/usr/include/CGAL/NewKernel_d/utils.h is in libcgal-dev 4.5-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 | // Copyright (c) 2014
// INRIA Saclay-Ile de France (France)
//
// This file is part of CGAL (www.cgal.org); you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; either version 3 of the License,
// or (at your option) any later version.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL$
// $Id$
//
// Author(s) : Marc Glisse
#ifndef CGAL_MARCUTILS
#define CGAL_MARCUTILS
#include <CGAL/config.h>
#ifdef CGAL_CXX11
#include <type_traits>
#include <utility>
#define CGAL_FORWARDABLE(T) T&&
#define CGAL_FORWARD(T,t) std::forward<T>(t)
#define CGAL_MOVE(t) std::move(t)
#define CGAL_CONSTEXPR constexpr
#else
#define CGAL_FORWARDABLE(T) T const&
#define CGAL_FORWARD(T,t) t
#define CGAL_MOVE(t) t
#define CGAL_CONSTEXPR
#endif
#include <boost/utility/enable_if.hpp>
#include <boost/preprocessor/repetition.hpp>
#include <CGAL/Rational_traits.h>
#include <CGAL/tuple.h>
#include <boost/mpl/has_xxx.hpp>
#include <boost/mpl/not.hpp>
#include <boost/type_traits.hpp>
#ifdef CGAL_CXX11
#define CGAL_BOOSTD std::
#else
#define CGAL_BOOSTD boost::
#endif
namespace CGAL {
namespace internal {
BOOST_MPL_HAS_XXX_TRAIT_DEF(type)
}
template <class T, class No, bool=internal::has_type<T>::value /*false*/>
struct Has_type_different_from : boost::false_type {};
template <class T, class No>
struct Has_type_different_from <T, No, true>
: boost::mpl::not_<boost::is_same<typename T::type, No> > {};
template <class T> struct Wrap_type { typedef T type; };
// tell a function f(a,b,c) that its real argument is a(b,c)
struct Eval_functor {};
// forget the first argument. Useful to make something dependant
// (and thus usable in SFINAE), although that's not a great design.
template<class A,class B> struct Second_arg {
typedef B type;
};
// like std::forward, except for basic types where it does a cast, to
// avoid issues with narrowing conversions
#ifdef CGAL_CXX11
template<class T,class U,class V> inline
typename std::conditional<std::is_arithmetic<T>::value&&std::is_arithmetic<typename std::remove_reference<U>::type>::value,T,U&&>::type
forward_safe(V&& u) { return std::forward<U>(u); }
#else
template<class T,class U> inline U const& forward_safe(U const& u) {
return u;
}
#endif
#ifdef CGAL_CXX11
template<class...> struct Constructible_from_each;
template<class To,class From1,class...From> struct Constructible_from_each<To,From1,From...>{
enum { value=std::is_convertible<From1,To>::value&&Constructible_from_each<To,From...>::value };
};
template<class To> struct Constructible_from_each<To>{
enum { value=true };
};
#else
// currently only used in C++0X code
#endif
template<class T> struct Scale {
T const& scale;
Scale(T const& t):scale(t){}
template<class FT>
#ifdef CGAL_CXX11
auto operator()(FT&& x)const->decltype(scale*std::forward<FT>(x))
#else
FT operator()(FT const& x)const
#endif
{
return scale*CGAL_FORWARD(FT,x);
}
};
template<class NT,class T> struct Divide {
#if !defined(CGAL_CXX11) || !defined(BOOST_RESULT_OF_USE_DECLTYPE)
// requires boost > 1.44
// shouldn't be needed with C++0X
//template<class> struct result;
//template<class FT> struct result<Divide(FT)> {
// typedef FT type;
//};
typedef NT result_type;
#endif
T const& scale;
Divide(T const& t):scale(t){}
template<class FT>
#ifdef CGAL_CXX11
//FIXME: gcc complains for Gmpq
//auto operator()(FT&& x)const->decltype(Rational_traits<NT>().make_rational(std::forward<FT>(x),scale))
NT operator()(FT&& x)const
#else
NT operator()(FT const& x)const
#endif
{
return Rational_traits<NT>().
