/usr/include/CGAL/Constrained_triangulation_2.h is in libcgal-dev 4.5-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 | // Copyright (c) 1997 INRIA Sophia-Antipolis (France).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org).
// You can redistribute it and/or modify it under the terms of the GNU
// General Public License as published by the Free Software Foundation,
// either version 3 of the License, or (at your option) any later version.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL$
// $Id$
//
//
// Author(s) : Mariette Yvinec, Jean-Daniel Boissonnat
#ifndef CGAL_CONSTRAINED_TRIANGULATION_2_H
#define CGAL_CONSTRAINED_TRIANGULATION_2_H
#include <set>
#include <CGAL/triangulation_assertions.h>
#include <CGAL/Triangulation_2.h>
#include <CGAL/Constrained_triangulation_face_base_2.h>
#include <CGAL/iterator.h>
#include <CGAL/intersections.h>
#include <CGAL/squared_distance_2.h>
namespace CGAL {
struct No_intersection_tag{};
struct Exact_intersections_tag{}; // to be used with an exact number type
struct Exact_predicates_tag{}; // to be used with filtered exact number
template < class Gt,
class Tds = Triangulation_data_structure_2 <
Triangulation_vertex_base_2<Gt>,
Constrained_triangulation_face_base_2<Gt> >,
class Itag = No_intersection_tag >
class Constrained_triangulation_2 : public Triangulation_2<Gt,Tds>
{
public:
typedef Triangulation_2<Gt,Tds> Triangulation;
typedef Constrained_triangulation_2<Gt,Tds,Itag> Constrained_triangulation;
typedef typename Triangulation::Edge Edge;
typedef typename Triangulation::Vertex Vertex;
typedef typename Triangulation::Vertex_handle Vertex_handle;
typedef typename Triangulation::Face_handle Face_handle;
typedef typename Triangulation::size_type size_type;
typedef typename Triangulation::Locate_type Locate_type;
typedef typename Triangulation::All_faces_iterator All_faces_iterator;
typedef typename Triangulation::Face_circulator Face_circulator;
typedef typename Triangulation::Edge_circulator Edge_circulator;
typedef typename Triangulation::Vertex_circulator Vertex_circulator;
typedef typename Triangulation::Line_face_circulator Line_face_circulator;
#ifndef CGAL_CFG_USING_BASE_MEMBER_BUG_2
using Triangulation::number_of_vertices;
using Triangulation::cw;
using Triangulation::ccw;
using Triangulation::dimension;
using Triangulation::geom_traits;
using Triangulation::all_faces_begin;
using Triangulation::all_faces_end;
using Triangulation::side_of_oriented_circle;
using Triangulation::is_infinite;
using Triangulation::collinear_between;
using Triangulation::incident_edges;
using Triangulation::test_dim_down;
using Triangulation::make_hole;
using Triangulation::fill_hole;
using Triangulation::delete_vertex;
using Triangulation::delete_face;
using Triangulation::create_face;
using Triangulation::incident_faces;
using Triangulation::locate;
using Triangulation::includes_edge;
using Triangulation::remove_first;
using Triangulation::remove_second;
#endif
typedef Gt Geom_traits;
typedef Itag Intersection_tag;
typedef typename Geom_traits::Point_2 Point;
typedef typename Geom_traits::Segment_2 Segment;
typedef std::pair<Point,Point> Constraint;
typedef std::list<Edge> List_edges;
typedef std::list<Face_handle> List_faces;
typedef std::list<Vertex_handle> List_vertices;
typedef std::list<Constraint> List_constraints;
// Tag to mark the presence of a hierarchy of constraints
typedef Tag_false Constraint_hierarchy_tag;
class Less_edge;
typedef std::set<Edge,Less_edge> Edge_set;
Constrained_triangulation_2(const Gt& gt = Gt()) : Triangulation(gt) { }
Constrained_triangulation_2(const Constrained_triangulation_2& ct)
: Triangulation(ct) {}
Constrained_triangulation_2(std::list<Constraint>& lc, const Gt& gt=Gt())
: Triangulation_2<Gt,Tds>(gt)
{
typename List_constraints::iterator lcit=lc.begin();
for( ;lcit != lc.end(); lcit++) {
insert( (*lcit).first, (*lcit).second);
}
CGAL_triangulation_postcondition( this->is_valid() );
}
template<class InputIterator>
Constrained_triangulation_2(InputIterator it,
InputIterator last,
const Gt& gt=Gt() )
: Triangulation_2<Gt,Tds>(gt)
{
for ( ; it != last; it++) {
insert_constraint((*it).first, (*it).second);
}
CGAL_triangulation_postcondition( this->is_valid() );
}
//TODO Is that destructor correct ?
