/usr/include/CGAL/Polynomial/bezout_matrix.h is in libcgal-dev 4.5-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 | // Copyright (c) 2008 Max-Planck-Institute Saarbruecken (Germany)
//
// This file is part of CGAL (www.cgal.org); you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; either version 3 of the License,
// or (at your option) any later version.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL$
// $Id$
//
//
// Author(s) : Michael Hemmer
//
// ============================================================================
// TODO: The comments are all original EXACUS comments and aren't adapted. So
// they may be wrong now.
#ifndef CGAL_POLYNOMIAL_BEZOUT_MATRIX_H
#define CGAL_POLYNOMIAL_BEZOUT_MATRIX_H
#include <algorithm>
#include <CGAL/basic.h>
#include <CGAL/Polynomial_traits_d.h>
#include <CGAL/Polynomial/determinant.h>
#include <CGAL/use.h>
#include <vector>
//#include <CGAL/Linear_algebraHd.h>
//#include <CGAL/Linear_algebra.h>
//#include <CGAL/number_type_utils.h>
namespace CGAL {
namespace internal {
/*! \ingroup CGAL_resultant_matrix
* \brief construct hybrid Bezout matrix of two polynomials
*
* If \c sub=0 , this function returns the hybrid Bezout matrix
* of \c f and \c g.
* The hybrid Bezout matrix of two polynomials \e f and \e g
* (seen as polynomials in one variable) is a
* square matrix of size max(deg(<I>f</I>), deg(<I>g</I>)) whose entries
* are expressions in the polynomials' coefficients.
* Its determinant is the resultant of \e f and \e g, maybe up to sign.
* The function computes the same matrix as the Maple command
* <I>BezoutMatrix</I>.
*
* If \c sub>0 , this function returns the matrix obtained by chopping
* off the \c sub topmost rows and the \c sub rightmost columns.
* Its determinant is the <I>sub</I>-th (scalar) subresultant
* of \e f and \e g, maybe up to sign.
*
* If specified, \c sub must be less than the degrees of both \e f and \e g.
*
* See also \c CGAL::hybrid_bezout_subresultant() and \c CGAL::sylvester_matrix() .
*
* A formal definition of the hybrid Bezout matrix and a proof for the
* subresultant property can be found in:
*
* Gema M.Diaz-Toca, Laureano Gonzalez-Vega: Various New Expressions for
* Subresultants and Their Applications. AAECC 15, 233-266 (2004)
*
*/
template <typename Polynomial_traits_d>
typename internal::Simple_matrix< typename Polynomial_traits_d::Coefficient_type >
hybrid_bezout_matrix(typename Polynomial_traits_d::Polynomial_d f,
typename Polynomial_traits_d::Polynomial_d g,
int sub = 0)
{
typedef typename Polynomial_traits_d::Polynomial_d Polynomial;
typedef typename Polynomial_traits_d::Coefficient_type NT;
typename Polynomial_traits_d::Degree degree;
typename CGAL::Algebraic_structure_traits<Polynomial>::Is_zero is_zero;
typename Polynomial_traits_d::Get_coefficient coeff;
typedef typename internal::Simple_matrix<NT> Matrix;
int n = degree(f);
int m = degree(g);
CGAL_precondition((n >= 0) && !is_zero(f));
CGAL_precondition((m >= 0) && !is_zero(g));
CGAL_precondition(n > sub || sub == 0);
CGAL_precondition(m > sub || sub == 0);
int i, j, k, l;
NT s;
if (m > n) {
std::swap(f, g);
std::swap(m, n);
}
Matrix B(n-sub);
for (i = 1+sub; i <= m; i++) {
for (j = 1; j <= n-sub; j++) {
s = NT(0);
for (k = 0; k <= i-1; k++) {
l = n+i-j-k;
if ((l <= n) and (l >= n-(m-i))) {
s += coeff(f,l) * coeff(g,k);
}
}
for (k = 0; k <= n-(m-i+1); k++) {
l = n+i-j-k;
if ((l <= m) and (l >= i)) {
s -= coeff(f,k) * coeff(g,l);
}
}
B[i-sub-1][j-1] = s;
}
}
for (i = std::max(m+1, 1+sub); i <= n; i++) {
for (j = i-m; j <= std::min(i, n-sub); j++) {
B[i-sub-1][j-1] = coeff(g,i-j);
}
}
return B; // g++ 3.1+ has NRVO, so this should not be too expensive
}
/*! \ingroup CGAL_resultant_matrix
* \brief construct the symmetric Bezout matrix of two polynomials
*
* This function returns the (symmetric) Bezout matrix of \c f and \c g.