make_rational(CGAL_FORWARD(FT,x),scale);
}
};
template <class NT> struct has_cheap_constructor : boost::is_arithmetic<NT>{};
template <bool p> struct has_cheap_constructor<Interval_nt<p> > {
enum { value=true };
};
// like std::multiplies but allows mixing types
// in C++11 in doesn't need to be a template
template < class Ret >
struct multiplies {
template<class A,class B>
#ifdef CGAL_CXX11
auto operator()(A&&a,B&&b)const->decltype(std::forward<A>(a)*std::forward<B>(b))
#else
Ret operator()(A const& a, B const& b)const
#endif
{
return CGAL_FORWARD(A,a)*CGAL_FORWARD(B,b);
}
};
template < class Ret >
struct division {
template<class A,class B>
#ifdef CGAL_CXX11
auto operator()(A&&a,B&&b)const->decltype(std::forward<A>(a)/std::forward<B>(b))
#else
Ret operator()(A const& a, B const& b)const
#endif
{
return CGAL_FORWARD(A,a)/CGAL_FORWARD(B,b);
}
};
#ifdef CGAL_CXX11
using std::decay;
#else
template<class T> struct decay : boost::remove_cv<typename boost::decay<T>::type> {};
#endif
template<class T,class U> struct Type_copy_ref { typedef U type; };
template<class T,class U> struct Type_copy_ref<T&,U> { typedef U& type; };
#ifdef CGAL_CXX11
template<class T,class U> struct Type_copy_ref<T&&,U> { typedef U&& type; };
#endif
template<class T,class U> struct Type_copy_cv { typedef U type; };
template<class T,class U> struct Type_copy_cv<T const,U> { typedef U const type; };
template<class T,class U> struct Type_copy_cv<T volatile,U> { typedef U volatile type; };
template<class T,class U> struct Type_copy_cv<T const volatile,U> { typedef U const volatile type; };
template<class T,class U> struct Type_copy_cvref :
Type_copy_ref<T,typename Type_copy_cv<typename boost::remove_reference<T>::type,U>::type> {};
struct Dereference_functor {
template<class> struct result{};
template<class It> struct result<Dereference_functor(It)> {
typedef typename std::iterator_traits<It>::reference type;
};
template<class It> typename result<Dereference_functor(It)>::type
operator()(It const&i)const{
return *i;
}
};
#ifdef CGAL_CXX11
template<int...> struct Indices{};
template<class> struct Next_increasing_indices;
template<int...I> struct Next_increasing_indices<Indices<I...> > {
typedef Indices<I...,sizeof...(I)> type;
};
template<int N> struct N_increasing_indices {
typedef typename Next_increasing_indices<typename N_increasing_indices<N-1>::type>::type type;
};
template<> struct N_increasing_indices<0> { typedef Indices<> type; };
namespace internal {
template<class F,class...U,int...I> inline typename std::result_of<F&&(U...)>::type
do_call_on_tuple_elements(F&&f, std::tuple<U...>&&t, Indices<I...>&&) {
return f(std::get<I>(std::move(t))...);
}
} // internal
template<class/*result type, ignored*/,class F,class...U>
inline typename std::result_of<F&&(U...)>::type
call_on_tuple_elements(F&&f, std::tuple<U...>&&t) {
return internal::do_call_on_tuple_elements(std::forward<F>(f),std::move(t),
typename N_increasing_indices<sizeof...(U)>::type());
}
#else
#define CGAL_VAR(Z,N,_) cpp0x::get<N>(t)
#define CGAL_CODE(Z,N,_) template<class Res, class F BOOST_PP_COMMA_IF(N) BOOST_PP_ENUM_PARAMS(N,class U)> \
inline Res call_on_tuple_elements(F const&f, \
cpp0x::tuple<BOOST_PP_ENUM_PARAMS(N,U)> const&t) { \
return f(BOOST_PP_ENUM(N,CGAL_VAR,)); \
}
template<class Res, class F>
inline Res call_on_tuple_elements(F const&f, cpp0x::tuple<>) {
return f();
}
BOOST_PP_REPEAT_FROM_TO(1, 8, CGAL_CODE, _ )
#undef CGAL_CODE
#undef CGAL_VAR
#endif
template<class A> struct Factory {
typedef A result_type;
#ifdef CGAL_CXX11
template<class...U> result_type operator()(U&&...u)const{
return A(std::forward<U>(u)...);
}
#else
result_type operator()()const{
return A();
}
#define CGAL_CODE(Z,N,_) template<BOOST_PP_ENUM_PARAMS(N,class U)> \
result_type operator()(BOOST_PP_ENUM_BINARY_PARAMS(N,U,const&u))const{ \
return A(BOOST_PP_ENUM_PARAMS(N,u)); \
}
BOOST_PP_REPEAT_FROM_TO(1, 8, CGAL_CODE, _ )
#undef CGAL_CODE
#endif
};
}
// TODO: make a Cartesian-only variant
// WARNING: do not use the Req* parameters too much, they can cause circular instanciations and are only useful for dispatching.
#define CGAL_STRIP_PAREN_(...) __VA_ARGS__
#define CGAL_STRIP_PAREN(...) CGAL_STRIP_PAREN_ __VA_ARGS__
// What to do with O? pass it down to other functors or drop it?
#define CGAL_KD_DEFAULT_FUNCTOR(Tg,Name,ReqTyp,ReqFun) \
template <class K, class O> \
struct Get_functor<K, Tg, O, \
typename boost::mpl::if_c< \
Provides_functor_i<K, Tg, O>::value \
|| !Provides_types<K, boost::mpl::vector<CGAL_STRIP_PAREN_ ReqTyp> >::value \
|| !Provides_functors<K, boost::mpl::vector<CGAL_STRIP_PAREN_ ReqFun> >::value \
, int, void>::type> \
{ \
typedef CGAL_STRIP_PAREN_ Name type; \
typedef K Bound_kernel; \
}
// Not used yet, may need some changes.
#define CGAL_KD_DEFAULT_TYPE(Tg,Name,ReqTyp,ReqFun) \
template <class K> \
struct Get_type<K, Tg, \
typename boost::mpl::if_c< \
Provides_type_i<K, Tg>::value \
|| !Provides_types<K, boost::mpl::vector<CGAL_STRIP_PAREN_ ReqTyp> >::value \
|| !Provides_functors<K, boost::mpl::vector<CGAL_STRIP_PAREN_ ReqFun> >::value \
, int, void>::type> \
{ \
typedef CGAL_STRIP_PAREN_ Name type; \
typedef K Bound_kernel; \
}
#endif
|