virtual ~Constrained_triangulation_2() {}
// INSERTION
Vertex_handle insert(const Point& p,
Face_handle start = Face_handle() );
Vertex_handle insert(const Point& p,
Locate_type lt,
Face_handle loc,
int li );
Vertex_handle push_back(const Point& a);
// template < class InputIterator >
// std::ptrdiff_t insert(InputIterator first, InputIterator last);
void insert_constraint(const Point& a, const Point& b);
void insert_constraint(Vertex_handle va, Vertex_handle vb);
void push_back(const Constraint& c);
void remove(Vertex_handle v);
void remove_constrained_edge(Face_handle f, int i);
void remove_incident_constraints(Vertex_handle v);
// to be used by Constrained_triangulation_plus_2
template <class OutputItFaces>
OutputItFaces
remove_constrained_edge(Face_handle f, int i, OutputItFaces out)
{
remove_constrained_edge(f, i);
return out;
}
//for backward compatibility
void remove_constraint(Face_handle f, int i) {remove_constrained_edge(f,i);}
void insert(Point a, Point b) { insert_constraint(a, b);}
void insert(Vertex_handle va, Vertex_handle vb) {insert_constraint(va,vb);}
// QUERY
bool is_constrained(Edge e) const;
bool are_there_incident_constraints(Vertex_handle v) const;
bool is_valid(bool verbose = false, int level = 0) const;
// template<class OutputItEdges>
// OutputItEdges incident_constraints(Vertex_handle v,
// OutputItEdges out) const;
class Less_edge
: public std::binary_function<Edge, Edge, bool>
{
public:
Less_edge() {}
bool operator() (const Edge& e1, const Edge& e2) const
{
int ind1=e1.second, ind2=e2.second;
return( (&(*e1.first) < &(*e2.first))
|| ( (&(*e1.first) == &(*e2.first)) && (ind1 < ind2)));
}
};
void file_output(std::ostream& os) const;
protected:
virtual Vertex_handle virtual_insert(const Point& a,
Face_handle start = Face_handle());
virtual Vertex_handle virtual_insert(const Point& a,
Locate_type lt,
Face_handle loc,
int li );
//Vertex_handle special_insert_in_edge(const Point & a, Face_handle f, int i);
void update_constraints_incident(Vertex_handle va,
Vertex_handle c1,
Vertex_handle c2);
void clear_constraints_incident(Vertex_handle va);
void update_constraints_opposite(Vertex_handle va);
void update_constraints(const List_edges &hole);
void mark_constraint(Face_handle fr, int i);
virtual Vertex_handle intersect(Face_handle f, int i,
Vertex_handle vaa,
Vertex_handle vbb);
Vertex_handle intersect(Face_handle f, int i,
Vertex_handle vaa,
Vertex_handle vbb,
No_intersection_tag);
Vertex_handle intersect(Face_handle f, int i,
Vertex_handle vaa,
Vertex_handle vbb,
Exact_intersections_tag);
Vertex_handle intersect(Face_handle f, int i,
Vertex_handle vaa,
Vertex_handle vbb,
Exact_predicates_tag);
private:
//made private to avoid using the Triangulation_2 version
Vertex_handle move(Vertex_handle v, const Point &)
{
CGAL_error_msg("Do not use that function!");
return v;
}
public:
// made public for Laurent to find out deleted faces
// when inserting a constraint with most probably
// no intersection
bool find_intersected_faces(Vertex_handle va,
Vertex_handle vb,
List_faces & intersected_faces,
List_edges & list_ab,
List_edges & list_ba,
Vertex_handle& vi);
protected:
virtual void triangulate_hole(List_faces& intersected_faces,
List_edges& conflict_boundary_ab,
List_edges& conflict_boundary_ba);
void triangulate_hole(List_faces& intersected_faces,
List_edges& conflict_boundary_ab,
List_edges& conflict_boundary_ba,
List_edges& new_edges);
void triangulate_half_hole(List_edges & list_edges,
List_edges & new_edges);
void remove_1D(Vertex_handle v);
void remove_2D(Vertex_handle v);
//templated member function
public:
// the int parameter is a work around for VC7 to compile
template < class InputIterator >
#if defined(_MSC_VER)
std::ptrdiff_t insert(InputIterator first, InputIterator last, int i = 0)
#else
std::ptrdiff_t insert(InputIterator first, InputIterator last)
#endif
{
size_type n = number_of_vertices();
std::vector<Point> points (first, last);
CGAL::spatial_sort (points.begin(), points.end(), geom_traits());
Face_handle hint;
for (typename std::vector<Point>::const_iterator p = points.begin(), end = points.end();
p != end; ++p)
hint = insert (*p, hint)->face();
return number_of_vertices() - n;
}
//deprecated
template<class OutputIterator>
bool are_there_incident_constraints(Vertex_handle v,
OutputIterator out) const
{
Edge_circulator ec=incident_edges(v), done(ec);
bool are_there = false;
if (ec == 0) return are_there;
do {
if(is_constrained(*ec)) {
*out++ = *ec;
are_there = true;
}
ec++;
} while (ec != done);
return are_there;
}
template<class OutputItEdges>
OutputItEdges incident_constraints(Vertex_handle v,
OutputItEdges out) const {
Edge_circulator ec=incident_edges(v), done(ec);
if (ec == 0) return out;
do {
if(is_constrained(*ec)) *out++ = *ec;
ec++;
} while (ec != done);
return out;
}
// the following fonctions are overloaded
// to take care of constraint marks
template<class EdgeIt>
Vertex_handle star_hole( const Point& p,
EdgeIt edge_begin,
EdgeIt edge_end) {
std::list<Face_handle> empty_list;
return star_hole(p,
edge_begin,
edge_end,
empty_list.begin(),
empty_list.end());
}
template<class EdgeIt, class FaceIt>
Vertex_handle star_hole( const Point& p,
EdgeIt edge_begin,
EdgeIt edge_end,
FaceIt face_begin,
FaceIt face_end)
{
Vertex_handle v = Triangulation::star_hole(p,
edge_begin,
edge_end,
face_begin,
face_end);
// restore constraint status for new faces.
