This file is indexed.

/usr/include/CGAL/Nef_polyhedron_3.h is in libcgal-dev 4.5-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
// Copyright (c) 1997-2002,2005 Max-Planck-Institute Saarbruecken (Germany).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org).
// You can redistribute it and/or modify it under the terms of the GNU
// General Public License as published by the Free Software Foundation,
// either version 3 of the License, or (at your option) any later version.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL$
// $Id$
// 
//
// Author(s)     : Michael Seel    <seel@mpi-sb.mpg.de>
//                 Miguel Granados <granados@mpi-sb.mpg.de>
//                 Susan Hert      <hert@mpi-sb.mpg.de>
//                 Lutz Kettner    <kettner@mpi-sb.mpg.de>
//                 Ralf Osbild     <osbild@mpi-sb.mpg.de>
//                 Peter Hachenberger <hachenberger@mpi-sb.mpg.de>
#ifndef CGAL_NEF_POLYHEDRON_3_H
#define CGAL_NEF_POLYHEDRON_3_H

#include <CGAL/basic.h>
#include <CGAL/Handle_for.h>
#include <CGAL/Nef_3/Default_items.h>
#include <CGAL/Nef_3/SNC_structure.h>
#include <CGAL/Nef_3/SNC_decorator.h>
#include <CGAL/Nef_3/SNC_const_decorator.h>
#include <CGAL/Nef_3/SNC_constructor.h>
#include <CGAL/Nef_3/SNC_external_structure.h>
#include <CGAL/Nef_3/Combine_with_halfspace.h>
#ifdef CGAL_NEF_VISUAL_HULL
#include <CGAL/Nef_3/Binary_operation_vs.h>
#else
#include <CGAL/Nef_3/Binary_operation.h>
#endif
#include <CGAL/Nef_S2/SM_decorator.h>
#include <CGAL/Nef_S2/SM_const_decorator.h>
#include <CGAL/Nef_3/SNC_SM_overlayer.h>
#include <CGAL/Nef_S2/SM_point_locator.h>
#include <CGAL/Nef_3/SNC_SM_explorer.h>
#include <CGAL/Nef_polyhedron_S2.h>
#include <CGAL/Modifier_base.h>
#include <CGAL/Nef_3/Mark_bounded_volumes.h>

#ifdef CGAL_NEF3_POINT_LOCATOR_NAIVE
#include <CGAL/Nef_3/SNC_ray_shooter.h>
#endif

#ifdef CGAL_NEF3_CGAL_NEF3_SM_VISUALIZOR
#include <CGAL/Nef_3/SNC_SM_visualizor.h>
#endif // CGAL_NEF3_SM_VISUALIZOR

#ifdef CGAL_NEF3_OLD_VISUALIZATION 
#include <CGAL/Nef_3/Visualizor_OpenGL_3.h>
#endif // CGAL_NEF3_OLD_VISUALIZATION 

#include <CGAL/IO/Verbose_ostream.h>
#include <CGAL/Nef_3/polyhedron_3_to_nef_3.h>
#include <CGAL/Nef_3/shell_to_nef_3.h>
#include <CGAL/Polyhedron_incremental_builder_3.h>
#include <CGAL/Polyhedron_3.h>
#include <CGAL/Nef_3/SNC_point_locator.h>
#include <CGAL/assertions.h>

#include <CGAL/Constrained_triangulation_2.h>
#include <CGAL/Triangulation_data_structure_2.h>
#include <CGAL/Projection_traits_xy_3.h>
#include <CGAL/Projection_traits_yz_3.h>
#include <CGAL/Projection_traits_xz_3.h>
#include <CGAL/Constrained_triangulation_face_base_2.h>
#include <list>

// RO: includes for "vertex cycle to Nef" constructor
#include <CGAL/Nef_3/vertex_cycle_to_nef_3.h>
#include <CGAL/Vector_3.h>
#include <CGAL/normal_vector_newell_3.h>

#ifdef CGAL_NEF_VISUAL_HULL
#include <CGAL/Nef_3/Modifying_binary_operation_vs.h>
#endif

#undef CGAL_NEF_DEBUG
#define CGAL_NEF_DEBUG 11
#include <CGAL/Nef_2/debug.h>

namespace CGAL {

template <typename K, typename I, typename M> class Nef_polyhedron_3;
template <typename K, typename I, typename M> class Nef_polyhedron_3_rep;

template <typename K, typename I, typename M>
std::ostream& operator<<(std::ostream& os, Nef_polyhedron_3<K,I,M>& NP);

template <typename K, typename I, typename M>
std::istream& operator>>(std::istream& os, Nef_polyhedron_3<K,I,M>& NP);


template <typename K, typename I, typename M>
class Nef_polyhedron_3_rep 
{ 
  typedef Nef_polyhedron_3_rep<K,I,M>                  Self;
  friend class Nef_polyhedron_3<K,I,M>;
 public:
  typedef CGAL::SNC_structure<K,I,M>                      SNC_structure;
  typedef CGAL::SNC_decorator<SNC_structure>              SNC_decorator;
  typedef CGAL::SNC_const_decorator<SNC_structure>        SNC_const_decorator;
  typedef CGAL::Binary_operation<SNC_structure>           Binary_operation;
  typedef CGAL::SNC_constructor<I, SNC_structure>         SNC_constructor;
  typedef CGAL::SNC_external_structure<I, SNC_structure>  SNC_external_structure;
  typedef CGAL::SNC_point_locator<SNC_decorator> SNC_point_locator;
  typedef CGAL::SNC_simplify<I, SNC_structure>            SNC_simplify;
#ifdef CGAL_NEF3_POINT_LOCATOR_NAIVE
  typedef CGAL::SNC_point_locator_naive<SNC_decorator> SNC_point_locator_default;
#else
  typedef CGAL::SNC_point_locator_by_spatial_subdivision<SNC_decorator> SNC_point_locator_default;
#endif

  typedef typename SNC_structure::Sphere_map       Sphere_map;
  typedef CGAL::SM_decorator<Sphere_map>           SM_decorator;
  typedef CGAL::SM_const_decorator<Sphere_map>     SM_const_decorator;
  typedef CGAL::SNC_SM_overlayer<I, SM_decorator>  SM_overlayer;
  typedef CGAL::SM_point_locator<SNC_structure>    SM_point_locator;

#ifdef CGAL_NEF3_SM_VISUALIZOR
  typedef CGAL::SNC_SM_visualizor<SNC_structure>       SM_visualizor;
#endif // CGAL_NEF3_SM_VISUALIZOR

 private:
  SNC_structure snc_;
  SNC_point_locator* pl_;
  
 public:
  Nef_polyhedron_3_rep() : snc_(), pl_() {}
  ~Nef_polyhedron_3_rep() { 
    CGAL_NEF_TRACEN( "Nef_polyhedron_3_rep: destroying SNC structure "<<&snc_<<
	    ", point locator "<<pl_);
    snc_.clear(); 
    delete pl_; 
  }
};

/*{\Manpage {Nef_polyhedron_3} {T} {Nef Polyhedra in Space}{N}}*/

/*{\Mdefinition
An instance of data type |\Mname| is a subset of 3-space which is the
result of forming complements and intersections starting from a set |H| of
halfspaces. |\Mtype| is closed under all binary set opertions |intersection|,
|union|, |difference|, |complement| and under the topological operations
|boundary|, |closure|, and |interior|.}*/

template <typename Kernel_, typename Items_ = typename CGAL::Default_items<Kernel_>::Items, typename Mark_ = bool>
class Nef_polyhedron_3 : public CGAL::Handle_for< Nef_polyhedron_3_rep<Kernel_, Items_, Mark_> >, 
			 public SNC_const_decorator<SNC_structure<Kernel_,Items_,Mark_> >
{ 
 public:
  /*{\Mtypes 7}*/  
  
  typedef Kernel_                                     Kernel;
  typedef Kernel_                                     Traits;
  typedef Items_                                      Items;
  typedef Mark_                                       Mark;
  typedef Nef_polyhedron_3<Kernel, Items, Mark>       Self;
  typedef Nef_polyhedron_3<Kernel, Items, Mark>       Nef_polyhedron;
  typedef Handle_for< Nef_polyhedron_3_rep<Kernel, Items, Mark> >   Base;
  typedef typename Kernel::Point_3                    Point_3;
  typedef typename Kernel::Plane_3                    Plane_3;
  typedef typename Kernel::Vector_3                   Vector_3;
  typedef typename Kernel::Segment_3                  Segment_3;
  typedef typename Kernel::Aff_transformation_3       Aff_transformation_3;

#ifndef _MSC_VER
  // VC++ has a problem to digest the following typedef,
  // and does not need the using statements -- AF
  // The left and right part of these typedefs have the same name. It is
  // very important to qualify the left part with the CGAL:: namespace, no
  // to confuse g++. -- Laurent Rineau, 2010/09/13
  typedef CGAL::SNC_structure<Kernel,Items,Mark> SNC_structure;
  typedef CGAL::SNC_const_decorator<SNC_structure> SNC_const_decorator;
  using SNC_const_decorator::set_snc;
  using SNC_const_decorator::is_standard;
  using SNC_const_decorator::is_bounded;
#endif

  struct Polylines_tag {};

  enum Boundary { EXCLUDED=0, INCLUDED=1 };
  /*{\Menum construction selection.}*/

  typedef enum { EMPTY=0, COMPLETE=1 } Content;
  /*{\Menum construction selection}*/

  typedef enum { DEFAULT, NAIVE, WALKING, SPATIAL_SUBDIVISION  } Location_mode;
  /*{\Menum selection flag for the point location mode.}*/

protected: 
  struct AND { Mark operator()(const Mark& b1, const Mark& b2, bool /* inverted */ =false) const { return b1&&b2; } };
  struct OR { Mark operator()(const Mark& b1, const Mark& b2, bool /* inverted */ =false) const { return b1||b2; } };
  struct DIFF { Mark operator()(const Mark& b1, const Mark& b2, bool inverted=false) const { 
    if(inverted) return !b1&&b2; return b1&&!b2; } };
  struct XOR { Mark operator()(const Mark& b1, const Mark& b2, bool /* inverted */ =false) const 
    { return (b1&&!b2)||(!b1&&b2); } };

 public:
  typedef Nef_polyhedron_3_rep<Kernel,Items, Mark>    Nef_rep;