* The Bezout matrix of two polynomials \e f and \e g
* (seen as polynomials in one variable) is a
* square matrix of size max(deg(<I>f</I>), deg(<I>g</I>)) whose entries
* are expressions in the polynomials' coefficients.
* Its determinant is the resultant of \e f and \e g, maybe up to sign.
*
*/
template <typename Polynomial_traits_d>
typename internal::Simple_matrix<typename Polynomial_traits_d::Coefficient_type>
symmetric_bezout_matrix
(typename Polynomial_traits_d::Polynomial_d f,
typename Polynomial_traits_d::Polynomial_d g,
int sub = 0)
{
// Note: The algorithm is taken from:
// Chionh, Zhang, Goldman: Fast Computation of the Bezout and Dixon Resultant
// Matrices. J.Symbolic Computation 33, 13-29 (2002)
typedef typename Polynomial_traits_d::Polynomial_d Polynomial;
typedef typename Polynomial_traits_d::Coefficient_type NT;
typename Polynomial_traits_d::Degree degree;
CGAL_assertion_code(typename CGAL::Algebraic_structure_traits<Polynomial>::Is_zero is_zero;)
CGAL_USE_TYPE(Polynomial);
typename Polynomial_traits_d::Get_coefficient coeff;
typedef typename internal::Simple_matrix<NT> Matrix;
int n = degree(f);
int m = degree(g);
CGAL_precondition((n >= 0) && !is_zero(f));
CGAL_precondition((m >= 0) && !is_zero(g));
int i,j,stop;
NT sum1,sum2;
if (m > n) {
std::swap(f, g);
std::swap(m, n);
}
CGAL_precondition((sub>=0) && sub < n);
int d = n - sub;
Matrix B(d);
// 1st step: Initialisation
for(i=0;i<d;i++) {
for(j=i;j<d;j++) {
sum1 = ((j+sub)+1>m) ? NT(0) : -coeff(f,i+sub)*coeff(g,(j+sub)+1);
sum2 = ((i+sub)>m) ? NT(0) : coeff(g,i+sub)*coeff(f,(j+sub)+1);
B[i][j]=sum1+sum2;
}
}
// 2nd Step: Recursion adding
// First, set up the first line correctly
for(i=0;i<d-1;i++) {
stop = (sub<d-1-i) ? sub : d-i-1;
for(j=1;j<=stop;j++) {
sum1 = ((i+sub+j)+1>m) ? NT(0)
: -coeff(f,sub-j)*coeff(g,(i+sub+j)+1);
sum2 = ((sub-j)>m) ? NT(0)
: coeff(g,sub-j)*coeff(f,(i+sub+j)+1);
B[0][i]+=sum1+sum2;
}
}
// Now, compute the rest
for(i=1;i<d-1;i++) {
for(j=i;j<d-1;j++) {
B[i][j]+=B[i-1][j+1];
}
}
//3rd Step: Exploit symmetry
for(i=1;i<d;i++) {
for(j=0;j<i;j++) {
B[i][j]=B[j][i];
}
}
return B;
}
/*! \ingroup CGAL_resultant_matrix
* \brief compute (sub)resultant as Bezout matrix determinant
*
* This function returns the determinant of the matrix returned
* by <TT>hybrid_bezout_matrix(f, g, sub)</TT> which is the
* resultant of \c f and \c g, maybe up to sign;
* or rather the <I>sub</I>-th (scalar) subresultant, if a non-zero third
* argument is given.