int vindex;
Face_handle fh;
int ih;
Face_circulator fc = incident_faces(v), done(fc);
do {
vindex = fc->index(v);
fc->set_constraint(cw(vindex), false);
fc->set_constraint(ccw(vindex), false);
fh = fc->neighbor(vindex);
ih = this->mirror_index(fc,vindex);
fc->set_constraint(vindex, fh->is_constrained(ih));
} while (++fc != done);
return v;
}
};
template < class Gt, class Tds, class Itag >
inline
typename Constrained_triangulation_2<Gt,Tds,Itag>::Vertex_handle
Constrained_triangulation_2<Gt,Tds,Itag>::
virtual_insert(const Point& a, Face_handle start)
// virtual version of insert
{
return insert(a,start);
}
template < class Gt, class Tds, class Itag >
inline
typename Constrained_triangulation_2<Gt,Tds,Itag>::Vertex_handle
Constrained_triangulation_2<Gt,Tds,Itag>::
virtual_insert(const Point& a,
Locate_type lt,
Face_handle loc,
int li )
// virtual version of insert
{
return insert(a,lt,loc,li);
}
template < class Gt, class Tds, class Itag >
inline
typename Constrained_triangulation_2<Gt,Tds,Itag>::Vertex_handle
Constrained_triangulation_2<Gt,Tds,Itag>::
insert(const Point& a, Face_handle start)
// inserts point a
// in addition to what is done for non constrained triangulations
// constrained edges are updated
{
Face_handle loc;
int li;
Locate_type lt;
loc = locate(a, lt, li, start);
return Constrained_triangulation::insert(a,lt,loc,li);
}
template < class Gt, class Tds, class Itag >
typename Constrained_triangulation_2<Gt,Tds,Itag>::Vertex_handle
Constrained_triangulation_2<Gt,Tds,Itag>::
insert(const Point& a, Locate_type lt, Face_handle loc, int li)
// insert a point p, whose localisation is known (lt, f, i)
// in addition to what is done for non constrained triangulations
// constrained edges are updated
{
Vertex_handle va;
Vertex_handle v1, v2;
bool insert_in_constrained_edge = false;
if ( lt == Triangulation::EDGE && loc->is_constrained(li) ){
insert_in_constrained_edge = true;
v1=loc->vertex(ccw(li)); //endpoint of the constraint
v2=loc->vertex(cw(li)); // endpoint of the constraint
}
va = Triangulation::insert(a,lt,loc,li);
if (insert_in_constrained_edge) update_constraints_incident(va, v1,v2);
else if(lt != Triangulation::VERTEX) clear_constraints_incident(va);
if (dimension() == 2) update_constraints_opposite(va);
return va;
}
// template < class Gt, class Tds, class Itag >
// typename Constrained_triangulation_2<Gt,Tds,Itag>::Vertex_handle
// Constrained_triangulation_2<Gt, Tds, Itag>::
// special_insert_in_edge(const Point & a, Face_handle f, int i)
// // insert point p in edge(f,i)
// // bypass the precondition for point a to be in edge(f,i)
// // update constrained status
// {
// Vertex_handle va;
// Vertex_handle c1,c2;
// c1 = f->vertex(cw(i)); //endpoint of edge
// c2 = f->vertex(ccw(i)); //endpoint of edge
// bool insert_in_constrained_edge = f->is_constrained(i);
// va = this->_tds.insert_in_edge(f, i);
// va->set_point(a);
// if (insert_in_constrained_edge) update_constraints_incident(va, c1,c2);
// else clear_constraints_incident(va);
// if (dimension() == 2) update_constraints_opposite(va);
// return va;
// }
template < class Gt, class Tds, class Itag >
inline void
Constrained_triangulation_2<Gt,Tds,Itag>::
insert_constraint(const Point& a, const Point& b)
// the algorithm first inserts a and b,
// and then forces the constraint [va,vb]
{
Vertex_handle va= virtual_insert(a);
Vertex_handle vb= virtual_insert(b);
if ( va != vb) insert_constraint(va,vb);
}
template <class Gt, class Tds, class Itag >
inline void
Constrained_triangulation_2<Gt,Tds,Itag>::
insert_constraint(Vertex_handle vaa, Vertex_handle vbb)
// forces the constrained [va,vb]
// [va,vb] will eventually be splitted into several edges
// if a vertex vc of t lies on segment ab
// of if ab intersect some constrained edges
{
CGAL_triangulation_precondition( vaa != vbb);
Vertex_handle vi;
Face_handle fr;
int i;
if(includes_edge(vaa,vbb,vi,fr,i)) {
mark_constraint(fr,i);
if (vi != vbb) {
insert_constraint(vi,vbb);
}
return;
}
List_faces intersected_faces;
