_assertion(type(ret) == USED);
    ++size_;
    time_stamper->set_time_stamp(ret);
    return iterator(ret, 0);
  }

  template < typename T1, typename T2, typename T3, typename T4, typename T5 >
  iterator
  emplace(const T1 &t1, const T2 &t2, const T3 &t3, const T4 &t4,
          const T5 &t5)
  {
    if (free_list == NULL)
      allocate_new_block();

    pointer ret = free_list;
    free_list = clean_pointee(ret);
    new (ret) value_type(t1, t2, t3, t4, t5);
    CGAL_assertion(type(ret) == USED);
    ++size_;
    time_stamper->set_time_stamp(ret);
    return iterator(ret, 0);
  }

  template < typename T1, typename T2, typename T3, typename T4,
             typename T5, typename T6 >
  iterator
  emplace(const T1 &t1, const T2 &t2, const T3 &t3, const T4 &t4,
          const T5 &t5, const T6 &t6)
  {
    if (free_list == NULL)
      allocate_new_block();

    pointer ret = free_list;
    free_list = clean_pointee(ret);
    new (ret) value_type(t1, t2, t3, t4, t5, t6);
    CGAL_assertion(type(ret) == USED);
    ++size_;
    time_stamper->set_time_stamp(ret);
    return iterator(ret, 0);
  }

  template < typename T1, typename T2, typename T3, typename T4,
             typename T5, typename T6, typename T7 >
  iterator
  emplace(const T1 &t1, const T2 &t2, const T3 &t3, const T4 &t4,
          const T5 &t5, const T6 &t6, const T7 &t7)
  {
    if (free_list == NULL)
      allocate_new_block();

    pointer ret = free_list;
    free_list = clean_pointee(ret);
    new (ret) value_type(t1, t2, t3, t4, t5, t6, t7);
    CGAL_assertion(type(ret) == USED);
    ++size_;
    time_stamper->set_time_stamp(ret);
    return iterator(ret, 0);
  }

  template < typename T1, typename T2, typename T3, typename T4,
             typename T5, typename T6, typename T7, typename T8 >
  iterator
  emplace(const T1 &t1, const T2 &t2, const T3 &t3, const T4 &t4,
          const T5 &t5, const T6 &t6, const T7 &t7, const T8 &t8)
  {
    if (free_list == NULL)
      allocate_new_block();

    pointer ret = free_list;
    free_list = clean_pointee(ret);
    new (ret) value_type(t1, t2, t3, t4, t5, t6, t7, t8);
    CGAL_assertion(type(ret) == USED);
    ++size_;
    time_stamper->set_time_stamp(ret);
    return iterator(ret, 0);
  }
#endif // CGAL_CFG_NO_CPP0X_VARIADIC_TEMPLATES

  iterator insert(const T &t)
  {
    if (free_list == NULL)
      allocate_new_block();

    pointer ret = free_list;
    free_list = clean_pointee(ret);
    alloc.construct(ret, t);
    CGAL_assertion(type(ret) == USED);
    ++size_;
    time_stamper->set_time_stamp(ret);
    return iterator(ret, 0);
  }

  template < class InputIterator >
  void insert(InputIterator first, InputIterator last)
  {
    for (; first != last; ++first)
      insert(*first);
  }

  template < class InputIterator >
  void assign(InputIterator first, InputIterator last)
  {
    clear(); // erase(begin(), end()); // ?
    insert(first, last);
  }

  void erase(iterator x)
  {
    typedef internal::Erase_counter_strategy<
      internal::has_increment_erase_counter<T>::value> EraseCounterStrategy;

    CGAL_precondition(type(&*x) == USED);
    EraseCounterStrategy::increment_erase_counter(*x);
    alloc.destroy(&*x);
/*#ifndef CGAL_NO_ASSERTIONS
    std::memset(&*x, 0, sizeof(T));
#endif*/
    put_on_free_list(&*x);
    --size_;
  }

  void erase(iterator first, iterator last) {
    while (first != last)
      erase(first++);
  }

  void clear();

  // Merge the content of d into *this.  d gets cleared.
  // The complexity is O(size(free list = capacity-size)).
  void merge(Self &d);

  size_type size() const
  {
    CGAL_expensive_assertion(size_ ==
                             (size_type) std::distance(begin(), end()));
    return size_;
  }

  size_type max_size() const
  {
    return alloc.max_size();
  }

  size_type capacity() const
  {
    return capacity_;
  }

  // void resize(size_type sz, T c = T()); // TODO  makes sense ???