  typedef typename Nef_rep::SM_decorator        SM_decorator;
  typedef typename Nef_rep::SM_const_decorator  SM_const_decorator;
 protected:
  typedef typename Nef_rep::SNC_decorator       SNC_decorator;
  typedef typename Nef_rep::SNC_constructor     SNC_constructor;
  typedef typename Nef_rep::SNC_external_structure SNC_external_structure;
  typedef typename Nef_rep::Binary_operation    Binary_operation;
  typedef typename Nef_rep::SNC_point_locator   SNC_point_locator;
  typedef typename Nef_rep::SNC_point_locator_default
    SNC_point_locator_default;
  typedef CGAL::Combine_with_halfspace<SNC_structure, SNC_point_locator> 
          Combine_with_halfspace;
public:
 enum Intersection_mode { 
	 CLOSED_HALFSPACE = Combine_with_halfspace::CLOSED_HALFSPACE, 
     OPEN_HALFSPACE = Combine_with_halfspace::OPEN_HALFSPACE, 
     PLANE_ONLY = Combine_with_halfspace::PLANE_ONLY};

protected: 
  typedef typename Nef_rep::SM_overlayer        SM_overlayer;
  typedef typename Nef_rep::SM_point_locator    SM_point_locator;
  typedef typename Nef_rep::SNC_simplify        SNC_simplify;
#ifdef CGAL_NEF3_SM_VISUALIZOR
  typedef typename Nef_rep::SM_visualizor       SM_visualizor;
#endif // CGAL_NEF3_SM_VISUALIZOR
#ifdef CGAL_NEF3_OLD_VISUALIZATION 
  typedef CGAL::Nef_Visualizor_OpenGL_3<Nef_polyhedron_3> Visualizor;
#endif // CGAL_NEF3_OLD_VISUALIZATION 

 typedef typename Nef_rep::Sphere_map                Sphere_map;
 public:
 typedef CGAL::Nef_polyhedron_S2<Kernel,Items,Mark,Sphere_map> Nef_polyhedron_S2;
 protected:

  SNC_structure& snc() { return this->ptr()->snc_; } 
  const SNC_structure& snc() const { return this->ptr()->snc_; } 

  SNC_point_locator*& pl() { return this->ptr()->pl_; }
  const SNC_point_locator* pl() const { return this->ptr()->pl_; }

  friend std::ostream& operator<< <>
      (std::ostream& os, Nef_polyhedron_3<Kernel,Items, Mark>& NP);
  friend std::istream& operator>> <>
      (std::istream& is, Nef_polyhedron_3<Kernel,Items, Mark>& NP);

  typedef typename SNC_decorator::Vertex_handle    Vertex_handle;
  typedef typename SNC_decorator::Halfedge_handle  Halfedge_handle;
  typedef typename SNC_decorator::Halffacet_handle
                                                   Halffacet_handle;
  typedef typename SNC_decorator::Volume_handle    Volume_handle;

 public:
  typedef typename SNC_structure::Sphere_point                 Sphere_point;
  typedef typename SNC_structure::Sphere_segment               Sphere_segment;
  typedef typename SNC_structure::Sphere_circle                Sphere_circle;
  typedef typename SNC_structure::Vertex_base                  Vertex;
  typedef typename SNC_structure::Halfedge_base                Halfedge;
  typedef typename SNC_structure::Halffacet_base               Halffacet;
  typedef typename SNC_structure::Volume_base                  Volume;
  typedef typename SNC_structure::Vertex_const_handle          Vertex_const_handle;
  typedef typename SNC_structure::Halfedge_const_handle        Halfedge_const_handle;
  typedef typename SNC_structure::Halffacet_const_handle       Halffacet_const_handle;
  typedef typename SNC_structure::Volume_const_handle          Volume_const_handle;
  typedef typename SNC_structure::SHalfedge_around_svertex_circulator 
                                  SHalfedge_around_svertex_circulator;
  typedef typename SNC_structure::SHalfedge_around_svertex_const_circulator 
                                  SHalfedge_around_svertex_const_circulator;
  typedef typename SNC_structure::SHalfedge_around_facet_circulator 
                                  SHalfedge_around_facet_circulator;
  typedef typename SNC_structure::SHalfedge_around_facet_const_circulator 
                                  SHalfedge_around_facet_const_circulator;
  typedef typename SNC_structure::SHalfedge_around_sface_const_circulator 
                                  SHalfedge_around_sface_const_circulator;
  typedef typename SNC_structure::Halffacet_cycle_const_iterator     
                                  Halffacet_cycle_const_iterator;
  typedef typename SNC_structure::Halffacet_cycle_iterator     
                                  Halffacet_cycle_iterator;
  typedef typename SNC_structure::Infi_box                     Infi_box;
  typedef typename SNC_structure::Size_type Size_type;
  typedef Size_type                         size_type;

  typedef typename Kernel::RT                       RT;

 public:
  typedef typename SM_decorator::SVertex_handle    SVertex_handle;
  typedef typename SM_decorator::SHalfedge_handle  SHalfedge_handle;
  typedef typename SM_decorator::SFace_handle      SFace_handle;
  typedef typename SM_decorator::SVertex_const_handle
                                                   SVertex_const_handle;
  typedef typename SM_decorator::SHalfedge_const_handle
                                                   SHalfedge_const_handle;
  typedef typename SM_decorator::SHalfloop_const_handle
                                                   SHalfloop_const_handle;
  typedef typename SM_decorator::SFace_const_handle
                                                   SFace_const_handle;
  typedef typename SNC_decorator::Vertex_iterator  Vertex_iterator;
  typedef typename SNC_decorator::Halfedge_iterator
                                                   Halfedge_iterator;
  typedef typename SNC_decorator::Halffacet_iterator
                                                   Halffacet_iterator;
  typedef typename SNC_structure::Shell_entry_iterator
                                                   Shell_entry_iterator;
  typedef typename SNC_decorator::Volume_iterator  Volume_iterator;
  typedef typename SNC_structure::Vertex_const_iterator
                                                    Vertex_const_iterator;
  typedef typename SNC_structure::Halfedge_const_iterator 
                                                   Halfedge_const_iterator;
  typedef typename SNC_structure::Halffacet_const_iterator     
                                                   Halffacet_const_iterator;
  typedef typename SNC_structure::Volume_const_iterator     
                                                   Volume_const_iterator;
  typedef typename SNC_structure::Shell_entry_const_iterator
                                                   Shell_entry_const_iterator;
  typedef typename SM_decorator::SVertex_iterator  SVertex_iterator;
  typedef typename SM_decorator::SHalfedge_iterator
                                                   SHalfedge_iterator;
  typedef typename SM_decorator::SHalfloop_iterator
                                                   SHalfloop_iterator;
  typedef typename SM_decorator::SFace_iterator    SFace_iterator;
  typedef typename SM_decorator::SVertex_const_iterator
                                                   SVertex_const_iterator;
  typedef typename SM_decorator::SHalfedge_const_iterator 
                                                   SHalfedge_const_iterator;
  typedef typename SM_decorator::SHalfloop_const_iterator 
                                                   SHalfloop_const_iterator;
  typedef typename SM_decorator::SFace_const_iterator     
                                                   SFace_const_iterator;
  typedef typename SNC_decorator::SFace_cycle_const_iterator     
                                                   SFace_cycle_const_iterator;

  typedef typename SNC_decorator::Association  Association;


 protected: 
  void initialize_infibox_vertices(Content space) {
    SNC_constructor C(snc()); 
    Infi_box::initialize_infibox_vertices(C, space == COMPLETE);
  }

  void check_h_for_intersection_of_12_cube_edges_and_add_vertices
  (const Plane_3& p);
  void create_intersection_vertex_of_h_and_e();
  void init_cube_vertices_depending_on_h(const Plane_3& p);
  void add_h_to_local_view_of_v();
  
 public:
  void build_external_structure() {
    SNC_external_structure es(snc(), pl());
    es.build_external_structure();
  }

 public:
  /*{\Mcreation 3}*/

  Nef_polyhedron_3( Content space = EMPTY);
		   
  /*{\Mcreate creates an instance |\Mvar| of type |\Mname|
  and initializes it to the empty set if |space == EMPTY|
  and to the whole space if |space == COMPLETE|.}*/

  explicit Nef_polyhedron_3(const Plane_3& p, Boundary b = INCLUDED);
  /*{\Mcreate creates a Nef polyhedron |\Mvar| containing the
  halfspace on the negative side of |p| including |p| if |b==INCLUDED|,
  excluding |p| if |b==EXCLUDED|.}*/

  Nef_polyhedron_3(const Nef_polyhedron_3<Kernel,Items, Mark>& N1) 
 : Base(N1) , SNC_const_decorator() {
    set_snc(snc());
  } 

  Nef_polyhedron_3& operator=(const Nef_polyhedron_3<Kernel,Items, Mark>& N1) { 
    Base::operator=(N1);
    set_snc(snc());
    return (*this); 
  }

  ~Nef_polyhedron_3() { 
    CGAL_NEF_TRACEN("~Nef_polyhedron_3: destructor called for snc "<<&snc()<<
	   ", pl "<<pl());
  }

   // RO: "vertex cycle to Nef" constructor (main part)
   // II input iterator; KN kernel of normal (may differ from Nef kernel)
   template <class II, class KN>
   Nef_polyhedron_3 (II v_first, II v_last,
                    const CGAL::Vector_3<KN> &normal, bool verb = false)
   {  CGAL_NEF_TRACEN("construction from vertex cycle (main part)");

      // project and triangulate vertices,
      // convert result to Nef_polyhedron
      CGAL_precondition (!CGAL::is_empty_range (v_first, v_last));
      bool is_nef = vertex_cycle_to_nef_3<Nef_polyhedron> (snc(),
         v_first, v_last, normal, verb);
      if (is_nef)
      {
	 // TO DO:
	 // Wie kann der eigene point_locator pl() eingebunden werden?
	 // Wie kann der Konstruktor umgangen werden?
         typedef CGAL::SNC_point_locator_by_spatial_subdivision
            <CGAL::SNC_decorator<SNC_structure> >    Point_locator;

         Point_locator Pl;
         SNC_external_structure es(snc(), &Pl);
         es.build_external_structure();
         *this = Nef_polyhedron(snc(), &Pl);
      }
      else
      {  *this = Nef_polyhedron();
      }
      set_snc (snc());
      CGAL_expensive_postcondition (is_valid());
   }

   // RO: "vertex cycle to Nef" constructor (normal computation)
   template <class II>
   Nef_polyhedron_3 (II v_first, II v_last, bool verb = false)
   {  CGAL_NEF_TRACEN("construction from vertex cycle (normal computation)");

      // compute normal vector
      CGAL_precondition (!CGAL::is_empty_range (v_first, v_last));
      CGAL::Vector_3<typename II::value_type::R> normal;
      normal_vector_newell_3 (v_first, v_last, normal);