List_edges conflict_boundary_ab, conflict_boundary_ba;
bool intersection = find_intersected_faces( vaa, vbb,
intersected_faces,
conflict_boundary_ab,
conflict_boundary_ba,
vi);
if ( intersection) {
if (vi != vaa && vi != vbb) {
insert_constraint(vaa,vi);
insert_constraint(vi,vbb);
}
else insert_constraint(vaa,vbb);
return;
}
//no intersection
triangulate_hole(intersected_faces,
conflict_boundary_ab,
conflict_boundary_ba);
if (vi != vbb) {
insert_constraint(vi,vbb);
}
return;
}
template <class Gt, class Tds, class Itag >
bool
Constrained_triangulation_2<Gt,Tds,Itag>::
find_intersected_faces(Vertex_handle vaa,
Vertex_handle vbb,
List_faces & intersected_faces,
List_edges & list_ab,
List_edges & list_ba,
Vertex_handle & vi)
// vi is set to the first vertex of the triangulation on [vaa,vbb].
// Return true if an intersection with a constrained edge is
// encountered, false otherwise
// When false :
// intersected_faces contains the list if faces intersected by [va,vi]
// list_ab and list_ba represents the boundary of the union
// of the intersected faces oriented cw
// list_ab consists of the edges from vaa to vi (i.e. on the left of a->b)
// list_ba " " from vi to vaa (i.e. on the right of a->b)
{
const Point& aa = vaa->point();
const Point& bb = vbb->point();
Line_face_circulator current_face=Line_face_circulator(vaa, this, bb);
int ind=current_face->index(vaa);
// to deal with the case where the first crossed edge
// is constrained
if(current_face->is_constrained(ind)) {
vi=intersect(current_face, ind, vaa, vbb);
return true;
}
Face_handle lf= current_face->neighbor(ccw(ind));
Face_handle rf= current_face->neighbor(cw(ind));
Orientation orient;
Face_handle previous_face;
Vertex_handle current_vertex;
list_ab.push_back(Edge(lf, lf->index(current_face)));
list_ba.push_front(Edge(rf, rf->index(current_face)));
intersected_faces.push_front(current_face);
// initcd
previous_face=current_face;
++current_face;
ind=current_face->index(previous_face);
current_vertex=current_face->vertex(ind);
// loop over triangles intersected by ab
bool done = false;
while (current_vertex != vbb && !done) {
orient = this->orientation(aa,bb,current_vertex->point());
int i1, i2;
switch (orient) {
case COLLINEAR :
done = true; // current_vertex is the new endpoint
break;
case LEFT_TURN :
case RIGHT_TURN :
if (orient == LEFT_TURN) {
i1 = ccw(ind) ; //index of second intersected edge of current_face
i2 = cw(ind); //index of non intersected edge of current_face
}
else {
i1 = cw(ind) ; //index of second intersected edge of current_face
i2 = ccw(ind); //index of non intersected edge of current_face
}
if(current_face->is_constrained(i1)) {
vi = intersect(current_face, i1, vaa,vbb);
return true;
}
else {
lf= current_face->neighbor(i2);
intersected_faces.push_front(current_face);
if (orient == LEFT_TURN)
list_ab.push_back(Edge(lf, lf->index(current_face)));
else // orient == RIGHT_TURN
list_ba.push_front(Edge(lf, lf->index(current_face)));
previous_face=current_face;
++current_face;
ind=current_face->index(previous_face);
current_vertex=current_face->vertex(ind);
}
break;
}
}
// last triangle
vi = current_vertex;
intersected_faces.push_front(current_face);
lf= current_face->neighbor(cw(ind));
list_ab.push_back(Edge(lf, lf->index(current_face)));
rf= current_face->neighbor(ccw(ind));
list_ba.push_front(Edge(rf, rf->index(current_face)));
return false;
}
template <class Gt, class Tds, class Itag >
typename Constrained_triangulation_2<Gt,Tds,Itag>::Vertex_handle
Constrained_triangulation_2<Gt,Tds,Itag>::
intersect(Face_handle f, int i,
Vertex_handle vaa,
Vertex_handle vbb)
{
return intersect(f, i, vaa, vbb, Itag());
}
template <class Gt, class Tds, class Itag >
typename Constrained_triangulation_2<Gt,Tds,Itag>::Vertex_handle
Constrained_triangulation_2<Gt,Tds,Itag>::
intersect(Face_handle , int ,
Vertex_handle ,
Vertex_handle ,
No_intersection_tag)
{
//SL: I added that to be able to throw while we find a better solution
#ifdef CGAL_CT2_WANTS_TO_HAVE_EXTRA_ACTION_FOR_INTERSECTING_CONSTRAINTS
