/usr/include/CGAL/Polynomial/Kernel.h is in libcgal-dev 4.5-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 | // Copyright (c) 2005 Stanford University (USA).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org); you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; either version 3 of the License,
// or (at your option) any later version.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL$
// $Id$
//
//
// Author(s) : Daniel Russel <drussel@alumni.princeton.edu>
#ifndef CGAL_POLYNOMIAL_POLYNOMIAL_KERNEL_H
#define CGAL_POLYNOMIAL_POLYNOMIAL_KERNEL_H
#include <CGAL/Polynomial/basic.h>
#include <CGAL/Polynomial/internal/Kernel/Multiplicity.h>
#include <CGAL/Polynomial/internal/Kernel/Rational_between_roots.h>
#include <CGAL/Polynomial/internal/Kernel/Root_container.h>
#include <CGAL/Polynomial/internal/Kernel/Isolating_interval.h>
#include <CGAL/Polynomial/internal/Kernel/Sign_above.h>
#include <CGAL/Polynomial/internal/Kernel/Sign_at.h>
#include <CGAL/Polynomial/internal/Kernel/Sign_below.h>
#include <CGAL/Polynomial/internal/Kernel/Sign_between_roots.h>
#include <CGAL/Polynomial/internal/Kernel/Is_even_multiplicity.h>
#include <CGAL/Polynomial/internal/Kernel/Is_rational.h>
#include <CGAL/Polynomial/internal/Kernel/To_rational.h>
#include <CGAL/Polynomial/internal/Rational/Rational_traits_base.h>
#include <CGAL/Polynomial/internal/Kernel/Lower_bound_root.h>
namespace CGAL { namespace POLYNOMIAL {
//! The polynomial kernel.
/*! Operations on rationals are handled by
internal::Polynomial_rational_kernel. This kernel must be kept
seperate from the rational kernel as the solver must be able to use
(and store) the rational kernel and it will not compile if there is
only one kernel. I am not sure why.
Basically the following does not compile:
template <class K>
struct R{
K k;
};
template <class K>
struct S{
typedef R<K> Rt;
Rt r;
};
struct K {
typedef S<K> St;
typedef St::Rt Rt;
St s_o(){
St s;
return s;
}
};
The other reason is that the Filtered_kernel just needs rational
kernels for the non-filtered types. At the moment I don't use this
since I don't feel like exposing the rational kernel.
*/
template <class Polynomial_t, class Root_stack_t, class NT_t= typename Polynomial_t::NT>
class Kernel: public internal::Rational_traits_base<Polynomial_t>
{
typedef Kernel<Polynomial_t, Root_stack_t, NT_t> This;
typedef typename internal::Rational_traits_base<Polynomial_t> P;
public:
typedef Root_stack_t Root_stack;
typedef typename Root_stack_t::Root Root;
typedef Polynomial_t Function;
typedef NT_t FT;
typedef typename Root_stack_t::Traits Root_stack_traits;
//! \todo do something with tr
Kernel(const Root_stack_traits &tr=Root_stack_traits()):
solver_traits_(tr){}
typedef internal::Sign_at<Root, This> Sign_at;
Sign_at sign_at_object() const
{
return Sign_at(*this);
}
//! Compute the multiplicity of a zero.
/*!
The value passed must be a rational number. Is there a better name?
\todo fix the functor to make it work on roots
*/
typedef internal::Multiplicity<This> Multiplicity;
Multiplicity multiplicity_object(const Function &p0) const
{
return Multiplicity(p0, *this);
}
//! Compute the sign of p immediately after a root of another function (or of p)
typedef internal::Sign_above<Root, This> Sign_after;
Sign_after sign_after_object() const
{
return Sign_after(*this);
}
//! Compute the sign of p immediately after a root of another function (or of p)
/*typedef internal::Sign_below<Root, This> Sign_below;
Sign_below sign_be_object() const
{
return Sign_below(*this);
}*/
//! Find a rational number between two non-equal roots
typedef internal::Rational_between_roots<This> Rational_between_roots;
Rational_between_roots rational_between_roots_object() const
{
return Rational_between_roots(*this);
}
//! Compute the sign between two roots
typedef internal::Sign_between_roots<This> Sign_between_roots;
Sign_between_roots sign_between_roots_object() const
{
return Sign_between_roots(*this);
}
//! Return true if the root has even multiplicity
/*typedef internal::Is_even_multiplicity<This> Is_even_multiplicity;
Is_even_multiplicity is_even_multiplicity_object(const Function &) const
{
return Is_even_multiplicity();
}*/
//! Return true if the root is an exact rational
/*typedef internal::Is_rational<This> Is_rational;
Is_rational is_rational_object() const
{
return Is_rational();
}*/
/*typedef internal::Lower_bound_root<This> Lower_bound_root;
Lower_bound_root lower_bound_root_object() const {
return Lower_bound_root();
}*/
//! Return the rational value of the root, assuming it is rational
typedef internal::To_rational<This> To_rational;
To_rational to_rational_object() const
{
return To_rational();
}
typedef internal::To_isolating_interval<This> To_isolating_interval;
To_isolating_interval to_isolating_interval_object() const {
return To_isolating_interval();
}
//! Return a container for roots in an interval
/*!
\todo make sure that the iterator has all the right types.
*/
typedef internal::Root_container<This> Root_container;
friend class internal::Root_container<This>;
Root_container root_container_object(const Function &f,
const Root &lb,
const Root &ub) const
{
return Root_container(f, lb, ub, root_stack_traits_object());
}
//! Return a root stack
/*!
\todo make sure that the iterator has all the right types.
*/
Root_stack root_stack_object(const Function &f,
const Root &lb,
const Root &ub) const
{
return Root_stack(f, lb, ub, root_stack_traits_object());
}
Root_stack_traits root_stack_traits_object() const
{
return solver_traits_;
}
protected:
Root_stack_traits solver_traits_;
};
} } //namespace CGAL::POLYNOMIAL
#endif
|