      // call "main" constructor
      *this = Nef_polyhedron_3 (v_first, v_last, normal, verb);
      set_snc (snc());
   }
  
 template<typename Items, typename SNC_structure>
 class Sphere_map_creator {
   typedef typename SNC_structure::SM_decorator     SM_decorator;
   typedef typename SNC_structure::Vertex_handle    Vertex_handle;
   typedef typename SNC_structure::SVertex_handle   SVertex_handle;
   typedef typename SNC_structure::SFace_handle     SFace_handle;
   typedef typename SNC_structure::Sphere_point     Sphere_point;
   
   public:
   Sphere_map_creator() {}
   
   template<typename point_iterator>
   void create_end_sphere_map(SNC_structure& snc,
			      point_iterator cur,
			      point_iterator prev) {
     Vertex_handle v(snc.new_vertex(*cur, true));
     SM_decorator SM(&*v);
     SVertex_handle sv(v->new_svertex(Sphere_point(ORIGIN+(*prev-*cur)),
				      true));
     SFace_handle sf(v->new_sface());
     SM.link_as_isolated_vertex(sv,sf);
   }
   
   template<typename point_iterator>
   void create_sphere_map(SNC_structure& snc,
			  point_iterator cur,
			  point_iterator prev,
			  point_iterator next) {
     Vertex_handle v(snc.new_vertex(*cur, true));
     SM_decorator SM(&*v);
     SVertex_handle sv1(v->new_svertex(Sphere_point(ORIGIN+(*prev-*cur)),
				       true));
     SVertex_handle sv2(v->new_svertex(Sphere_point(ORIGIN+(*next-*cur)),
				       true));      
     SFace_handle sf(v->new_sface());
     SM.link_as_isolated_vertex(sv1,sf);
     SM.link_as_isolated_vertex(sv2,sf);
   }
 };
 
 template<typename SNC_structure>
 class Sphere_map_creator<CGAL::SNC_indexed_items, SNC_structure> {
   typedef typename SNC_structure::SM_decorator     SM_decorator;
   typedef typename SNC_structure::Vertex_handle    Vertex_handle;
   typedef typename SNC_structure::SVertex_handle   SVertex_handle;
   typedef typename SNC_structure::SFace_handle     SFace_handle;
   typedef typename SNC_structure::Sphere_point     Sphere_point;
   
   bool first;
   int index;
 public:
   Sphere_map_creator() : first(true), index(0) {}
     
     template<typename point_iterator>
       void create_end_sphere_map(SNC_structure& snc,
				  point_iterator cur,
				  point_iterator prev) {
       Vertex_handle v(snc.new_vertex(*cur, true));
       SM_decorator SM(&*v);
       SVertex_handle sv(v->new_svertex(Sphere_point(ORIGIN+(*prev-*cur)),
					true));
       SFace_handle sf(v->new_sface());
       SM.link_as_isolated_vertex(sv,sf);
       if(first) {
	 sv->set_index();
	 index = sv->get_index();
	 first = false;
       } else
	 sv->set_index(index);
     }
     
     template<typename point_iterator>
       void create_sphere_map(SNC_structure& snc,
			      point_iterator cur,
			      point_iterator prev,
			      point_iterator next) {
       Vertex_handle v(snc.new_vertex(*cur, true));
       SM_decorator SM(&*v);
       SVertex_handle sv1(v->new_svertex(Sphere_point(ORIGIN+(*prev-*cur)),
					 true));
       SVertex_handle sv2(v->new_svertex(Sphere_point(ORIGIN+(*next-*cur)),
					 true));      
       SFace_handle sf(v->new_sface());
       SM.link_as_isolated_vertex(sv1,sf);
       SM.link_as_isolated_vertex(sv2,sf);
       sv1->set_index(index);
       sv2->set_index();
       index = sv2->get_index();
     }
 };
 
 template <typename InputIterator>
 Nef_polyhedron_3(InputIterator begin, InputIterator end, Polylines_tag) {
   typedef typename std::iterator_traits<InputIterator>::value_type
     point_iterator_pair;
   typedef typename point_iterator_pair::first_type
     point_iterator;

   empty_rep();
   set_snc(snc());
   initialize_infibox_vertices(EMPTY);

   point_iterator pbegin, pend, pnext, pprev;
   Sphere_map_creator<Items, SNC_structure> smc;
   for(;begin != end; ++begin) {
     pend = begin->second;
     pprev = pnext = pbegin = begin->first;
     ++pnext;
     CGAL_assertion(pnext != pend);
     smc.create_end_sphere_map(snc(),pbegin,pnext);
     for(++pbegin,++pnext; pnext!=pend; ++pbegin,++pprev,++pnext)
       smc.create_sphere_map(snc(),pbegin,pprev,pnext);
     smc.create_end_sphere_map(snc(),pbegin,pprev);
   }
   build_external_structure();
   simplify();
 }

 template <class T1, class T2,
           template <class T31, class T32, class T33>
           class T3, class T4 >
 Nef_polyhedron_3( CGAL::Polyhedron_3<T1,T2,T3,T4>& P) {
    CGAL_NEF_TRACEN("construction from Polyhedron_3");
    SNC_structure rsnc;
    *this = Nef_polyhedron_3(rsnc, new SNC_point_locator_default, false);
    initialize_infibox_vertices(EMPTY);
    polyhedron_3_to_nef_3
      <CGAL::Polyhedron_3<T1,T2,T3,T4>, SNC_structure>( P, snc());
    build_external_structure();
    simplify();
    CGAL::Mark_bounded_volumes<Nef_polyhedron_3> mbv(true);
    delegate(mbv);
    set_snc(snc());
  }
  
 Nef_polyhedron_3(const Nef_polyhedron& N, 
		  SFace_const_iterator sf) 
 {
   SNC_structure rsnc;
   *this = Nef_polyhedron_3(rsnc, new SNC_point_locator_default, false);
   initialize_infibox_vertices(EMPTY);
   shell_to_nef_3(N, sf, snc());
   build_external_structure();
   simplify();
   CGAL::Mark_bounded_volumes<Nef_polyhedron_3> mbv(true);
   delegate(mbv);
   set_snc(snc());
 }


 protected: 

  template<typename Kernel>
  class Triangulation_handler2 {

    typedef typename CGAL::Triangulation_vertex_base_2<Kernel>               Vb;
    typedef typename CGAL::Constrained_triangulation_face_base_2<Kernel>     Fb;
    typedef typename CGAL::Triangulation_data_structure_2<Vb,Fb>             TDS;
    typedef typename CGAL::Constrained_triangulation_2<Kernel,TDS>           CT;

    typedef typename CT::Face_handle           Face_handle;
    typedef typename CT::Vertex_handle         CTVertex_handle;
    typedef typename CT::Finite_faces_iterator Finite_face_iterator;
    typedef typename CT::Edge                  Edge;

    CT ct;
    CGAL::Unique_hash_map<Face_handle, bool> visited;
    CGAL::Unique_hash_map<CTVertex_handle, Vertex_const_handle> ctv2v;
    Finite_face_iterator fi;
    Plane_3 supporting_plane;

  public:
    Triangulation_handler2(Halffacet_const_handle f) : 
      visited(false), supporting_plane(f->plane()) {

      Halffacet_cycle_const_iterator fci;
      for(fci=f->facet_cycles_begin(); fci!=f->facet_cycles_end(); ++fci) {
	if(fci.is_shalfedge()) {
          SHalfedge_around_facet_const_circulator sfc(fci), send(sfc);
	  CGAL_For_all(sfc,send) {
            CGAL_NEF_TRACEN("  insert point" << sfc->source()->source()->point());
	    CTVertex_handle ctv = ct.insert(sfc->source()->source()->point());
	    ctv2v[ctv] = sfc->source()->source();
          }
        }
      }

      for(fci=f->facet_cycles_begin(); fci!=f->facet_cycles_end(); ++fci) {
	if(fci.is_shalfedge()) {
          SHalfedge_around_facet_const_circulator sfc(fci), send(sfc);
	  CGAL_For_all(sfc,send) {
            CGAL_NEF_TRACEN("  insert constraint" << sfc->source()->source()->point()
	                     << "->" << sfc->source()->twin()->source()->point());
	    ct.insert_constraint(sfc->source()->source()->point(),
	                         sfc->source()->twin()->source()->point());
          }
        }
      }
      CGAL_assertion(ct.is_valid());

      CGAL_NEF_TRACEN("number of finite triangles " << ct.number_of_faces());

      typename CT::Face_handle infinite = ct.infinite_face();
      typename CT::Vertex_handle ctv = infinite->vertex(1);
      if(ct.is_infinite(ctv)) ctv = infinite->vertex(2);
      CGAL_assertion(!ct.is_infinite(ctv));

      typename CT::Face_handle opposite;
      typename CT::Face_circulator vc(ctv,infinite);
      do { opposite = vc++;
      } while(!ct.is_constrained(typename CT::Edge(vc,vc->index(opposite))));
      typename CT::Face_handle first = vc;

      CGAL_assertion(!ct.is_infinite(first));
      traverse_triangulation(first, first->index(opposite));

      fi = ct.finite_faces_begin();
    }

    void traverse_triangulation(Face_handle f, int parent) {
      visited[f] = true;
      if(!ct.is_constrained(Edge(f,ct.cw(parent))) && !visited[f->neighbor(ct.cw(parent))]) {
	Face_handle child(f->neighbor(ct.cw(parent)));
	traverse_triangulation(child, child->index(f));
      } 
      if(!ct.is_constrained(Edge(f,ct.ccw(parent))) && !visited[f->neighbor(ct.ccw(parent))]) {
	Face_handle child(f->neighbor(ct.ccw(parent)));
	traverse_triangulation(child, child->index(f));
      } 
    } 
 
    template<typename Triangle_3>
    bool get_next_triangle(Triangle_3& tr) {
      while(fi != ct.finite_faces_end() && visited[fi] == false) ++fi;
      if(fi == ct.finite_faces_end()) return false;
      tr = Triangle_3(fi->vertex(0)->point(), fi->vertex(1)->point(), fi->vertex(2)->point());
      ++fi;
      return true;
    }

    bool same_orientation(Plane_3 p1) const {
      if(p1.a() != 0)
	return CGAL::sign(p1.a()) == CGAL::sign(supporting_plane.a());
      if(p1.b() != 0)
	return CGAL::sign(p1.b()) == CGAL::sign(supporting_plane.b());
      return CGAL::sign(p1.c()) == CGAL::sign(supporting_plane.c());
    }