CGAL_CDT2_EXTRA_ACTION_FOR_INTERSECTING_CONSTRAINTS
#endif
std::cerr << " sorry, this triangulation does not deal with"
<< std::endl
<< " intersecting constraints" << std::endl;
CGAL_triangulation_assertion(false);
return Vertex_handle() ;
}
template <class Gt, class Tds, class Itag >
typename Constrained_triangulation_2<Gt,Tds,Itag>::Vertex_handle
Constrained_triangulation_2<Gt,Tds,Itag>::
intersect(Face_handle f, int i,
Vertex_handle vaa,
Vertex_handle vbb,
Exact_intersections_tag)
// compute the intersection of the constraint edge (f,i)
// with the subconstraint (vaa,vbb) being inserted
// insert the intersection point
// split constraint edge (f,i)
// and return the Vertex_handle of the new Vertex
{
std::cerr << "You are using an exact number types" << std::endl;
std::cerr << "using a Constrained_triangulation_plus_2 class" << std::endl;
std::cerr << "would avoid cascading intersection computation" << std::endl;
std::cerr << " and be much more efficient" << std::endl;
const Point& pa = vaa->point();
const Point& pb = vbb->point();
const Point& pc = f->vertex(cw(i))->point();
const Point& pd = f->vertex(ccw(i))->point();
Point pi;
Itag itag = Itag();
CGAL_triangulation_assertion_code( bool ok = )
intersection(geom_traits(), pa, pb, pc, pd, pi, itag );
CGAL_triangulation_assertion(ok);
Vertex_handle vi = virtual_insert(pi, Triangulation::EDGE, f, i);
return vi;
}
template <class Gt, class Tds, class Itag >
typename Constrained_triangulation_2<Gt,Tds,Itag>::Vertex_handle
Constrained_triangulation_2<Gt,Tds,Itag>::
intersect(Face_handle f, int i,
Vertex_handle vaa,
Vertex_handle vbb,
Exact_predicates_tag)
{
Vertex_handle vcc, vdd;
vcc = f->vertex(cw(i));
vdd = f->vertex(ccw(i));
const Point& pa = vaa->point();
const Point& pb = vbb->point();
const Point& pc = vcc->point();
const Point& pd = vdd->point();
Point pi; //creator for point is required here
Itag itag = Itag();
bool ok = intersection(geom_traits(), pa, pb, pc, pd, pi, itag );
Vertex_handle vi;
if ( !ok) { //intersection detected but not computed
int i = limit_intersection(geom_traits(), pa, pb, pc, pd, itag);
switch(i){
case 0 : vi = vaa; break;
case 1 : vi = vbb; break;
case 2 : vi = vcc; break;
case 3 : vi = vdd; break;
}
if(vi == vaa || vi == vbb) {
remove_constrained_edge(f, i);
}
}
else{ //intersection computed
remove_constrained_edge(f, i);
vi = virtual_insert(pi, f);
}
// vi == vc or vi == vd may happen even if intersection==true
// due to approximate construction of the intersection
if (vi != vcc && vi != vdd) {
insert_constraint(vcc,vi);
insert_constraint(vi, vdd);
}
else {
insert_constraint(vcc,vdd);
}
return vi;
}
template <class Gt, class Tds, class Itag >
inline
typename Constrained_triangulation_2<Gt,Tds,Itag>::Vertex_handle
Constrained_triangulation_2<Gt,Tds,Itag>::
push_back(const Point &p)
{
return insert(p);
}
template <class Gt, class Tds, class Itag >
inline
void
Constrained_triangulation_2<Gt,Tds,Itag>::
push_back(const Constraint &c)
{
insert(c.first, c.second);
}
template < class Gt, class Tds, class Itag >
void
Constrained_triangulation_2<Gt,Tds,Itag>::
update_constraints_incident(Vertex_handle va,
Vertex_handle c1,
Vertex_handle c2)
// update status of edges incident to a
// after insertion in the constrained edge c1c2
{
if (dimension() == 0) return;
if (dimension()== 1) {
Edge_circulator ec=this->incident_edges(va), done(ec);
do {
((*ec).first)->set_constraint(2,true);
}while (++ec != done);
}
else{
//dimension() ==2
int cwi, ccwi, indf;
Face_circulator fc=this->incident_faces(va), done(fc);
CGAL_triangulation_assertion(fc != 0);
do {
indf = fc->index(va);
cwi=cw(indf);
ccwi=ccw(indf);
if ((fc->vertex(cwi) == c1)||(fc->vertex(cwi) == c2)) {
fc->set_constraint(ccwi,true);
fc->set_constraint(cwi,false);
}
else {
fc->set_constraint(ccwi,false);
fc->set_constraint(cwi,true);
}
++fc;
} while (fc != done);
}
}
template < class Gt, class Tds ,class Itag >
void
Constrained_triangulation_2<Gt,Tds,Itag>::