  bool empty() const
  {
    return size_ == 0;
  }

  allocator_type get_allocator() const
  {
    return alloc;
  }

  // Returns whether the iterator "cit" is in the range [begin(), end()].
  // Complexity : O(#blocks) = O(sqrt(capacity())).
  // This function is mostly useful for purposes of efficient debugging at
  // higher levels.
  bool owns(const_iterator cit) const
  {
    // We use the block structure to provide an efficient version :
    // we check if the address is in the range of each block,
    // and then test whether it is valid (not a free element).

    if (cit == end())
      return true;

    const_pointer c = &*cit;

    for (typename All_items::const_iterator it = all_items.begin(), itend = all_items.end();
         it != itend; ++it) {
      const_pointer p = it->first;
      size_type s = it->second;

      // Are we in the address range of this block (excluding first and last
      // elements) ?
      if (c <= p || (p+s-1) <= c)
        continue;

      CGAL_assertion_msg( (c-p)+p == c, "wrong alignment of iterator");

      return type(c) == USED;
    }
    return false;
  }

  bool owns_dereferencable(const_iterator cit) const
  {
    return cit != end() && owns(cit);
  }

  /** Reserve method to ensure that the capacity of the Compact_container be
   * greater or equal than a given value n.
   */
  void reserve(size_type n)
  {
    if ( capacity_>=n ) return;

    size_type lastblock = all_items.size();

    while ( capacity_<n )
    { // Pb because the order of free list is no more the order of
      // allocate_new_block();
      pointer new_block = alloc.allocate(block_size + 2);
      all_items.push_back(std::make_pair(new_block, block_size + 2));
      capacity_ += block_size;
      // We insert this new block at the end.
      if (last_item == NULL) // First time
      {
        first_item = new_block;
        last_item  = new_block + block_size + 1;
        set_type(first_item, NULL, START_END);
      }
      else
      {
        set_type(last_item, new_block, BLOCK_BOUNDARY);
        set_type(new_block, last_item, BLOCK_BOUNDARY);
        last_item = new_block + block_size + 1;
      }
      set_type(last_item, NULL, START_END);
      // Increase the block_size for the next time.
      Increment_policy::increase_size(*this);
    }

    // Now we put all the new elements on freelist, starting from the last block
    // inserted and mark them free in reverse order, so that the insertion order
    // will correspond to the iterator order...
    // We don't touch the first and the last one.
    size_type curblock=all_items.size();
    do
    {
      --curblock; // We are sure we have at least create a new block
      pointer new_block = all_items[curblock].first;
      for (size_type i = all_items[curblock].second-2; i >= 1; --i)
        put_on_free_list(new_block + i);
    }
    while ( curblock>lastblock );
  }

private:

  void allocate_new_block();

  void put_on_free_list(pointer x)
  {
    set_type(x, free_list, FREE);
    free_list = x;
  }

  // Definition of the bit squatting :
  // =================================
  // ptr is composed of a pointer part and the last 2 bits.
  // Here is the meaning of each of the 8 cases.
  //
  //                          value of the last 2 bits as "Type"
  // pointer part     0              1                2              3
  //         NULL     user elt       unused           free_list end  start/end
  //      != NULL     user elt       block boundary   free elt       unused
  //
  // meaning of ptr : user stuff     next/prev block  free_list      unused

  enum Type { USED = 0, BLOCK_BOUNDARY = 1, FREE = 2, START_END = 3 };

  // The bit squatting is implemented by casting pointers to (char *), then
  // subtracting to NULL, doing bit manipulations on the resulting integer,
  // and converting back.

  static char * clean_pointer(char * p)
  {
    return ((p - (char *) NULL) & ~ (std::ptrdiff_t) START_END) + (char *) NULL;
  }

  // Returns the pointee, cleaned up from the squatted bits.
  static pointer clean_pointee(const_pointer ptr)
  {
    return (pointer) clean_pointer((char *) Traits::pointer(*ptr));
  }

  // Get the type of the pointee.
  static Type type(const_pointer ptr)
  {
    char * p = (char *) Traits::pointer(*ptr);
    return (Type) (p - clean_pointer(p));
  }