    template<typename PIB, typename Index>
    void handle_triangles(PIB& pib, Index& VI) {
      while(fi != ct.finite_faces_end() && visited[fi] == false) ++fi;
      while(fi != ct.finite_faces_end()) {
	Plane_3 plane(fi->vertex(0)->point(),
		      fi->vertex(1)->point(),
		      fi->vertex(2)->point());
	pib.begin_facet();
	if(same_orientation(plane)) {
	  pib.add_vertex_to_facet(VI[ctv2v[fi->vertex(0)]]);
	  pib.add_vertex_to_facet(VI[ctv2v[fi->vertex(1)]]);
	  pib.add_vertex_to_facet(VI[ctv2v[fi->vertex(2)]]);
	} else {
	  pib.add_vertex_to_facet(VI[ctv2v[fi->vertex(0)]]);
	  pib.add_vertex_to_facet(VI[ctv2v[fi->vertex(2)]]);
	  pib.add_vertex_to_facet(VI[ctv2v[fi->vertex(1)]]);
	}
	pib.end_facet();
	do {
	  ++fi;
	} while(fi != ct.finite_faces_end() && visited[fi] == false);
      }
    }
  };
 
  template <class HDS>
  class Build_polyhedron : public CGAL::Modifier_base<HDS> {
    
    class Visitor {

      typedef typename CGAL::Projection_traits_xy_3<Kernel>       XY;
      typedef typename CGAL::Projection_traits_yz_3<Kernel>       YZ;
      typedef typename CGAL::Projection_traits_xz_3<Kernel>       XZ;

      const Object_index<Vertex_const_iterator>& VI;
      Polyhedron_incremental_builder_3<HDS>& B;
      const SNC_const_decorator& D;
      
    public:
      Visitor(Polyhedron_incremental_builder_3<HDS>& BB,
	      const SNC_const_decorator& sd,
	      Object_index<Vertex_const_iterator>& vi) : VI(vi), B(BB), D(sd){}

      void visit(Halffacet_const_handle opposite_facet) {

	CGAL_NEF_TRACEN("Build_polyhedron: visit facet " << opposite_facet->plane());
 
	CGAL_assertion(Infi_box::is_standard(opposite_facet->plane()));
	
	SHalfedge_const_handle se;
	Halffacet_cycle_const_iterator fc;
     	
	Halffacet_const_handle f = opposite_facet->twin();

	SHalfedge_around_facet_const_circulator 
	  sfc1(f->facet_cycles_begin()), sfc2(sfc1);
	
	if(++f->facet_cycles_begin() != f->facet_cycles_end() ||
	   ++(++(++sfc1)) != sfc2) {
	  Vector_3 orth = f->plane().orthogonal_vector();
	  int c = CGAL::abs(orth[0]) > CGAL::abs(orth[1]) ? 0 : 1;
	  c = CGAL::abs(orth[2]) > CGAL::abs(orth[c]) ? 2 : c;
	  
	  if(c == 0) {
	    Triangulation_handler2<YZ> th(f);
	    th.handle_triangles(B, VI);
	  } else if(c == 1) {
	    Triangulation_handler2<XZ> th(f);
	    th.handle_triangles(B, VI);
	  } else if(c == 2) {
	    Triangulation_handler2<XY> th(f);
	    th.handle_triangles(B, VI);
	  } else
	    CGAL_error_msg( "wrong value");

	} else {

	  B.begin_facet();
	  fc = f->facet_cycles_begin();
	  se = SHalfedge_const_handle(fc);
	  CGAL_assertion(se!=0);
	  SHalfedge_around_facet_const_circulator hc_start(se);
	  SHalfedge_around_facet_const_circulator hc_end(hc_start);
	  CGAL_For_all(hc_start,hc_end) {
	    CGAL_NEF_TRACEN("   add vertex " << hc_start->source()->center_vertex()->point());
	    B.add_vertex_to_facet(VI[hc_start->source()->center_vertex()]);
	  }
	  B.end_facet();
	}
      }

      void visit(SFace_const_handle) {}
      void visit(Halfedge_const_handle) {}
      void visit(Vertex_const_handle) {}
      void visit(SHalfedge_const_handle) {}
      void visit(SHalfloop_const_handle) {}
    };

  public:

    const SNC_const_decorator& scd;
    Object_index<Vertex_const_iterator> VI;

    Build_polyhedron(const SNC_const_decorator& s) : 
      scd(s), VI(s.vertices_begin(),s.vertices_end(),'V') {}
    
    void operator()( HDS& hds) {

      Polyhedron_incremental_builder_3<HDS> B(hds, true);

      int skip_volumes;
      if(Infi_box::extended_kernel()) {
	B.begin_surface(scd.number_of_vertices()-8, 
			scd.number_of_facets()-6,
			scd.number_of_edges()-12);
	skip_volumes = 2;
      }
      else {
	B.begin_surface(scd.number_of_vertices(), 
			2*scd.number_of_vertices()-4,
			3*scd.number_of_vertices()-6);
	skip_volumes = 1;
      }
      
      int vertex_index = 0;
      Vertex_const_iterator v;
      CGAL_forall_vertices(v,scd) {
	if(Infi_box::is_standard(v->point())) {
	  VI[v]=vertex_index++;
	  B.add_vertex(v->point());
	}
      }     
      
      Visitor V(B,scd,VI);
      Volume_const_handle c;
      CGAL_forall_volumes(c,scd)
	if(skip_volumes-- <= 0)
	  scd.visit_shell_objects(SFace_const_handle(c->shells_begin()),V);
      B.end_surface();
    }

  };

  template <class HDS>
  class Build_polyhedron2 : public CGAL::Modifier_base<HDS> {
    
    class Find_holes {

      Unique_hash_map<Vertex_const_handle, bool>& omit_vertex;
      int nov, nof;

    public:
      Find_holes(Unique_hash_map<Vertex_const_handle, bool>& omit_vertex_) 
	: omit_vertex(omit_vertex_), nov(0), nof(0) {}

      void visit(Halffacet_const_handle f) {
	++nof;
	Halffacet_cycle_const_iterator fc = f->facet_cycles_begin();
	for(++fc; fc != f->facet_cycles_end(); ++fc) {
	  if(fc.is_shalfedge()) {
	    --nof;
	    SHalfedge_around_facet_const_circulator 
	      sfc(fc), send(sfc);
	    CGAL_For_all(sfc, send) {
	      omit_vertex[sfc->source()->source()] = true;
	      --nov;
	    }
	  } else if(fc.is_shalfloop()) {
	    SHalfloop_const_handle sl(fc);
	    omit_vertex[sl->incident_sface()->center_vertex()];
	    --nov;
	  } else
	    CGAL_error_msg( "wrong handle type");
	}
      }

      void visit(Vertex_const_handle) { ++nov; }
      void visit(SFace_const_handle) {}
      void visit(Halfedge_const_handle) {}
      void visit(SHalfedge_const_handle) {}
      void visit(SHalfloop_const_handle) {}

      int number_of_vertices() const {
	return nov;
      }

      int number_of_facets() const {
	return nof;
      }
    };

    class Add_vertices {
      
      Polyhedron_incremental_builder_3<HDS>& B;
      Unique_hash_map<Vertex_const_handle, bool>& omit_vertex;
      Object_index<Vertex_const_iterator>& VI;      
      int vertex_index;

    public:
      Add_vertices(Polyhedron_incremental_builder_3<HDS>& B_,
		   Unique_hash_map<Vertex_const_handle, bool>& omit_vertex_,
		   Object_index<Vertex_const_iterator>& VI_) 
	: B(B_), omit_vertex(omit_vertex_), VI(VI_), vertex_index(0) {}
	
      void visit(Vertex_const_handle v) {
	if(omit_vertex[v]) return;
	VI[v]=vertex_index++;
	B.add_vertex(v->point());
      }

      void visit(Halffacet_const_handle) {}
      void visit(SFace_const_handle) {}
      void visit(Halfedge_const_handle) {}
      void visit(SHalfedge_const_handle) {}
      void visit(SHalfloop_const_handle) {}

    };

    class Visitor {

      const Object_index<Vertex_const_iterator>& VI;
      Polyhedron_incremental_builder_3<HDS>& B;
      const Unique_hash_map<Vertex_const_handle, bool>& omit_vertex;
      SNC_const_decorator& D;
      
    public:
      Visitor(Polyhedron_incremental_builder_3<HDS>& BB,
	      const Unique_hash_map<Vertex_const_handle, bool>& omit_vertex_,
	      SNC_const_decorator& sd,
	      Object_index<Vertex_const_iterator>& vi) 
	: VI(vi), B(BB), omit_vertex(omit_vertex_), D(sd){}

      void visit(Halffacet_const_handle opposite_facet) {

	CGAL_NEF_TRACEN("Build_polyhedron: visit facet " << opposite_facet->plane());
 
	CGAL_assertion(Infi_box::is_standard(opposite_facet->plane()));
	
	SHalfedge_const_handle se;
	Halffacet_cycle_const_iterator fc;
     	
	Halffacet_const_handle f = opposite_facet->twin();

	fc = f->facet_cycles_begin();
	se = SHalfedge_const_handle(fc);
	CGAL_assertion(se!=0);
	if(omit_vertex[se->source()->source()]) return;
	B.begin_facet();
	SHalfedge_around_facet_const_circulator hc_start(se);
	SHalfedge_around_facet_const_circulator hc_end(hc_start);
	CGAL_For_all(hc_start,hc_end) {
	  CGAL_NEF_TRACEN("   add vertex " << hc_start->source()->center_vertex()->point());
	  B.add_vertex_to_facet(VI[hc_start->source()->center_vertex()]);
	}
	B.end_facet();
      }

      void visit(SFace_const_handle) {}
      void visit(Halfedge_const_handle) {}
      void visit(Vertex_const_handle) {}
      void visit(SHalfedge_const_handle) {}
      void visit(SHalfloop_const_handle) {}
    };

  public:

    SFace_const_handle sf;
    SNC_const_decorator& scd;
    Object_index<Vertex_const_iterator> VI;
    Unique_hash_map<Vertex_const_handle, bool> omit_vertex;

    Build_polyhedron2(SFace_const_handle sf_, SNC_const_decorator& s) : 
      sf(sf_), scd(s), VI(s.vertices_begin(),s.vertices_end(),'V'), 
      omit_vertex(false) {}
    
      void operator()(HDS& hds) {

      Polyhedron_incremental_builder_3<HDS> B(hds, true);
      
      Find_holes F(omit_vertex);
      scd.visit_shell_objects(sf, F);

      B.begin_surface(F.number_of_vertices(), 
		      F.number_of_facets(),
		      F.number_of_vertices()+F.number_of_facets()-2);

      Add_vertices A(B,omit_vertex, VI);
      scd.visit_shell_objects(sf, A);