*
* If specified, \c sub must be less than the degrees of both \e f and \e g.
*
* This function might be faster than \c CGAL::Polynomial<..>::resultant() ,
* which computes the resultant from a subresultant remainder sequence.
* See also \c CGAL::sylvester_subresultant().
*/
template <class Polynomial_traits_d>
typename Polynomial_traits_d::Coefficient_type hybrid_bezout_subresultant(
typename Polynomial_traits_d::Polynomial_d f,
typename Polynomial_traits_d::Polynomial_d g,
int sub = 0
) {
typedef typename Polynomial_traits_d::Polynomial_d Polynomial;
typedef typename Polynomial_traits_d::Coefficient_type NT;
typename Polynomial_traits_d::Degree degree;
typename CGAL::Algebraic_structure_traits<Polynomial>::Is_zero is_zero;
typedef internal::Simple_matrix<NT> Matrix;
CGAL_precondition((degree(f) >= 0));
CGAL_precondition((degree(g) >= 0));
if (is_zero(f) || is_zero(g)) return NT(0);
Matrix S = hybrid_bezout_matrix<Polynomial_traits_d>(f, g, sub);
CGAL_assertion(S.row_dimension() == S.column_dimension());
if (S.row_dimension() == 0) {
return NT(1);
} else {
return internal::determinant(S);
}
}
// Transforms the minors of the symmetric bezout matrix into the subresultant.
// Needs the appropriate power of the leading coedfficient of f and the
// degrees of f and g
template<class InputIterator,class OutputIterator,class NT>
void symmetric_minors_to_subresultants(InputIterator in,
OutputIterator out,
NT divisor,
int n,
int m,
bool swapped) {
typename CGAL::Algebraic_structure_traits<NT>::Integral_division idiv;
for(int i=0;i<m;i++) {
bool negate = ((n-m+i+1) & 2)>>1; // (n-m+i+1)==2 or 3 mod 4
negate=negate ^ (swapped & ((n-m+i+1)*(i+1)));
//...XOR (swapped AND (n-m+i+1)* (i+1) is odd)
*out = idiv(*in, negate ? -divisor : divisor);
in++;
out++;
}
}
/*! \ingroup CGAL_resultant_matrix
* \brief compute the principal subresultant coefficients as minors
* of the symmetric Bezout matrix.
*
* Returns the sequence sres<sub>0</sub>,..,sres<sub>m</sub>, where
* sres<sub>i</sub> denotes the ith principal subresultant coefficient
*
* The function uses an extension of the Berkowitz method to compute the
* determinant
* See also \c CGAL::minors_berkowitz
*/
template<class Polynomial_traits_d,class OutputIterator>
OutputIterator symmetric_bezout_subresultants(
typename Polynomial_traits_d::Polynomial_d f,
typename Polynomial_traits_d::Polynomial_d g,
OutputIterator sres)
{
typedef typename Polynomial_traits_d::Polynomial_d Polynomial;
typedef typename Polynomial_traits_d::Coefficient_type NT;
typename Polynomial_traits_d::Degree degree;
typename CGAL::Algebraic_structure_traits<Polynomial>::Is_zero is_zero;
typename Polynomial_traits_d::Leading_coefficient lcoeff;
typedef typename internal::Simple_matrix<NT> Matrix;
int n = degree(f);
int m = degree(g);
bool swapped=false;
if(n < m) {
std::swap(f,g);
std::swap(n,m);
swapped=true;
}
Matrix B = symmetric_bezout_matrix<Polynomial_traits_d>(f,g);
// Compute a_0^{n-m}
NT divisor=ipower(lcoeff(f),n-m);
std::vector<NT> minors;
minors_berkowitz(B,std::back_inserter(minors),n,m);
CGAL::internal::symmetric_minors_to_subresultants(minors.begin(),sres,
divisor,n,m,swapped);
return sres;
}
/*
* Return a modified version of the hybrid bezout matrix such that the minors
* from the last k rows and columns give the subresultants
*/
template<class Polynomial_traits_d>
typename internal::Simple_matrix<typename Polynomial_traits_d::Coefficient_type>
modified_hybrid_bezout_matrix
(typename Polynomial_traits_d::Polynomial_d f,