  // Sets the pointer part and the type of the pointee.
  static void set_type(pointer ptr, void * p, Type t)
  {
    // This out of range compare is always true and causes lots of
    // unnecessary warnings.
    // CGAL_precondition(0 <= t && t < 4);
    Traits::pointer(*ptr) = (void *) ((clean_pointer((char *) p)) + (int) t);
  }

  // We store a vector of pointers to all allocated blocks and their sizes.
  // Knowing all pointers, we don't have to walk to the end of a block to reach
  // the pointer to the next block.
  // Knowing the sizes allows to deallocate() without having to compute the size
  // by walking through the block till its end.
  // This opens up the possibility for the compiler to optimize the clear()
  // function considerably when has_trivial_destructor<T>.
  typedef std::vector<std::pair<pointer, size_type> >  All_items;

  void init()
  {
    block_size = Increment_policy::first_block_size;
    capacity_  = 0;
    size_      = 0;
    free_list  = NULL;
    first_item = NULL;
    last_item  = NULL;
    all_items  = All_items();
    time_stamper->reset();
  }

  allocator_type   alloc;
  size_type        capacity_;
  size_type        size_;
  size_type        block_size;
  pointer          free_list;
  pointer          first_item;
  pointer          last_item;
  All_items        all_items;

  // This is a pointer, so that the definition of Compact_container does
  // not require a complete type `T`.
  Time_stamper_impl* time_stamper;
};

template < class T, class Allocator, class Increment_policy, class TimeStamper >
void Compact_container<T, Allocator, Increment_policy, TimeStamper>::merge(Self &d)
{
  CGAL_precondition(&d != this);

  // Allocators must be "compatible" :
  CGAL_precondition(get_allocator() == d.get_allocator());

  // Concatenate the free_lists.
  if (free_list == NULL) {
    free_list = d.free_list;
  } else if (d.free_list != NULL) {
    pointer p = free_list;
    while (clean_pointee(p) != NULL)
      p = clean_pointee(p);
    set_type(p, d.free_list, FREE);
  }
  // Concatenate the blocks.
  if (last_item == NULL) { // empty...
    first_item = d.first_item;
    last_item  = d.last_item;
  } else if (d.last_item != NULL) {
    set_type(last_item, d.first_item, BLOCK_BOUNDARY);
    set_type(d.first_item, last_item, BLOCK_BOUNDARY);
    last_item = d.last_item;
  }
  all_items.insert(all_items.end(), d.all_items.begin(), d.all_items.end());
  // Add the sizes.
  size_ += d.size_;
  // Add the capacities.
  capacity_ += d.capacity_;
  // It seems reasonnable to take the max of the block sizes.
  block_size = (std::max)(block_size, d.block_size);
  // Clear d.
  d.init();
}

template < class T, class Allocator, class Increment_policy, class TimeStamper >
void Compact_container<T, Allocator, Increment_policy, TimeStamper>::clear()
{
  for (typename All_items::iterator it = all_items.begin(), itend = all_items.end();
       it != itend; ++it) {
    pointer p = it->first;
    size_type s = it->second;
    for (pointer pp = p + 1; pp != p + s - 1; ++pp) {
      if (type(pp) == USED)
        alloc.destroy(pp);
    }
    alloc.deallocate(p, s);
  }
  init();
}

template < class T, class Allocator, class Increment_policy, class TimeStamper >
void Compact_container<T, Allocator, Increment_policy, TimeStamper>::allocate_new_block()
{
  typedef internal::Erase_counter_strategy<
    internal::has_increment_erase_counter<T>::value> EraseCounterStrategy;

  pointer new_block = alloc.allocate(block_size + 2);
  all_items.push_back(std::make_pair(new_block, block_size + 2));
  capacity_ += block_size;
  // We don't touch the first and the last one.
  // We mark them free in reverse order, so that the insertion order
  // will correspond to the iterator order...
  for (size_type i = block_size; i >= 1; --i)
  {
    EraseCounterStrategy::set_erase_counter(*(new_block + i), 0);
    put_on_free_list(new_block + i);
  }
  // We insert this new block at the end.
  if (last_item == NULL) // First time
  {
      first_item = new_block;
      last_item  = new_block + block_size + 1;
      set_type(first_item, NULL, START_END);
  }
  else
  {
      set_type(last_item, new_block, BLOCK_BOUNDARY);
      set_type(new_block, last_item, BLOCK_BOUNDARY);
      last_item = new_block + block_size + 1;
  }
  set_type(last_item, NULL, START_END);
  // Increase the block_size for the next time.
  Increment_policy::increase_size(*this);
}

