This file is indexed.

/usr/include/CGAL/OpenNL/sparse_matrix.h is in libcgal-dev 4.5-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
// Copyright (c) 2005-2008  Inria Loria (France).
/*
 * author:  Bruno Levy, INRIA, project ALICE
 * website: http://www.loria.fr/~levy/software
 * 
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation, either version 3
 * of the License, or (at your option) any later version.
 * 
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with this library; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
 *
 * Scientific work that use this software can reference the website and
 * the following publication:
 *
 * @INPROCEEDINGS {levy:NMDGP:05,
 *    AUTHOR = Bruno Levy,
 *    TITLE  = Numerical Methods for Digital Geometry Processing,
 *    BOOKTITLE =Israel Korea Bi-National Conference,
 *    YEAR=November 2005,
 *    URL=http://www.loria.fr/~levy/php/article.php?pub=../publications/papers/2005/Numerics
 * }
 *
 *  Laurent Saboret 01/2005: Change for CGAL:
 *      - Added OpenNL namespace
 *      - SparseMatrix is now a model of the SparseLinearAlgebraTraits_d::Matrix concept
*/

#ifndef __OPENNL_SPARSE_MATRIX__
#define __OPENNL_SPARSE_MATRIX__

#include <CGAL/OpenNL/full_vector.h>
#include <CGAL/assertions.h>

#include <vector>
#include <cstdlib>

namespace OpenNL {


//________________________________________________________________
// Class SparseMatrix
// Model of the SparseLinearAlgebraTraits_d::Matrix concept
template <class T> class SparseMatrix
{
// Public types
public:

    typedef T CoeffType ;

    // added for SparseLinearAlgebraTraits_d::Matrix concept
    typedef T NT;

    struct Coeff {
        Coeff() { }
        Coeff(unsigned int i, T val) : index(i), a(val) { }
        unsigned int index ;
        T a ;
    } ;

//__________________________________________________

   /**
    * A row or a column of a SparseMatrix. The row/column is
    * compressed, and stored in the form of a list of
    * (value,index) couples.
    */
    class Row : public std::vector<Coeff> {
        typedef typename std::vector<Coeff> superclass ;
    public:
        /** a_{index} <- a_{index} + val */
        void add_coef(unsigned int index, T val)
        {
            // search for coefficient in superclass vector
            for(typename superclass::iterator it = superclass::begin() ;
                it != superclass::end() ;
                it++)
            {
                if(it->index == index) {
                    it->a += val ;                      // +=
                    return ;
                }
            }
            // coefficient doesn't exist yet if we reach this point
            superclass::push_back(Coeff(index, val)) ;
        }

        // a_{index} <- val
        // (added for SparseLinearAlgebraTraits_d::Matrix concept)
        //
        // Optimization:
        // - Caller can optimize this call by setting 'new_coef' to true
        //   if the coefficient does not already exists in the matrix. 
        void set_coef(unsigned int index, T val, bool new_coef)
        {
            if (!new_coef)
            {
              // search for coefficient in superclass vector
              for(typename superclass::iterator it = superclass::begin() ;
                  it != superclass::end() ;
                  it++)
              {
                  if(it->index == index) {
                      it->a = val ;                       // =
                      return ;
                  }
              }
            }
            // coefficient doesn't exist yet if we reach this point
            superclass::push_back(Coeff(index, val)) ;
        }

        // return a_{index} (0 by default)
        // (added for SparseLinearAlgebraTraits_d::Matrix concept)
        T get_coef(unsigned int index) const
        {
            // search for coefficient in superclass vector
            for(typename superclass::const_iterator it = superclass::begin() ;
                it != superclass::end() ;
                it++)
            {
                if(it->index == index)
                    return it->a ;                      // return value
            }
            // coefficient doesn't exist if we reach this point
            return 0 ;
        }
    } ;

// Public operations
public:

    //__________ constructors / destructor _____

    // Create a square matrix initialized with zeros
    SparseMatrix(unsigned int dim) {
        CGAL_assertion(dim > 0);
        dimension_ = dim ;
        row_ = new Row[dimension_] ;
    }
    // Create a rectangular matrix initialized with zeros
    // (added for SparseLinearAlgebraTraits_d::Matrix concept)
    // WARNING: this class supports square matrices only
    SparseMatrix (unsigned int rows, unsigned int columns ) {
        CGAL_assertion(rows == columns);
        CGAL_assertion(columns > 0);
        dimension_ = columns ;
        row_ = new Row[dimension_] ;
    }

    ~SparseMatrix() {
        delete[] row_ ;
        row_ = NULL ;
    }

    //___________ access ________________________

    // Return the matrix dimension
    unsigned int dimension() const {  return dimension_ ;  }

    // Added for SparseLinearAlgebraTraits_d::Matrix concept:
    // Return the matrix number of rows
    unsigned int row_dimension() const    { return dimension(); }
    // Return the matrix number of columns
    unsigned int column_dimension() const { return dimension(); }

    Row& row(unsigned int i) {
        CGAL_assertion(i < dimension_) ;
        return row_[i] ;
    }

    const Row& row(unsigned int i) const {
        CGAL_assertion(i < dimension_) ;
        return row_[i] ;
    }

    // Read access to 1 matrix coefficient
    // (added for SparseLinearAlgebraTraits_d::Matrix concept)
    //
    // Preconditions:
    // * 0 <= i < row_dimension()
    // * 0 <= j < column_dimension()
    NT  get_coef (unsigned int i, unsigned int j) const {
        CGAL_assertion(i < dimension_) ;
        CGAL_assertion(j < dimension_) ;
        return row(i).get_coef(j) ;
    }

    // Write access to 1 matrix coefficient: a_ij <- a_ij + val
    //
    // Preconditions:
    // * 0 <= i < row_dimension()
    // * 0 <= j < column_dimension()
    void add_coef(unsigned int i, unsigned int j, T val) {
        CGAL_assertion(i < dimension_) ;
        CGAL_assertion(j < dimension_) ;
        row(i).add_coef(j, val) ;
    }

    // Write access to 1 matrix coefficient: a_ij <- val
    //(added for SparseLinearAlgebraTraits_d::Matrix concept)
    //
    // Optimization:
    // - Caller can optimize this call by setting 'new_coef' to true
    //   if the coefficient does not already exists in the matrix. 
    //
    // Preconditions:
    // - 0 <= i < row_dimension().
    // - 0 <= j < column_dimension().
    void set_coef(unsigned int i, unsigned int j, NT  val, bool new_coef = false) {
        CGAL_assertion(i < dimension_) ;
        CGAL_assertion(j < dimension_) ;
        row(i).set_coef(j, val, new_coef) ;
    }

    /**
     * removes all the coefficients and frees the allocated
     * space.
     */
    void clear() {
        for(unsigned int i=0; i<dimension_; i++) {
            row(i).clear() ;
        }
    }

private:
    unsigned int dimension_ ;
    Row* row_ ;

    // SparseMatrix cannot be copied
    // (for the moment, could be implemented if needed).
    SparseMatrix(const SparseMatrix& rhs) ;
    SparseMatrix& operator=(const SparseMatrix& rhs) ;
} ;

/** y <- M*x */
template <class T> 
void mult(const SparseMatrix<T>& M, const FullVector<T>& x, FullVector<T>& y) {
    unsigned int N = M.dimension() ;
    CGAL_assertion(x.dimension() == N) ;
    CGAL_assertion(y.dimension() == N) ;
    for(unsigned int i=0; i<N; i++) {
        y[i] = 0 ;
        const typename SparseMatrix<T>::Row& R = M.row(i) ;
        for(unsigned int jj=0; jj<R.size(); jj++) {
            unsigned int j = R[jj].index ;
            y[i] += R[jj].a * x[j] ;
        }
    }
}


} // namespace OpenNL

#endif // __OPENNL_SPARSE_MATRIX__