clear_constraints_incident(Vertex_handle va)
// make the edges incident to a newly created vertex unconstrained
{
Edge_circulator ec=this->incident_edges(va), done(ec);
Face_handle f;
int indf;
if ( ec != 0){
do {
f = (*ec).first ;
indf = (*ec).second;
f->set_constraint(indf,false);
if (dimension() == 2) {
f->neighbor(indf)->set_constraint(this->mirror_index(f,indf),false);
}
} while (++ec != done);
}
return;
}
template < class Gt, class Tds, class Itag >
void
Constrained_triangulation_2<Gt,Tds,Itag>::
update_constraints_opposite(Vertex_handle va)
// update status of edges opposite to a
// after insertion of a
{
CGAL_triangulation_assertion(dimension()==2);
Face_handle f=va->face(), start=f;
int indf;
do {
indf = f->index(va);
if (f->neighbor(indf)->is_constrained(this->mirror_index(f,indf)) ) {
f->set_constraint(indf,true);
}
else {
f->set_constraint(indf,false);
}
f= f->neighbor(ccw(indf)); // turns ccw around va
} while (f != start);
return;
}
template < class Gt, class Tds, class Itag >
void
Constrained_triangulation_2<Gt,Tds,Itag>::
update_constraints( const List_edges &hole)
{
typename List_edges::const_iterator it = hole.begin();
Face_handle f;
int i;
for ( ; it != hole.end(); it ++) {
f =(*it).first;
i = (*it).second;
if ( f->is_constrained(i) )
(f->neighbor(i))->set_constraint(this->mirror_index(f,i),true);
else (f->neighbor(i))->set_constraint(this->mirror_index(f,i),false);
}
}
template < class Gt, class Tds, class Itag >
inline void
Constrained_triangulation_2<Gt,Tds,Itag>::
mark_constraint(Face_handle fr, int i)
{
if (dimension()==1) fr->set_constraint(2, true);
else{
fr->set_constraint(i,true);
fr->neighbor(i)->set_constraint(this->mirror_index(fr,i),true);
}
return;
}
template < class Gt, class Tds, class Itag >
inline void
Constrained_triangulation_2<Gt,Tds,Itag>::
triangulate_hole(List_faces& intersected_faces,
List_edges& conflict_boundary_ab,
List_edges& conflict_boundary_ba)
{
List_edges new_edges;
triangulate_hole(intersected_faces,
conflict_boundary_ab,
conflict_boundary_ba,
new_edges);
}
template < class Gt, class Tds, class Itag >
void
Constrained_triangulation_2<Gt,Tds,Itag>::
triangulate_hole(List_faces& intersected_faces,
List_edges& conflict_boundary_ab,
List_edges& conflict_boundary_ba,
List_edges& new_edges)
// triangulate the hole limited by conflict_boundary_ab
// and conflict_boundary_ba
// insert the new edges in new-edges
// delete the faces of intersected_faces
{
if ( !conflict_boundary_ab.empty() ) {
triangulate_half_hole(conflict_boundary_ab, new_edges);
triangulate_half_hole(conflict_boundary_ba, new_edges);
// the two faces that share edge ab are neighbors
// their common edge ab is a constraint
Face_handle fr,fl;
fl=(*conflict_boundary_ab.begin()).first;
fr=(*conflict_boundary_ba.begin()).first;
fl->set_neighbor(2, fr);
fr->set_neighbor(2, fl);
fl->set_constraint(2, true);
fr->set_constraint(2, true);
// delete intersected faces
while( ! intersected_faces.empty()) {
fl = intersected_faces.front();
intersected_faces.pop_front();
delete_face(fl);
}
}
}
template < class Gt, class Tds, class Itag >
void
Constrained_triangulation_2<Gt,Tds,Itag>::
remove(Vertex_handle v)
// remove a vertex and updates the constrained edges of the new faces
// precondition : there is no incident constraints
{
CGAL_triangulation_precondition( v != Vertex_handle() );
CGAL_triangulation_precondition( ! is_infinite(v));
CGAL_triangulation_precondition( ! are_there_incident_constraints(v));
if (number_of_vertices() == 1) remove_first(v);
else if (number_of_vertices() == 2) remove_second(v);
else if ( dimension() == 1) remove_1D(v);
else remove_2D(v);
return;
}
template < class Gt, class Tds, class Itag >
void
Constrained_triangulation_2<Gt,Tds,Itag>::
remove_1D(Vertex_handle v)
{
Edge_circulator ec = incident_edges(v), done(ec);
do {
(*ec).first->set_constraint(2,false);
} while (++ec != done);
Triangulation::remove_1D(v);
}
template < class Gt, class Tds, class Itag >
void
Constrained_triangulation_2<Gt,Tds,Itag>::
remove_2D(Vertex_handle v)