template < class T, class Allocator, class Increment_policy, class TimeStamper >
inline
bool operator==(const Compact_container<T, Allocator, Increment_policy, TimeStamper> &lhs,
                const Compact_container<T, Allocator, Increment_policy, TimeStamper> &rhs)
{
  return lhs.size() == rhs.size() &&
    std::equal(lhs.begin(), lhs.end(), rhs.begin());
}

template < class T, class Allocator, class Increment_policy, class TimeStamper >
inline
bool operator!=(const Compact_container<T, Allocator, Increment_policy, TimeStamper> &lhs,
                const Compact_container<T, Allocator, Increment_policy, TimeStamper> &rhs)
{
  return ! (lhs == rhs);
}

template < class T, class Allocator, class Increment_policy, class TimeStamper >
inline
bool operator< (const Compact_container<T, Allocator, Increment_policy, TimeStamper> &lhs,
                const Compact_container<T, Allocator, Increment_policy, TimeStamper> &rhs)
{
  return std::lexicographical_compare(lhs.begin(), lhs.end(),
                                      rhs.begin(), rhs.end());
}

template < class T, class Allocator, class Increment_policy, class TimeStamper >
inline
bool operator> (const Compact_container<T, Allocator, Increment_policy, TimeStamper> &lhs,
                const Compact_container<T, Allocator, Increment_policy, TimeStamper> &rhs)
{
  return rhs < lhs;
}

template < class T, class Allocator, class Increment_policy, class TimeStamper >
inline
bool operator<=(const Compact_container<T, Allocator, Increment_policy, TimeStamper> &lhs,
                const Compact_container<T, Allocator, Increment_policy, TimeStamper> &rhs)
{
  return ! (lhs > rhs);
}

template < class T, class Allocator, class Increment_policy, class TimeStamper >
inline
bool operator>=(const Compact_container<T, Allocator, Increment_policy, TimeStamper> &lhs,
                const Compact_container<T, Allocator, Increment_policy, TimeStamper> &rhs)
{
  return ! (lhs < rhs);
}

namespace internal {

  template < class DSC, bool Const >
  class CC_iterator
  {
    typedef typename DSC::iterator                    iterator;
    typedef CC_iterator<DSC, Const>                   Self;
  public:
    typedef typename DSC::value_type                  value_type;
    typedef typename DSC::size_type                   size_type;
    typedef typename DSC::difference_type             difference_type;
    typedef typename boost::mpl::if_c< Const, const value_type*,
                                       value_type*>::type pointer;
    typedef typename boost::mpl::if_c< Const, const value_type&,
                                       value_type&>::type reference;
    typedef std::bidirectional_iterator_tag           iterator_category;

    // the initialization with NULL is required by our Handle concept.
    CC_iterator()
    {
      m_ptr.p = NULL;
    }

    // Either a harmless copy-ctor,
    // or a conversion from iterator to const_iterator.
    CC_iterator (const iterator &it)
    {
      m_ptr.p = &(*it);
    }

    // Same for assignment operator (otherwise MipsPro warns)
    CC_iterator & operator= (const iterator &it)
    {
      m_ptr.p = &(*it);
      return *this;
    }

    // Construction from NULL
    CC_iterator (Nullptr_t CGAL_assertion_code(n))
    {
      CGAL_assertion (n == NULL);
      m_ptr.p = NULL;
    }

  private:

    typedef typename DSC::Time_stamper_impl           Time_stamper_impl;

    union {
      pointer      p;
      void        *vp;
    } m_ptr;

    // Only Compact_container should access these constructors.
    friend class Compact_container<value_type,
                                   typename DSC::Al,
                                   typename DSC::Ip,
                                   typename DSC::Ts>;


    // For begin()
    CC_iterator(pointer ptr, int, int)
    {
      m_ptr.p = ptr;
      if (m_ptr.p == NULL) // empty container.
        return;

      ++(m_ptr.p); // if not empty, p = start
      if (DSC::type(m_ptr.p) == DSC::FREE)
        increment();
    }

    // Construction from raw pointer and for end().
    CC_iterator(pointer ptr, int)
    {
      m_ptr.p = ptr;
    }

    // NB : in case empty container, begin == end == NULL.
    void increment()
    {
      // It's either pointing to end(), or valid.
      CGAL_assertion_msg(m_ptr.p != NULL,
         "Incrementing a singular iterator or an empty container iterator ?");
      CGAL_assertion_msg(DSC::type(m_ptr.p) != DSC::START_END,
         "Incrementing end() ?");