      Visitor V(B,omit_vertex, scd,VI);
      scd.visit_shell_objects(sf, V);
      B.end_surface();
    }

  };


 public:
 void delegate( Modifier_base<SNC_structure>& modifier, 
		bool compute_external = false, 
		bool do_simplify = true) {

   // calls the `operator()' of the `modifier'. Precondition: The
   // `modifier' returns a consistent representation.
   if( this->is_shared()) clone_rep();
   modifier(snc());
   if(compute_external) {
     SNC_external_structure es(snc());
     es.clear_external_structure();
     
     build_external_structure();
   }
   if(do_simplify)
     simplify();
   CGAL_expensive_postcondition( is_valid());
 }

 struct SNC_and_PL {
   SNC_structure* sncp;
   SNC_point_locator* pl;

   SNC_and_PL(SNC_structure* s, SNC_point_locator* p) : sncp(s), pl(p) {}
 };

 void delegate( Modifier_base<SNC_and_PL>& modifier, 
		bool compute_external = false,
		bool do_simplify = false) {
   // calls the `operator()' of the `modifier'. Precondition: The
   // `modifier' returns a consistent representation.
   if( this->is_shared()) clone_rep();
   SNC_and_PL sncpl(&snc(),pl());
   modifier(sncpl);
   pl() = sncpl.pl;
   if(compute_external) {
     SNC_external_structure es(snc());
     es.clear_external_structure();
     build_external_structure();
   }
   if(do_simplify)
     simplify();
   CGAL_expensive_postcondition( is_valid());
 }
 
 public:

 template<typename Polyhedron>
 void convert_to_Polyhedron(Polyhedron& P) const {
   convert_to_polyhedron(P);
 }

 template<typename Polyhedron>
 void convert_to_polyhedron(Polyhedron& P) const {
   typedef typename Polyhedron::HalfedgeDS HalfedgeDS;
   CGAL_precondition(is_simple());
   P.clear();
   Build_polyhedron<HalfedgeDS> bp(*this);    
   P.delegate(bp);
 }

 template<typename Polyhedron>
 void convert_inner_shell_to_polyhedron(SFace_const_iterator sf, Polyhedron& P) {
   typedef typename Polyhedron::HalfedgeDS HalfedgeDS;
   P.clear();
   Build_polyhedron2<HalfedgeDS> bp(sf, *this);
   P.delegate(bp);
 }

  bool is_valid( bool verb = false, int level = 0) {
    // checks the combinatorial consistency.
    Verbose_ostream verr(verb);
    verr << "begin CGAL::Nef_polyhedron_3<...>::is_valid( verb=true, "
      "level = " << level << "):" << std::endl;

    SNC_decorator D(snc());
    bool valid = D.is_valid(verb, level);
    verr << "end of CGAL::Nef_polyhedron_3<...>::is_valid(): structure is "
	 << ( valid ? "valid." : "NOT VALID.") << std::endl;
    return valid;
  }

  bool is_simple() const {

    Halfedge_const_iterator e;
    CGAL_forall_edges(e,snc())
      if(!is_edge_2manifold(e))
	return false;

    CGAL_NEF_TRACEN("there is no edge with non-manifold situation");

    Vertex_const_iterator v;
    CGAL_forall_vertices(v,snc())
      if(!is_vertex_2manifold(v))
	return false;

    CGAL_NEF_TRACEN("there is no vertex with non-manifold situation");
/*
    Halffacet_iterator f;
    CGAL_forall_halffacets(f,snc())
      if(!is_facet_simple(f))
	return false;

    CGAL_NEF_TRACEN("there are no holes");
*/
    return true;
  }
 
 bool is_convex() const {
   
   Vertex_const_iterator v;
   CGAL_forall_vertices(v, *this) {

     SM_const_decorator SD(&*v);
     if(std::distance(SD.sfaces_begin(),SD.sfaces_end())!=2)
       return false;

     if(!Infi_box::is_standard(v->point())) continue;

     SFace_const_iterator sf;
     CGAL_forall_sfaces(sf,SD) {
       if(sf->volume() == Infi_box::getNirvana(snc())) continue;
       if(std::distance(sf->sface_cycles_begin(),sf->sface_cycles_end())!=1)
	 return false;
       SFace_cycle_const_iterator sfi(sf->sface_cycles_begin());
       if(!sfi.is_shalfedge())
	 return false;
       SHalfedge_const_handle se(sf->sface_cycles_begin());
       SHalfedge_around_sface_const_circulator sec(se),send(sec);
       CGAL_For_all(sec,send)
	 if(spherical_orientation(sec->source()->point(),
				  sec->snext()->source()->point(),
				  sec->snext()->snext()->source()->point())<0) {
	   std::cerr << "vertex at " << v->point() << " is not convex" << std::endl;
	   return false;
	 }
     }
   }
   return true;
 }

 private:  
  bool is_edge_2manifold(const Halfedge_const_handle& e) const {

    SM_decorator SD;
    SHalfedge_around_svertex_const_circulator c(SD.first_out_edge(e)), c2(c);

    if(c == 0) {
      CGAL_assertion(circulator_size(c) !=2);
      return false;
    }

    if(++c == c2){
      CGAL_assertion(circulator_size(c) !=2);
      return false;
    }

    if(++c != c2) { 
      CGAL_assertion(circulator_size(c) !=2);
      return false;
    }
    
    CGAL_assertion(circulator_size(c) == 2);
    return true;
  }
 
  bool is_vertex_2manifold(const Vertex_const_handle& v) const {
     
    SFace_const_iterator sfi(v->sfaces_begin());
    if (++sfi != v->sfaces_last())
      return false;

    return true;
  }

  bool is_facet_simple(const Halffacet_const_handle& f) const {
    
    bool found_first = false;
    Halffacet_cycle_const_iterator it; 
    CGAL_forall_facet_cycles_of(it,f)
      if (found_first || !it.is_shalfedge())
	return false;
      else
	found_first = true;
   
    return true;
  }

 public:
#ifdef CGAL_NEF3_OLD_VISUALIZATION   
  void visualize() { 
    Visualizor sncv(*this);
    sncv.draw();
    //OGL::polyhedra_.back().debug();
    OLDOGL::start_viewer();
  }
#endif // CGAL_NEF3_OLD_VISUALIZATION   
   
  void clear(Content space = EMPTY)
    { *this = Nef_polyhedron_3(space); }
  /*{\Mop makes |\Mvar| the empty set if |space == EMPTY| and the
  full space if |space == COMPLETE|.}*/

 bool is_empty() const {
   /*{\Mop returns true if |\Mvar| is empty, false otherwise.}*/
   if(Infi_box::extended_kernel()) 
     return this->number_of_vertices() == 8 &&
            this->number_of_edges() == 12 &&
            this->number_of_facets() == 6 &&
            this->number_of_volumes() == 2 &&
            (++this->volumes_begin())->mark() == false;

   else 
     return this->number_of_vertices() == 0 &&
            this->number_of_edges() == 0 &&
            this->number_of_facets() == 0 &&
            this->number_of_volumes() == 1 &&
            (this->volumes_begin())->mark() == false;
  }

 bool is_space() const {
  /*{\Mop returns true if |\Mvar| is the whole space, false otherwise.}*/
   if(Infi_box::extended_kernel()) 
     return this->number_of_vertices() == 8 &&
            this->number_of_edges() == 12 &&
            this->number_of_facets() == 6 &&
            this->number_of_volumes() == 2 &&
            (++this->volumes_begin())->mark() == true;

   else 
     return this->number_of_vertices() == 0 &&
            this->number_of_edges() == 0 &&
            this->number_of_facets() == 0 &&
            this->number_of_volumes() == 1 &&
            (this->volumes_begin())->mark() == true;
  }

  /*{\Xtext \headerline{Destructive Operations}}*/

 protected:
  void clone_rep() { *this = Nef_polyhedron_3<Kernel,Items, Mark>(snc(), pl()); }
  void empty_rep() { 
    SNC_structure rsnc;
    delete pl();
    *this = Nef_polyhedron_3<Kernel,Items, Mark>(rsnc, new SNC_point_locator_default,false);
  }

 public:
  Nef_polyhedron_3( const SNC_structure& W, 
		    SNC_point_locator* _pl = new SNC_point_locator_default,
		    bool clone_pl = true,
		    bool clone_snc = true);
  /*{\Xcreate makes |\Mvar| a new object.  If |cloneit==true| then the
  underlying structure of |W| is copied into |\Mvar|.}*/
  // TODO: granados: define behavior when clone=false

  /*{\Moperations 4 3 }*/

  void simplify() {
    SNC_simplify simp(snc());
    bool simplified = simp.simplify();
    CGAL_NEF_TRACEN( "simplify(): structure simplified? "<<simplified);
    
    if( simplified) {
#ifdef CGAL_NEF3_UPDATE_K3TREE_AFTER_SIMPLIFICATION
      /*debug*/ snc().print_statistics();
      Unique_hash_map<Vertex_handle, bool> 
	V(false, snc().number_of_vertices());
      Unique_hash_map<Halfedge_handle, bool> 
	E(false, snc().number_of_halfedges());
      Unique_hash_map<Halffacet_handle, bool> 
	F(false, snc().number_of_halffacets());
      Vertex_iterator v;
      Halfedge_iterator e;
      Halffacet_iterator f;
      CGAL_forall_vertices( v, snc()) V[Vertex_handle(v)] = true;
      CGAL_forall_halfedges( e, snc()) E[Halfedge_handle(e)] = true;
      CGAL_forall_halffacets( f, snc()) F[Halffacet_handle(f)] = true;
      bool updated = pl()->update( V, E, F);
      CGAL_NEF_TRACEN("simplify(): point locator structure updated? " << updated);
#else
      SNC_point_locator* old_pl = pl();
      pl() = pl()->clone();
      pl()->initialize(&snc());
      delete old_pl;
#endif
    }
  }

 public:
  Nef_polyhedron_S2 get_sphere_map(Vertex_const_handle v) const {
    return Nef_polyhedron_S2(*v);
  }

  void extract_complement();
  /*{\Xop converts |\Mvar| to its complement. }*/
  void extract_interior();
  /*{\Xop converts |\Mvar| to its interior. }*/
  void extract_boundary();
  /*{\Xop converts |\Mvar| to its boundary. }*/

  void extract_closure()
  /*{\Xop converts |\Mvar| to its closure. }*/
  { CGAL_NEF_TRACEN("extract closure");
    if( this->is_shared()) clone_rep();
    extract_complement();
    extract_interior();
    extract_complement();
  }

  void extract_regularization()
  /*{\Xop converts |\Mvar| to its regularization. }*/
  { CGAL_NEF_TRACEN("extract regularization");
    if( this->is_shared()) clone_rep();
    extract_interior();
    extract_closure();
  }