{
if (test_dim_down(v)) { this->_tds.remove_dim_down(v);}
else {
List_edges hole;
make_hole(v, hole);
List_edges shell=hole; //save hole because it will be emptied by fill_hole
fill_hole(v, hole);
update_constraints(shell);
delete_vertex(v);
}
return;
}
template < class Gt, class Tds, class Itag >
void
Constrained_triangulation_2<Gt,Tds,Itag>::
remove_constrained_edge(Face_handle f, int i)
{
f->set_constraint(i, false);
if (dimension() == 2)
(f->neighbor(i))->set_constraint(this->mirror_index(f,i), false);
return;
}
template < class Gt, class Tds, class Itag >
void
Constrained_triangulation_2<Gt,Tds,Itag>::
remove_incident_constraints(Vertex_handle v)
{
Edge_circulator ec=incident_edges(v), done(ec);
if (ec == 0) return;
do {
if(is_constrained(*ec)) { remove_constrained_edge((*ec).first,
(*ec).second);}
ec++;
} while (ec != done);
return;
}
template < class Gt, class Tds, class Itag >
inline bool
Constrained_triangulation_2<Gt,Tds,Itag>::
are_there_incident_constraints(Vertex_handle v) const
{
return are_there_incident_constraints(v, Emptyset_iterator());
}
template < class Gt, class Tds, class Itag >
inline bool
Constrained_triangulation_2<Gt,Tds,Itag>::
is_valid(bool verbose, int level) const
{
bool result = Triangulation::is_valid(verbose,level);
for( All_faces_iterator it = all_faces_begin();
it != all_faces_end() ; it++) {
for(int i=0; i<3; i++) {
Face_handle n = it->neighbor(i);
result = result &&
it->is_constrained(i) == n->is_constrained(n->index(it));
}
}
return result;
}
template < class Gt, class Tds, class Itag >
inline bool
Constrained_triangulation_2<Gt,Tds,Itag>::
is_constrained(Edge e) const
{
return (e.first)->is_constrained(e.second);
}
template < class Gt, class Tds, class Itag >
void
Constrained_triangulation_2<Gt,Tds,Itag>::
triangulate_half_hole(List_edges & list_edges, List_edges & new_edges)
// triangulates the polygon whose boundary consists of list_edges
// plus the edge ab joining the two endpoints of list_edges
// the orientation of the polygon (as provided by list_edges) must
// be cw
// the edges of list_edges are assumed to be edges of a
// triangulation that will be updated by the procedure
// the edges that are created are put in list new_edges
// takes linear time
{
Vertex_handle va; // first vertex of list_edges
Face_handle newlf;
Face_handle n1,n2,n;
int ind1, ind2,ind;
Orientation orient;
typename List_edges::iterator current, next, tempo;
current=list_edges.begin();
va=((*current).first)->vertex(ccw((*current).second));
next=current;
++next;
do
{
n1=(*current).first;
ind1=(*current).second;
// in case n1 is no longer a triangle of the new triangulation
if ( n1->neighbor(ind1) != Face_handle() ) {
n=n1->neighbor(ind1);
//ind=this->mirror_index(n1,ind1);
// mirror_index does not work in this case
ind = cw(n->index(n1->vertex(cw(ind1))));
n1=n->neighbor(ind);
ind1= this->mirror_index(n,ind);
}
n2=(*next).first;
ind2=(*next).second;
// in case n2 is no longer a triangle of the new triangulation
if (n2->neighbor(ind2) != Face_handle() ) {
n=n2->neighbor(ind2);
// ind=this->mirror_index(n2,ind2);
// mirror_index does not work in this case
ind = cw(n->index(n2->vertex(cw(ind2))));
n2=n->neighbor(ind);
ind2= this->mirror_index(n,ind);
}
Vertex_handle v0=n1->vertex(ccw(ind1));
Vertex_handle v1=n1->vertex(cw(ind1));
Vertex_handle v2=n2->vertex(cw(ind2));
orient = this->orientation(v0->point(),v1->point(),v2->point());
switch (orient) {
case RIGHT_TURN :
// creates the new triangle v0v1v2
// updates the neighbors, the constraints
//and the list of new edges
newlf = create_face(v0,v2,v1);
new_edges.push_back(Edge(newlf,2));
newlf->set_neighbor(1, n1);
newlf->set_neighbor(0, n2);
n1->set_neighbor(ind1, newlf);
n2->set_neighbor(ind2, newlf);
if (n1->is_constrained(ind1)) {
newlf->set_constraint(1,true);
}
if (n2->is_constrained(ind2)) {
newlf->set_constraint(0,true);
}
// v0, v1 or v2.face() may have been removed
v0->set_face(newlf);
v1->set_face(newlf);
v2->set_face(newlf);
// update list_edges