      // If it's not end(), then it's valid, we can do ++.
      do {
        ++(m_ptr.p);
        if (DSC::type(m_ptr.p) == DSC::USED ||
            DSC::type(m_ptr.p) == DSC::START_END)
          return;

        if (DSC::type(m_ptr.p) == DSC::BLOCK_BOUNDARY)
          m_ptr.p = DSC::clean_pointee(m_ptr.p);
      } while (true);
    }

    void decrement()
    {
      // It's either pointing to end(), or valid.
      CGAL_assertion_msg(m_ptr.p != NULL,
         "Decrementing a singular iterator or an empty container iterator ?");
      CGAL_assertion_msg(DSC::type(m_ptr.p - 1) != DSC::START_END,
         "Decrementing begin() ?");

      // If it's not begin(), then it's valid, we can do --.
      do {
        --m_ptr.p;
        if (DSC::type(m_ptr.p) == DSC::USED ||
            DSC::type(m_ptr.p) == DSC::START_END)
          return;

        if (DSC::type(m_ptr.p) == DSC::BLOCK_BOUNDARY)
          m_ptr.p = DSC::clean_pointee(m_ptr.p);
      } while (true);
    }

  public:

    Self & operator++()
    {
      CGAL_assertion_msg(m_ptr.p != NULL,
         "Incrementing a singular iterator or an empty container iterator ?");
      CGAL_assertion_msg(DSC::type(m_ptr.p) == DSC::USED,
                         "Incrementing an invalid iterator.");
      increment();
      return *this;
    }

    Self & operator--()
    {
      CGAL_assertion_msg(m_ptr.p != NULL,
         "Decrementing a singular iterator or an empty container iterator ?");
      CGAL_assertion_msg(DSC::type(m_ptr.p) == DSC::USED
                      || DSC::type(m_ptr.p) == DSC::START_END,
                         "Decrementing an invalid iterator.");
      decrement();
      return *this;
    }

    Self operator++(int) { Self tmp(*this); ++(*this); return tmp; }
    Self operator--(int) { Self tmp(*this); --(*this); return tmp; }

    reference operator*() const { return *(m_ptr.p); }

    pointer   operator->() const { return (m_ptr.p); }

    // For std::less...
    bool operator<(const CC_iterator& other) const
    {
      return Time_stamper_impl::less(m_ptr.p, other.m_ptr.p);
    }

    bool operator>(const CC_iterator& other) const
    {
      return Time_stamper_impl::less(other.m_ptr.p, m_ptr.p);
    }

    bool operator<=(const CC_iterator& other) const
    {
      return Time_stamper_impl::less(m_ptr.p, other.m_ptr.p)
          || (*this == other);
    }

    bool operator>=(const CC_iterator& other) const
    {
      return Time_stamper_impl::less(other.m_ptr.p, m_ptr.p)
          || (*this == other);
    }

    // Can itself be used for bit-squatting.
    void *   for_compact_container() const { return (m_ptr.vp); }
    void * & for_compact_container()       { return (m_ptr.vp); }
  };

  template < class DSC, bool Const1, bool Const2 >
  inline
  bool operator==(const CC_iterator<DSC, Const1> &rhs,
                  const CC_iterator<DSC, Const2> &lhs)
  {
    return &*rhs == &*lhs;
  }

  template < class DSC, bool Const1, bool Const2 >
  inline
  bool operator!=(const CC_iterator<DSC, Const1> &rhs,
                  const CC_iterator<DSC, Const2> &lhs)
  {
    return &*rhs != &*lhs;
  }

  // Comparisons with NULL are part of CGAL's Handle concept...
  template < class DSC, bool Const >
  inline
  bool operator==(const CC_iterator<DSC, Const> &rhs,
                  Nullptr_t CGAL_assertion_code(n))
  {
    CGAL_assertion( n == NULL);
    return &*rhs == NULL;
  }

  template < class DSC, bool Const >
  inline
  bool operator!=(const CC_iterator<DSC, Const> &rhs,
                  Nullptr_t CGAL_assertion_code(n))
  {
    CGAL_assertion( n == NULL);
    return &*rhs != NULL;
  }

} // namespace internal

} //namespace CGAL

#endif // CGAL_COMPACT_CONTAINER_H