  /*{\Mtext \headerline{Constructive Operations}}*/

  Nef_polyhedron_3<Kernel,Items, Mark> complement() const
  /*{\Mop returns the complement of |\Mvar| in the plane. }*/
  { Nef_polyhedron_3<Kernel,Items, Mark> res = *this;
    res.extract_complement();
    return res;
  }

  Nef_polyhedron_3<Kernel,Items, Mark> interior() const
  /*{\Mop    returns the interior of |\Mvar|. }*/
  { Nef_polyhedron_3<Kernel,Items, Mark> res = *this;
    res.extract_interior();
    return res;
  }

  Nef_polyhedron_3<Kernel,Items, Mark> closure() const
  /*{\Mop returns the closure of |\Mvar|. }*/
  { Nef_polyhedron_3<Kernel,Items, Mark> res = *this;
    res.extract_closure();
    return res;
  }

  Nef_polyhedron_3<Kernel,Items, Mark> boundary() const
  /*{\Mop returns the boundary of |\Mvar|. }*/
  { Nef_polyhedron_3<Kernel,Items, Mark> res = *this;
    res.extract_boundary();
    return res;
  }

  Nef_polyhedron_3<Kernel,Items, Mark> regularization() const
  /*{\Mop    returns the regularized polyhedron (closure of 
    the interior).}*/
  { Nef_polyhedron_3<Kernel,Items, Mark> res = *this;
    res.extract_regularization();
    return res;
  }

  Nef_polyhedron_3<Kernel,Items, Mark>
  intersection(const Nef_polyhedron_3<Kernel,Items, Mark>& N1) const
    /*{\Mop returns |\Mvar| $\cap$ |N1|. }*/ {
    CGAL_NEF_TRACEN(" intersection between nef3 "<<&*this<<" and "<<&N1);
    AND _and;
    SNC_structure rsnc;
    Nef_polyhedron_3<Kernel,Items, Mark> res(rsnc, new SNC_point_locator_default, false);
    Binary_operation bo( res.snc());
    bo(res.pl(), snc(), pl(), N1.snc(), N1.pl(), _and);
    return res;
  }

  Nef_polyhedron_3<Kernel,Items, Mark>
   intersection(const Plane_3& plane, 
		Intersection_mode im) const {
    AND _and;
    SNC_structure rsnc;
    Nef_polyhedron_3<Kernel,Items, Mark> res(rsnc, new SNC_point_locator_default, false);
    Combine_with_halfspace cwh(res.snc(), res.pl());
    cwh.combine_with_halfspace(snc(), plane, _and, 
							   static_cast<typename Combine_with_halfspace::Intersection_mode>(im));
    return res;
  }

  Nef_polyhedron_3<Kernel,Items, Mark> 
  join(const Nef_polyhedron_3<Kernel,Items, Mark>& N1) const
  /*{\Mop returns |\Mvar| $\cup$ |N1|. }*/ { 
    CGAL_NEF_TRACEN(" join between nef3 "<<&*this<<" and "<<&N1);
    OR _or;
    //CGAL::binop_intersection_tests_allpairs<SNC_decorator, OR> tests_impl;
    SNC_structure rsnc;
    Nef_polyhedron_3<Kernel,Items, Mark> res(rsnc, new SNC_point_locator_default, false);
    Binary_operation bo(res.snc());
    bo(res.pl(), snc(), pl(), N1.snc(), N1.pl(), _or);
    return res;
  }

  Nef_polyhedron_3<Kernel,Items, Mark> 
  difference(const Nef_polyhedron_3<Kernel,Items, Mark>& N1) const
  /*{\Mop returns |\Mvar| $-$ |N1|. }*/ { 
    CGAL_NEF_TRACEN(" difference between nef3 "<<&*this<<" and "<<&N1);
    DIFF _diff;
    //CGAL::binop_intersection_tests_allpairs<SNC_decorator, DIFF> tests_impl;
    SNC_structure rsnc;
    Nef_polyhedron_3<Kernel,Items, Mark> res(rsnc, new SNC_point_locator_default, false);
    Binary_operation bo(res.snc());
    bo(res.pl(), snc(), pl(), N1.snc(), N1.pl(), _diff);
    return res;
  }    

  Nef_polyhedron_3<Kernel,Items, Mark> 
  symmetric_difference(const Nef_polyhedron_3<Kernel,Items, Mark>& N1) const
  /*{\Mop returns the symmectric difference |\Mvar - T| $\cup$ 
          |T - \Mvar|. }*/ {
    CGAL_NEF_TRACEN(" symmetic difference between nef3 "<<&*this<<" and "<<&N1);
    XOR _xor;
    //CGAL::binop_intersection_tests_allpairs<SNC_decorator, XOR> tests_impl;
    SNC_structure rsnc;
    Nef_polyhedron_3<Kernel,Items, Mark> res(rsnc, new SNC_point_locator_default, false);
    Binary_operation bo(res.snc());
    bo(res.pl(), snc(), pl(), N1.snc(), N1.pl(), _xor);
    return res;
  }


  /*{\Mtext Additionally there are operators |*,+,-,^,!| which
  implement the binary operations \emph{intersection}, \emph{union},
  \emph{difference}, \emph{symmetric difference}, and the unary
  operation \emph{complement}. There are also the corresponding
  modification operations |*=,+=,-=,^=|.}*/

  Nef_polyhedron_3<Kernel,Items, Mark>  operator*(const Nef_polyhedron_3<Kernel,Items, Mark>& N1) const 
  { return intersection(N1); }

  Nef_polyhedron_3<Kernel,Items, Mark>  operator+(const Nef_polyhedron_3<Kernel,Items, Mark>& N1) const
  { return join(N1); }

  Nef_polyhedron_3<Kernel,Items, Mark>  operator-(const Nef_polyhedron_3<Kernel,Items, Mark>& N1) const
  { return difference(N1); }

  Nef_polyhedron_3<Kernel,Items, Mark>  operator^(const Nef_polyhedron_3<Kernel,Items, Mark>& N1) const
  { return symmetric_difference(N1); }

  Nef_polyhedron_3<Kernel,Items, Mark>  operator!() const
  { return complement(); }
   
  Nef_polyhedron_3<Kernel,Items, Mark>& operator*=(const Nef_polyhedron_3<Kernel,Items, Mark>& N1)
  { 
#ifdef CGAL_NEF_VISUAL_HULL
    CGAL_NEF_SETDTHREAD(19*43*71);
    std::cerr << "visual hull code " << std::endl;
    std::cerr << *this << std::endl;
    std::cerr << const_cast<Nef_polyhedron&>(N1) << std::endl;
    AND _and;
    typename CGAL::Modifying_binary_operation<SNC_structure> 
      mbo(this->snc());
    mbo(const_cast<SNC_structure&>(N1.snc()), N1.pl(), pl(), _and);
    return *this;
#else
    *this = intersection(N1); return *this; 
#endif
  }

  Nef_polyhedron_3<Kernel,Items, Mark>& operator+=(const Nef_polyhedron_3<Kernel,Items, Mark>& N1)
  { *this = join(N1); return *this; }

  Nef_polyhedron_3<Kernel,Items, Mark>& operator-=(const Nef_polyhedron_3<Kernel,Items, Mark>& N1)
  { *this = difference(N1); return *this; }

  Nef_polyhedron_3<Kernel,Items, Mark>& operator^=(const Nef_polyhedron_3<Kernel,Items, Mark>& N1)
  { *this = symmetric_difference(N1); return *this; }

  /*{\Mtext There are also comparison operations like |<,<=,>,>=,==,!=|
  which implement the relations subset, subset or equal, superset, superset
  or equal, equality, inequality.}*/

  bool operator==(const Nef_polyhedron_3<Kernel,Items, Mark>& N1) const
  { CGAL_NEF_TRACEN(" equality comparision between nef3 "<<&*this<<" and "<<&N1);
    return symmetric_difference(N1).is_empty(); }

  bool operator!=(const Nef_polyhedron_3<Kernel,Items, Mark>& N1) const
  { CGAL_NEF_TRACEN(" inequality comparision between nef3 "<<&*this<<" and "<<&N1);
    return !operator==(N1); }  

  bool operator<(const Nef_polyhedron_3<Kernel,Items, Mark>& N1) const
  { return !N1.difference(*this).is_empty() && difference(N1).is_empty(); } 

  bool operator>(const Nef_polyhedron_3<Kernel,Items, Mark>& N1) const
  { return difference(*this).is_empty() && !difference(N1).is_empty(); } 

  bool operator<=(const Nef_polyhedron_3<Kernel,Items, Mark>& N1) const
  { return difference(N1).is_empty(); } 

  bool operator>=(const Nef_polyhedron_3<Kernel,Items, Mark>& N1) const
  { return N1.difference(*this).is_empty(); } 


 bool is_90degree_rotation(const Aff_transformation_3& aff) const {
   if(aff.hm(0,3) != 0) return false;
   if(aff.hm(1,3) != 0) return false;
   if(aff.hm(2,3) != 0) return false;
   if(CGAL_NTS abs(aff.hm(0,0)) + 
      CGAL_NTS abs(aff.hm(0,1)) + 
      CGAL_NTS abs(aff.hm(0,2)) != aff.hm(3,3)) return false;
   if(CGAL_NTS abs(aff.hm(1,0)) + 
      CGAL_NTS abs(aff.hm(1,1)) + 
      CGAL_NTS abs(aff.hm(1,2)) != aff.hm(3,3)) return false;
   if(CGAL_NTS abs(aff.hm(2,0)) + 
      CGAL_NTS abs(aff.hm(2,1)) + 
      CGAL_NTS abs(aff.hm(2,2)) != aff.hm(3,3)) return false;
   if(CGAL_NTS abs(aff.hm(0,0)) + 
      CGAL_NTS abs(aff.hm(1,0)) + 
      CGAL_NTS abs(aff.hm(2,0)) != aff.hm(3,3)) return false;
   if(CGAL_NTS abs(aff.hm(0,1)) + 
      CGAL_NTS abs(aff.hm(1,1)) + 
      CGAL_NTS abs(aff.hm(2,1)) != aff.hm(3,3)) return false;
   if(CGAL_NTS abs(aff.hm(0,2)) + 
      CGAL_NTS abs(aff.hm(1,2)) + 
      CGAL_NTS abs(aff.hm(2,2)) != aff.hm(3,3)) return false;
   return true;
 }

 bool is_scaling(const Aff_transformation_3& aff) const {
   if(aff.hm(0,3) != 0) return false;
   if(aff.hm(1,3) != 0) return false;
   if(aff.hm(2,3) != 0) return false;   
   if(aff.hm(0,1) != 0) return false;
   if(aff.hm(0,2) != 0) return false;
   if(aff.hm(1,0) != 0) return false;   
   if(aff.hm(1,2) != 0) return false;
   if(aff.hm(2,0) != 0) return false;
   if(aff.hm(2,1) != 0) return false;
   if(aff.hm(0,0) != aff.hm(1,1)) return false;
   if(aff.hm(0,0) != aff.hm(2,2)) return false;
   return true;
 }

 void change_orientation(bool full = false) {

   Halffacet_handle ftemp;
   Volume_handle vtemp;
   SVertex_handle svtemp;
   SHalfedge_handle setemp;
   SFace_handle sftemp;