typename Polynomial_traits_d::Polynomial_d g) {
typedef typename Polynomial_traits_d::Coefficient_type NT;
typedef typename internal::Simple_matrix<NT> Matrix;
typename Polynomial_traits_d::Degree degree;
int n = degree(f);
int m = degree(g);
int i,j;
bool negate, swapped=false;
if(n < m) {
std::swap(f,g); //(*)
std::swap(n,m);
swapped=true;
}
Matrix B = CGAL::internal::hybrid_bezout_matrix<Polynomial_traits_d>(f,g);
// swap columns
i=0;
while(i<n-i-1) {
B.swap_columns(i,n-i-1); // (**)
i++;
}
for(i=0;i<n;i++) {
negate=(n-i-1) & 1; // Negate every second column because of (**)
negate=negate ^ (swapped & (n-m+1)); // XOR negate everything because of(*)
if(negate) {
for(j=0;j<n;j++) {
B[j][i] *= -1;
}
}
}
return B;
}
/*! \ingroup CGAL_resultant_matrix
* \brief compute the principal subresultant coefficients as minors
* of the hybrid Bezout matrix.
*
* Returns the sequence sres<sub>0</sub>,...,sres<sub>m</sub>$, where
* sres<sub>i</sub> denotes the ith principal subresultant coefficient
*
* The function uses an extension of the Berkowitz method to compute the
* determinant
* See also \c CGAL::minors_berkowitz
*/
template<class Polynomial_traits_d,class OutputIterator>
OutputIterator hybrid_bezout_subresultants(
typename Polynomial_traits_d::Polynomial_d f,
typename Polynomial_traits_d::Polynomial_d g,
OutputIterator sres)
{
typedef typename Polynomial_traits_d::Coefficient_type NT;
typename Polynomial_traits_d::Degree degree;
typedef typename internal::Simple_matrix<NT> Matrix;
int n = degree(f);
int m = degree(g);
Matrix B = CGAL::internal::modified_hybrid_bezout_matrix<Polynomial_traits_d>
(f,g);
if(n<m) {
std::swap(n,m);
}
return minors_berkowitz(B,sres,n,m);
}
// Swap entry A_ij with A_(n-i)(n-j) for square matrix A of dimension n
template<class NT>
void swap_entries(typename internal::Simple_matrix<NT> & A) {
CGAL_precondition(A.row_dimension()==A.column_dimension());
int n = A.row_dimension();
int i=0;
while(i<n-i-1) {
A.swap_rows(i,n-i-1);
A.swap_columns(i,n-i-1);
i++;
}
}
// Produce S-matrix with the given matrix and integers.
template<class NT,class InputIterator>
typename internal::Simple_matrix<NT> s_matrix(
const typename internal::Simple_matrix<NT>& B,
InputIterator num,int size)
{
typename internal::Simple_matrix<NT> S(size);
CGAL_precondition_code(int n = B.row_dimension();)
CGAL_precondition(n==(int)B.column_dimension());
int curr_num;
bool negate;
for(int i=0;i<size;i++) {
curr_num=(*num);
num++;
negate = curr_num<0;
if(curr_num<0) {
curr_num=-curr_num;
}
for(int j=0;j<size;j++) {
S[j][i]=negate ? -B[j][curr_num-1] : B[j][curr_num-1];
}
}
return S;
}
// Produces the integer sequence for the S-matrix, where c is the first entry
// of the sequence, s the number of desired diagonals and n the dimension
// of the base matrix
template<class OutputIterator>
OutputIterator s_matrix_integer_sequence(OutputIterator it,
int c,int s,int n) {
CGAL_precondition(0<s);
CGAL_precondition(s<=n);
// c is interpreted modulo s wrt to the representants {1,..,s}
c=c%s;
if(c==0) {
c=s;
}
int i, p=0, q=c;
while(q<=n) {
*it = q;
it++;
for(i=p+1;i<q;i++) {
*it = -i;
it++;
}
p = q;
q = q+s;
}
return it;
}
/*! \ingroup CGAL_resultant_matrix
* \brief computes the coefficients of the polynomial subresultant sequence
*
* Returns an upper triangular matrix <I>A</I> such that A<sub>i,j</sub> is
* the coefficient of <I>x<sup>j-1</sup></I> in the <I>i</I>th polynomial
* subresultant. In particular, the main diagonal contains the scalar
* subresultants.
