/usr/include/CGAL/Polynomial/prs_resultant.h is in libcgal-dev 4.5-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 | // Copyright (c) 2008 Max-Planck-Institute Saarbruecken (Germany).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org); you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; either version 3 of the License,
// or (at your option) any later version.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
// $URL$
// $Id$
//
//
// Author(s) : Arno Eigenwillig <arno@mpi-inf.mpg.de>
//
// ============================================================================
// TODO: The comments are all original EXACUS comments and aren't adapted. So
// they may be wrong now.
/*! \file CGAL/prs_resultant.h
* \brief Resultant computation via polynomial remainder sequences (PRS)
*
*/
#include <CGAL/basic.h>
#include <CGAL/Polynomial.h>
#include <CGAL/ipower.h>
#include <CGAL/Polynomial/hgdelta_update.h>
#ifndef CGAL_POLYNOMIAL_PRS_RESULTANT_H
#define CGAL_POLYNOMIAL_PRS_RESULTANT_H
namespace CGAL {
template <class NT> inline
NT prs_resultant_integral_domain(Polynomial<NT> A, Polynomial<NT> B) {
// implemented using the subresultant algorithm for resultant computation
// see [Cohen, 1993], algorithm 3.3.7
if (A.is_zero() || B.is_zero()) return NT(0);
int signflip;
if (A.degree() < B.degree()) {
Polynomial<NT> T = A; A = B; B = T;
signflip = (A.degree() & B.degree() & 1);
} else {
signflip = 0;
}
typedef CGAL::Scalar_factor_traits<Polynomial<NT> > SFT;
typedef typename SFT::Scalar Scalar;
typename SFT::Scalar_factor scalar_factor;
typename CGAL::Coercion_traits<Scalar, NT>::Cast cast_scalar_nt;
Scalar a = scalar_factor(A), b = scalar_factor(B);
NT g(1), h(1);
NT t = cast_scalar_nt (CGAL::ipower(a, B.degree()) * CGAL::ipower(b, A.degree()));
Polynomial<NT> Q, R; NT d;
int delta;
A /= cast_scalar_nt(a); B /= cast_scalar_nt(b);
do {
signflip ^= (A.degree() & B.degree() & 1);
Polynomial<NT>::pseudo_division(A, B, Q, R, d);
delta = A.degree() - B.degree();
CGAL_expensive_assertion_code
(typedef typename CGAL::Algebraic_structure_traits<NT>::Is_exact
Is_exact;)
CGAL_expensive_assertion(CGAL::check_tag(Is_exact()) == false
|| d == CGAL::ipower(B.lcoeff(), delta + 1) );
A = B;
B = R / (g * CGAL::ipower(h, delta));
g = A.lcoeff();
// h = h^(1-delta) * g^delta
internal::hgdelta_update(h, g, delta);
} while (B.degree() > 0);
// h = h^(1-deg(A)) * lcoeff(B)^deg(A)
delta = A.degree();
g = B.lcoeff();
internal::hgdelta_update(h, g, delta);
h = signflip ? -(t*h) : t*h;
typename Algebraic_structure_traits<NT>::Simplify simplify;
simplify(h);
return h;
}
template <class NT> inline
NT prs_resultant_ufd(Polynomial<NT> A, Polynomial<NT> B) {
// implemented using the subresultant algorithm for resultant computation
// see [Cohen, 1993], algorithm 3.3.7
if (A.is_zero() || B.is_zero()) return NT(0);
int signflip;
if (A.degree() < B.degree()) {
Polynomial<NT> T = A; A = B; B = T;
signflip = (A.degree() & B.degree() & 1);
} else {
signflip = 0;
}
NT a = A.content(), b = B.content();
NT g(1), h(1), t = CGAL::ipower(a, B.degree()) * CGAL::ipower(b, A.degree());
Polynomial<NT> Q, R; NT d;
int delta;
A /= a; B /= b;