   SVertex_iterator sv;
   CGAL_forall_svertices(sv, snc()) {
     sv->out_sedge() = sv->out_sedge()->twin();
   }

   SHalfedge_iterator se;
   CGAL_forall_shalfedges(se, snc()) {
     if(se->is_twin()) {
       svtemp = se->source();
       se->source() = se->twin()->source();
       se->twin()->source() = svtemp;

       if(full) {
	 ftemp = se->facet();
	 se->facet() = se->twin()->facet();
	 se->twin()->facet() = ftemp;
       }
       //       sftemp = se->incident_sface();
       //       se->incident_sface() = se->twin()->incident_sface();
       //       se->twin()->incident_sface() = sftemp;
     }
       
     setemp = se->sprev();
     se->sprev() = se->snext();
     se->snext() = setemp;

     se->circle() = se->circle().opposite();

     if(full) {
       setemp = se->prev();
       se->prev() = se->next();
       se->next() = setemp;
     }
   }

   if(full) {
     Halffacet_iterator f;
     CGAL_forall_facets(f, snc()) {
       vtemp  = f->incident_volume();
       f->incident_volume() = f->twin()->incident_volume();
       f->twin()->incident_volume() = vtemp;
       Halffacet_cycle_iterator fc(f->facet_cycles_begin()),
	 fct(f->twin()->facet_cycles_begin());
       while(fc!=f->facet_cycles_end()) {
	 CGAL_assertion(fct!=f->twin()->facet_cycles_end());
	 if(fc.is_shalfedge()) {
	   CGAL_assertion(fct.is_shalfedge());
	   setemp = fc;
	   *fc = *fct;
	   *fct = make_object(setemp);
	 }
	 ++fc;
	 ++fct;
       }
     }
   
     CGAL_forall_halffacets(f, snc()) {
       Halffacet_cycle_iterator fc(f->facet_cycles_begin());
       for(;fc!=f->facet_cycles_end();++fc) {
	 if(fc.is_shalfedge()) {
	   setemp = fc;
	   SHalfedge_around_facet_circulator hfc(setemp),hend(hfc);
	   ++hfc;
	   CGAL_For_all(hfc,hend) {
	     if ( CGAL::lexicographically_xyz_smaller(hfc->source()->source()->point(),
						      setemp->source()->source()->point()))
	       setemp = hfc;
	   }
	   *fc = make_object(setemp);
	 }
       }
     }
   }
 }

  void transform( const Aff_transformation_3& aff) {
    
    if( this->is_shared())
      clone_rep();
    // only linear transform for the origin-centered sphere maps
    Aff_transformation_3 linear( aff.hm(0,0), aff.hm(0,1), aff.hm(0,2),
				 aff.hm(1,0), aff.hm(1,1), aff.hm(1,2),
				 aff.hm(2,0), aff.hm(2,1), aff.hm(2,2),
				 aff.hm(3,3));
    
    SNC_constructor cstr(snc());
    
    std::list<Vertex_handle> vertex_list;
    std::list<Vertex_handle> corner_list;
    std::list<Vertex_handle> delete_list;
    typename std::list<Vertex_handle>::iterator li;
    typename std::list<Vertex_handle>::iterator li2;

    bool ninety = is_90degree_rotation(aff);
    bool scale = is_scaling(aff);

    Vertex_iterator vi;
    CGAL_forall_vertices( vi, snc()) {
      
      CGAL_NEF_TRACEN("transform vertex ");
      if(scale) {
	if(is_standard(vi))
	  vi->point() = vi->point().transform( aff);
	else if(!Infi_box::is_infibox_corner(vi->point())) {
	  vi->point() = normalized(Infi_box::normalize_transformed_vertex(vi->point().transform(aff)));
	}
      } else if (!is_standard(vi) && !ninety) {
	if(Infi_box::is_infibox_corner(vi->point()))
	  corner_list.push_back(vi);
	vertex_list.push_back(vi);
      } else {
	vi->point() = vi->point().transform( aff);
	SM_decorator sdeco(&*vi);
	sdeco.transform( linear);
      }
    }

    if(!this->is_bounded() && !ninety && !scale) {
      Halffacet_iterator fi;
      CGAL_forall_facets(fi, snc()) {
	if(!is_standard(fi) || is_bounded(fi)) continue;
	Plane_3 pt = fi->plane();
	pt = pt.transform(aff);
	std::list<Point_3> points(Infi_box::find_points_of_box_with_plane(cstr,pt));
	std::list<Vertex_handle> newVertices;
	newVertices = Infi_box::create_vertices_on_infibox(cstr,
							   pt, points, fi->mark(), 
							   fi->twin()->incident_volume()->mark(), 
							   fi->incident_volume()->mark());

	for(li = newVertices.begin(); li != newVertices.end(); ++li) {
	  if(Infi_box::is_infibox_corner((*li)->point())) {
	    li2 = corner_list.begin();
	    while(li2 != corner_list.end() && (*li2)->point() != (*li)->point()) ++li2;
	    CGAL_assertion(li2 != corner_list.end());
	    delete_list.push_back(*li2);
	    *li2 = *li;
	  }
	}
      }
      
      for(li = vertex_list.begin(); li != vertex_list.end();++li) {
	SM_decorator SD(&**li);
	if(Infi_box::is_complex_facet_infibox_intersection(**li)) {
	  Halffacet_handle hf[2];
	  int i=0;
	  SHalfedge_iterator sei;
	  CGAL_forall_sedges(sei,SD) {
	    if(!Infi_box::is_sedge_on_infibox(sei)) {
	      hf[i] = sei->facet();
	      if(hf[i]->is_twin()) hf[i] = hf[i]->twin();
	      ++i;
	    }
	    if(i>1)
	      break;
	  }
	}
      }

      Association A;
      SNC_external_structure es(snc());
      es.clear_external_structure();
      for(li = vertex_list.begin(); li != vertex_list.end();++li){
	if(Infi_box::is_complex_facet_infibox_intersection(**li)) {
	  Vertex_handle v2;
	  Vertex_handle v1 = cstr.create_for_infibox_overlay(*li);
	  v1->point() = normalized(Infi_box::normalize_transformed_vertex((*li)->point().transform(aff)));
	  SM_decorator sdeco(&*v1);
	  sdeco.transform(linear);	    
	  switch(Infi_box::type_of_infibox_point(v1->point())) {
	  case 1: 
	    v2 = cstr.create_from_point_on_infibox_facet(v1->point()); 
	    break;
	  case 2: 
	    v2 = cstr.create_from_point_on_infibox_edge(v1->point());
	    break;
	  case 3: 
	    v2 = cstr.create_from_point_on_infibox_vertex(v1->point());
	    li2 = corner_list.begin();
	    while(li2 != corner_list.end() && (*li2)->point() != v2->point()) ++li2;
	    if(li2 != corner_list.end())
	      delete_list.push_back(*li2);
	    break;
	  default: CGAL_error_msg( "wrong value");
	  }
	  Vertex_handle v = snc().new_vertex(v1->point(), (*li)->mark());
	  SM_overlayer O(&*v);
	  O.subdivide(&*v1, &*v2, A);
	  AND _and;
	  O.select(_and);
	  O.simplify(A);
	  snc().delete_vertex(v1);
	  snc().delete_vertex(v2);
	}
	
	if(Infi_box::is_infibox_corner((*li)->point())) {
	  SM_decorator SD(&**li);
	  if(SD.number_of_svertices() < 4)
	    continue;
	  li2 = corner_list.begin();
	  while(li2 != corner_list.end() && (*li2)->point() != (*li)->point()) ++li2;
	  CGAL_assertion(li2 != corner_list.end());
	  if(*li == *li2) {
	    delete_list.push_back(*li2);
	    *li2 = cstr.create_from_point_on_infibox_vertex((*li)->point());
	  }
	} else 
	  snc().delete_vertex(*li);	  
      }

      for(li = delete_list.begin(); li != delete_list.end(); ++li)
	snc().delete_vertex(*li);

      if(!aff.is_even())
	change_orientation();

      while(cstr.erase_redundant_vertices()) ;
      cstr.correct_infibox_sedge_marks();

      build_external_structure();
      cstr.correct_infibox_sface_marks();

      // are the upcoming lines necessary? 
      SNC_point_locator* old_pl = pl();
      pl() = pl()->clone();
      pl()->initialize(&snc());
      delete old_pl;   

    } else {
      Halffacet_iterator fi;
      CGAL_forall_halffacets(fi,snc()) {
	if(is_standard(fi) || ninety) {
	  fi->plane() = fi->plane().transform( aff);
#ifdef CGAL_NEF3_FACET_WITH_BOX 
	  typedef typename Halffacet::Box Box;
	  bool first = true;
	  Halffacet_cycle_iterator cycle_it = fi->facet_cycles_begin();
	  if( cycle_it.is_shalfedge() ) {
	    SHalfedge_iterator edge_it(cycle_it);
	    SHalfedge_around_facet_circulator
	      start( edge_it ), end( edge_it );
	    CGAL_For_all( start, end ) {
	      const Point_3& p = start->source()->source()->point();
	      typename Kernel::FT q[3];
	      q[0] = p.x();
	      q[1] = p.y();
	      q[2] = p.z();
	      if(first) {
		fi->b = Box(q,q);
		first = false;
	      } else
		fi->b.extend(q);
	    }
	  } else
	    CGAL_error_msg( "is facet first cycle a SHalfloop?"); 
#endif
	}
      }    

      if(!aff.is_even())
	change_orientation(true);

      if(aff.homogeneous(0,1) != 0 ||
	 aff.homogeneous(0,2) != 0 ||
	 aff.homogeneous(1,0) != 0 ||
	 aff.homogeneous(1,2) != 0 ||
	 aff.homogeneous(2,0) != 0 ||
	 aff.homogeneous(2,1) != 0 ||
	 aff.homogeneous(0,0) != aff.homogeneous(1,1) ||
	 aff.homogeneous(0,0) != aff.homogeneous(2,2) ||
	 !this->is_bounded()) {
	   SNC_point_locator* old_pl = pl();
	   pl() = pl()->clone();
	   pl()->initialize(&snc());
	   delete old_pl;   
	 }
      else pl()->transform(aff); 
    }