*
* If \c d > 0 is specified, only the first \c d diagonals of <I>A</I> are
* computed. In particular, setting \c d to one yields exactly the same
* result as applying \c hybrid_subresultants or \c symmetric_subresultants
* (except the different output format).
*
* These coefficients are computed as special minors of the hybrid Bezout matrix.
* See also \c CGAL::minors_berkowitz
*/
template<typename Polynomial_traits_d>
typename internal::Simple_matrix<typename Polynomial_traits_d::Coefficient_type>
polynomial_subresultant_matrix(typename Polynomial_traits_d::Polynomial_d f,
typename Polynomial_traits_d::Polynomial_d g,
int d=0) {
typedef typename Polynomial_traits_d::Coefficient_type NT;
typename Polynomial_traits_d::Degree degree;
typename Polynomial_traits_d::Leading_coefficient lcoeff;
int n = degree(f);
int m = degree(g);
CGAL_precondition(n>=0);
CGAL_precondition(m>=0);
CGAL_precondition(d>=0);
typedef internal::Simple_matrix<NT> Matrix;
bool swapped=false;
if(n < m) {
std::swap(f,g);
std::swap(n,m);
swapped=true;
}
if(d==0) {
d=m;
};
Matrix B = CGAL::internal::symmetric_bezout_matrix<Polynomial_traits_d>(f,g);
// For easier notation, we swap all entries:
internal::swap_entries<NT>(B);
// Compute the S-matrices and collect the minors
std::vector<Matrix> s_mat(m);
std::vector<std::vector<NT> > coeffs(d);
for(int i = 1; i<=d;i++) {
std::vector<int> intseq;
internal::s_matrix_integer_sequence(std::back_inserter(intseq),i,d,n);
Matrix S = internal::s_matrix<NT>(B,intseq.begin(),(int)intseq.size());
internal::swap_entries<NT>(S);
//std::cout << S << std::endl;
int Sdim = S.row_dimension();
int number_of_minors=(Sdim < m) ? Sdim : Sdim;
internal::minors_berkowitz(S,std::back_inserter(coeffs[i-1]),
Sdim,number_of_minors);
}
// Now, rearrange the minors in the matrix
Matrix Ret(m,m,NT(0));
for(int i = 0; i < d; i++) {
for(int j = 0;j < m-i ; j++) {
int s_index=(n-m+j+i+1)%d;
if(s_index==0) {
s_index=d;
}
s_index--;
Ret[j][j+i]=coeffs[s_index][n-m+j];
}
}
typename CGAL::Algebraic_structure_traits<NT>::Integral_division idiv;
NT divisor = ipower(lcoeff(f),n-m);
int bit_mask = swapped ? 1 : 0;
// Divide through the divisor and set the correct sign
for(int i=0;i<m;i++) {
for(int j = i;j<m;j++) {
int negate = ((n-m+i+1) & 2)>>1; // (n-m+i+1)==2 or 3 mod 4
negate^=(bit_mask & ((n-m+i+1)*(i+1)));
//...XOR (swapped AND (n-m+i+1)* (i+1) is odd)
Ret[i][j] = idiv(Ret[i][j], negate>0 ? -divisor : divisor);
}
}
return Ret;
}
}
} //namespace CGAL
#endif // CGAL_POLYNOMIAL_BEZOUT_MATRIX_H
// EOF
|