tempo=current;
current=list_edges.insert(current, Edge(newlf,2));
list_edges.erase(tempo);
list_edges.erase(next);
next=current;
if (v0 != va) {--current;}
else {++next;}
break;
case LEFT_TURN :
++current; ++next;
break;
case COLLINEAR :
++current; ++next;
break;
}
} while (next != list_edges.end());
}
template < class Gt, class Tds, class Itag >
void
Constrained_triangulation_2<Gt, Tds, Itag>::
file_output(std::ostream& os) const
{
Triangulation_2<Gt, Tds>::file_output(os);
// write constrained status
typename Tds::Face_iterator ib = this->_tds.face_iterator_base_begin();
for( ; ib != this->_tds.face_iterator_base_end(); ++ib) {
for(int j = 0; j < 3; ++j){
if (ib->is_constrained(j)) { os << "C";}
else { os << "N";}
if(is_ascii(os)){
if(j==2) {
os << "\n";
} else {
os << ' ';
}
}
}
}
}
template < class Gt, class Tds, class Itag >
std::ostream &
operator<<(std::ostream& os,
const Constrained_triangulation_2<Gt,Tds,Itag> &ct)
{
ct.file_output(os);
return os ;
}
template < class Gt, class Tds, class Itag >
std::istream &
operator>>(std::istream& is,
Constrained_triangulation_2<Gt,Tds,Itag> &ct)
{
typedef Constrained_triangulation_2<Gt,Tds,Itag> CDT;
ct.clear();
is >> static_cast<typename CDT::Triangulation&>(ct);
for (typename CDT::All_faces_iterator fit=ct.all_faces_begin(),
fit_end=ct.all_faces_end();fit_end!=fit;++fit){
char c[3];
is >> c[0] >> c[1] >> c[2];
for (int k=0;k<3;++k){
fit->set_constraint(k,c[k]=='C');
}
}
return is;
}
//Helping functions to compute intersections of constrained edges
template<class Gt>
bool
intersection(const Gt& ,
const typename Gt::Point_2& ,
const typename Gt::Point_2& ,
const typename Gt::Point_2& ,
const typename Gt::Point_2& ,
typename Gt::Point_2& ,
No_intersection_tag)
{
return false;
}
template<class Gt>
bool
intersection(const Gt& gt,
const typename Gt::Point_2& pa,
const typename Gt::Point_2& pb,
const typename Gt::Point_2& pc,
const typename Gt::Point_2& pd,
typename Gt::Point_2& pi,
Exact_intersections_tag)
{
return compute_intersection(gt,pa,pb,pc,pd,pi);
}
template<class Gt>
inline bool
intersection(const Gt& gt,
const typename Gt::Point_2& pa,
const typename Gt::Point_2& pb,
const typename Gt::Point_2& pc,
const typename Gt::Point_2& pd,
typename Gt::Point_2& pi,
Exact_predicates_tag)
{
return compute_intersection(gt,pa,pb,pc,pd,pi);
}
template<class Gt>
bool
compute_intersection(const Gt& gt,
const typename Gt::Point_2& pa,
const typename Gt::Point_2& pb,
const typename Gt::Point_2& pc,
const typename Gt::Point_2& pd,
typename Gt::Point_2& pi)
{
typename Gt::Intersect_2 compute_intersec=gt.intersect_2_object();
typename Gt::Construct_segment_2
construct_segment=gt.construct_segment_2_object();
Object result = compute_intersec(construct_segment(pa,pb),
construct_segment(pc,pd));
return assign(pi, result);
}
template<class Gt>
int
limit_intersection(const Gt& ,
const typename Gt::Point_2& ,
const typename Gt::Point_2& ,
const typename Gt::Point_2& ,
const typename Gt::Point_2& ,
No_intersection_tag)
{
return 0;
}
template<class Gt>
int
limit_intersection(const Gt& ,
const typename Gt::Point_2& ,
const typename Gt::Point_2& ,
const typename Gt::Point_2& ,
const typename Gt::Point_2& ,
Exact_intersections_tag)
{
return 0;
}
template<class Gt>
int
limit_intersection(const Gt& gt,
const typename Gt::Point_2& pa,
const typename Gt::Point_2& pb,
const typename Gt::Point_2& pc,
const typename Gt::Point_2& pd,
Exact_predicates_tag)
{
typename Gt::Construct_line_2 line = gt.construct_line_2_object();
typename Gt::Compute_squared_distance_2
distance = gt.compute_squared_distance_2_object();
typename Gt::Line_2 l1 = line(pa,pb);
typename Gt::Line_2 l2 = line(pc,pd);
int i = 0;
typename Gt::FT dx = distance(l2,pa);
typename Gt::FT db = distance(l2,pb);
typename Gt::FT dc = distance(l1,pc);
typename Gt::FT dd = distance(l1,pd);
if ( db < dx ) { dx = db; i = 1;}
if ( dc < dx ) { dx = dc; i = 2;}
if ( dd < dx ) { i = 3;}
return i;
}
} //namespace CGAL
#endif //CGAL_CONSTRAINED_TRIANGULATION_2_H
|