    SNC_constructor C(snc());
    C.assign_indices(); 
  }
  
  /*{\Mtext \headerline{Exploration}
  As Nef polyhedra are the result of forming complements 
  and intersections starting from a set |H| of halfspaces which are
  defined by oriented planes in three space. The corresponding 
  structure is represented by an extended wuerzburg structure 
  $W = (V,E,F,C)$. For topological queries within |W| the following 
  types and operations allow exploration access to this structure.}*/

  /*{\Mtypes 3}*/
    
    typedef CGAL::SNC_SM_explorer<SM_const_decorator>  SM_explorer;

    SM_explorer SMexplorer(Vertex_const_handle v) const { 
      SM_const_decorator SMCD(&*v);
      return SM_explorer(SMCD); 
    }

  typedef typename SNC_structure::Object_list Object_list;
  typedef typename SNC_structure::Object_handle Object_handle;
  /*{\Mtypemember a generic handle to an object of the underlying
  plane map. The kind of object |(vertex, halfedge, face)| can 
  be determined and the object can be assigned to a corresponding
  handle by the three functions:\\
  |bool assign(Vertex_const_handle& h, Object_handle)|\\
  |bool assign(Edge_const_handle& h, Object_handle)|\\
  |bool assign(Facet_const_handle& h, Object_handle)|\\
  |bool assign(Volume_const_handle& h, Object_handle)|\\
  where each function returns |true| iff the assignment to
  |h| was done.}*/

  /*{\Moperations 3 1 }*/

  bool contains(Object_handle /*h*/) const
  /*{\Mop  returns true iff the object |h| is contained in the set
  represented by |\Mvar|.}*/
    // { SNC_point_locator PL(snc()); return PL.mark(h);} 
    { CGAL_error_msg( "not implemented."); return false;}

  bool contained_in_boundary(Object_handle h) const
  /*{\Mop  returns true iff the object |h| is contained in the $2$-skeleton
  of |\Mvar|.}*/
  { Vertex_const_handle v;
    Halfedge_const_handle e;
    Halffacet_const_handle f;
    return  ( assign(v,h) || assign(e,h) || assign(f,h) );
  }

  Object_handle locate(const Point_3& p) const
  /*{\Mop  returns a generic handle |h| to an object (vertex, edge, facet,
  volume) of the underlying SNC which contains the point |p| in its relative 
  interior. The point |p| is contained in the set represented by |\Mvar| if 
  |\Mvar.contains(h)| is true.}*/ {
    CGAL_NEF_TRACEN( "locating point...");
    CGAL_assertion( pl() != NULL);

    Object_handle o = pl()->locate(p);
    
    Vertex_handle v;
    Halfedge_handle e;
    Halffacet_handle f;
    Volume_handle c;
    if(assign(v,o)) return make_object(Vertex_const_handle(v));
    if(assign(e,o)) return make_object(Halfedge_const_handle(e));
    if(assign(f,o)) return make_object(Halffacet_const_handle(f));
    if(assign(c,o)) return make_object(Volume_const_handle(c));

    return Object_handle();
  }

  /*{\Mimplementation Nef polyhedra are implemented on top of an
  extended Wuerzburg structure data structure (EWS) and use linear
  space in the number of vertices, edges and facets.  Operations like
  empty take constant time. The operations clear, complement, interior,
  closure, boundary, regularization, input and output take linear
  time. All binary set operations and comparison operations take time
  $O(N^2)$ where $N$ is the size of the output plus the size of the
  input.

  The point location operations run in linear query time without any 
  preprocessing.}*/

  /*{\Mexample Nef polyhedra are parameterized by a so called extended
  geometric kernel. There's currently only one such kernel based on a
  homogeneous representation of extended points called
  |Extended_homogeneous<NT>|.  The kernel is parameterized by a
  multiprecision integer type. The member types of |Nef_polyhedron_3<
  Extended_homogeneous_3<NT> >| map to corresponding types of the CGAL
  geometry kernel (e.g. |Nef_polyhedron::Plane_3| equals
  |CGAL::Homogeneous<leda_integer>::Plane_3| in the example below).
  \begin{Mverb}
  #include <CGAL/basic.h>
  #include <CGAL/leda_integer.h>
  #include <CGAL/Extended_homogeneous.h>
  #include <CGAL/Nef_polyhedron_3.h>

  using namespace CGAL;
  typedef  Extended_homogeneous<leda_integer>   Extended_kernel;
  typedef  Nef_polyhedron_3<Extended_kernel>    Nef_polyhedron;
  typedef  Nef_polyhedron::Plane_3              Plane_3;

  int main()
  {
    Nef_polyhedron N1(Plane_3(1,0,0,0));
    Nef_polyhedron N2(Plane_3(0,1,0,0), Nef_polyhedron::EXCLUDED);
    Nef_polyhedron N3 = N1 * N2; // line (*)
    return 0;
  }
  \end{Mverb}
  After line (*) |N3| is the intersection of |N1| and |N2|.}*/

  std::size_t bytes() {
    // bytes used for the Nef_polyhedron_3.
    return sizeof(Self) + (snc().bytes() - sizeof(SNC_structure));
  }

  std::size_t bytes_reduced() {
    // bytes used for the Nef_polyhedron_3.
    std::cout << sizeof(Self) + (snc().bytes_reduced2() - sizeof(SNC_structure)) << std::endl;
    return sizeof(Self) + (snc().bytes_reduced() - sizeof(SNC_structure));
  }

}; // end of Nef_polyhedron_3

template <typename Kernel, typename Items, typename Mark>
Nef_polyhedron_3<Kernel,Items, Mark>::
Nef_polyhedron_3( Content space) {
  CGAL_NEF_TRACEN("construction from empty or space.");
  empty_rep();
  set_snc(snc());
  if(Infi_box::extended_kernel()) {
    initialize_infibox_vertices(space);
    build_external_structure();
  } else {
    build_external_structure();
    snc().volumes_begin()->mark() = (space == COMPLETE) ? 1 : 0;
  }
}

template <typename Kernel, typename Items, typename Mark>
Nef_polyhedron_3<Kernel,Items, Mark>::
Nef_polyhedron_3(const Plane_3& h, Boundary b) {
  CGAL_NEF_TRACEN("construction from plane "<<h);
  empty_rep();
  set_snc(snc());
  SNC_constructor C(snc());
  Infi_box::create_vertices_of_box_with_plane(C,h,(b==INCLUDED));
  build_external_structure();
  /*
  if(Infi_box::extended_kernel()) {
    SNC_structure snc1, snc2;
    SNC_point_locator* pl1 = new SNC_point_locator_default; 
    SNC_point_locator* pl2 = new SNC_point_locator_default; 

    SNC_constructor c1(snc1); 
    Infi_box::initialize_infibox_vertices(c1, true);
    SNC_external_structure es1(snc1, pl1);
    es1.build_external_structure();

    SNC_constructor c2(snc2);
    c2.create_vertices_for_halfspace(h, b);
    SNC_external_structure es2(snc2, pl2);
    es2.pair_up_halfedges();
    es2.link_shalfedges_to_facet_cycles();
    c2.create_facets_and_volumes_of_halfspace(h);
    pl2->initialize(&snc2);

    AND _and;
    Binary_operation bo(snc());
    bo(pl(), snc1, pl1, snc2, pl2, _and);
    
    delete pl1;
    delete pl2;
  } else
    CGAL_error_msg
      ("Constructor is only available with extended kernels");
  */
}
 
template <typename Kernel, typename Items, typename Mark>
Nef_polyhedron_3<Kernel,Items, Mark>::
Nef_polyhedron_3( const SNC_structure& W, SNC_point_locator* _pl, 
		  bool clone_pl,
		  bool clone_snc) {
  CGAL_assertion( clone_snc == true || clone_pl == false);
  // TODO: granados: define behavior when clone=false
  //  CGAL_NEF_TRACEN("construction from an existing SNC structure (clone="<<clone<<")"); 

  this->copy_on_write();
  if(clone_snc) {
    snc() = W;
    set_snc(snc());
  }
  if(clone_pl) {
    pl() = _pl->clone();
    pl()->initialize(&snc());
  } 
  else
    pl() = _pl;
}

template <typename Kernel, typename Items, typename Mark>
void
Nef_polyhedron_3<Kernel,Items, Mark>::
extract_complement() {
  CGAL_NEF_TRACEN("extract complement");
  if( this->is_shared()) clone_rep();
  SNC_decorator D(snc());
  Vertex_iterator v;
  CGAL_forall_vertices(v,D){
    v->mark() = !v->mark(); 
    SM_decorator SM(&*v);
    SM.extract_complement();
  }

  Halffacet_iterator f;
  CGAL_forall_halffacets(f,D) f->mark() = !f->mark(); 
 
  Volume_iterator c;
  CGAL_forall_volumes(c,D) 
    //    if(!(Infi_box::extended_kernel && c==D.volumes_begin()))
      c->mark() = !c->mark();
}

template <typename Kernel, typename Items, typename Mark>
void
Nef_polyhedron_3<Kernel,Items, Mark>::
extract_interior() {
  CGAL_NEF_TRACEN("extract interior");
  if (this->is_shared()) clone_rep();
  SNC_decorator D(snc());
  Vertex_iterator v;
  CGAL_forall_vertices(v,D){
    v->mark() = false;
    SM_decorator SM(&*v);
    SM.extract_interior();
  }
  Halffacet_iterator f;
  CGAL_forall_halffacets(f,D) f->mark() = false;

  simplify();
}

template <typename Kernel, typename Items, typename Mark>
void
Nef_polyhedron_3<Kernel,Items, Mark>::
extract_boundary() {
  CGAL_NEF_TRACEN("extract boundary");
  if (this->is_shared()) clone_rep();
  SNC_decorator D(snc());
  Vertex_iterator v;
  CGAL_forall_vertices(v,D) {
    v->mark() = true;
    SM_decorator SM(&*v);
    SM.extract_boundary();
  }
  Halffacet_iterator f;
  CGAL_forall_halffacets(f,D) f->mark() = true;
  Volume_iterator c;
  CGAL_forall_volumes(c,D) c->mark() = false;
  simplify();
}

} //namespace CGAL

#endif //CGAL_NEF_POLYHEDRON_3_H