do {
signflip ^= (A.degree() & B.degree() & 1);
Polynomial<NT>::pseudo_division(A, B, Q, R, d);
delta = A.degree() - B.degree();
CGAL_expensive_assertion_code
(typedef typename CGAL::Algebraic_structure_traits<NT>::Is_exact
Is_exact;)
CGAL_expensive_assertion(CGAL::check_tag(Is_exact()) == false
|| d == CGAL::ipower(B.lcoeff(), delta + 1) );
A = B;
B = R / (g * CGAL::ipower(h, delta));
g = A.lcoeff();
// h = h^(1-delta) * g^delta
internal::hgdelta_update(h, g, delta);
} while (B.degree() > 0);
// h = h^(1-deg(A)) * lcoeff(B)^deg(A)
delta = A.degree();
g = B.lcoeff();
internal::hgdelta_update(h, g, delta);
h = signflip ? -(t*h) : t*h;
typename Algebraic_structure_traits<NT>::Simplify simplify;
simplify(h);
return h;
}
template <class NT> inline
NT prs_resultant_field(Polynomial<NT> A, Polynomial<NT> B) {
// implemented using the Euclidean algorithm for resultant computation
// compare [Cox et al, 1997], p.157
if (A.is_zero() || B.is_zero()) return NT(0);
int signflip;
if (A.degree() < B.degree()) {
Polynomial<NT> T = A; A = B; B = T;
signflip = (A.degree() & B.degree() & 1);
} else {
signflip = 0;
}
NT res(1);
Polynomial<NT> Q, R;
while (B.degree() > 0) {
signflip ^= (A.degree() & B.degree() & 1);
Polynomial<NT>::euclidean_division(A, B, Q, R);
res *= CGAL::ipower(B.lcoeff(), A.degree() - R.degree());
A = B;
B = R;
}
res = CGAL::ipower(B.lcoeff(), A.degree()) * (signflip ? -res : res);
typename Algebraic_structure_traits<NT>::Simplify simplify;
simplify(res);
return res;
}
// definition follows below
template <class NT> inline
NT prs_resultant_decompose(Polynomial<NT> A, Polynomial<NT> B);
namespace INTERN_PRS_RESULTANT {
template <class NT> inline
NT prs_resultant_(Polynomial<NT> A, Polynomial<NT> B, ::CGAL::Tag_false) {
return prs_resultant_field(A, B);
}
template <class NT> inline
NT prs_resultant_(Polynomial<NT> A, Polynomial<NT> B, ::CGAL::Tag_true) {
return prs_resultant_decompose(A, B);
}
template <class NT> inline
NT prs_resultant_(Polynomial<NT> A, Polynomial<NT> B, Field_tag) {
typedef typename Fraction_traits<NT>::Is_fraction Is_decomposable;
return prs_resultant_(A, B, Is_decomposable());
}
template <class NT> inline
NT prs_resultant_(Polynomial<NT> A, Polynomial<NT> B, Unique_factorization_domain_tag) {
return prs_resultant_ufd(A, B);
}
} // namespace internal
template <class NT> inline
NT prs_resultant_decompose(Polynomial<NT> A, Polynomial<NT> B){
typedef Polynomial<NT> POLY;
typedef typename Fraction_traits<POLY>::Numerator_type INTPOLY;
typedef typename Fraction_traits<POLY>::Denominator_type DENOM;
typename Fraction_traits<POLY>::Decompose decompose;
typedef typename INTPOLY::NT RES;
DENOM a, b;
A.simplify_coefficients();
B.simplify_coefficients();
INTPOLY A0; decompose(A,A0,a);
INTPOLY B0; decompose(B,B0,b);
DENOM c = CGAL::ipower(a, B.degree()) * CGAL::ipower(b, A.degree());
typedef typename Algebraic_structure_traits<RES>::Algebraic_category Algebraic_category;
RES res0 = INTERN_PRS_RESULTANT::prs_resultant_(A0, B0, Algebraic_category());
typename Fraction_traits<NT>::Compose comp_frac;
NT res = comp_frac(res0, c);
typename Algebraic_structure_traits<NT>::Simplify simplify;
simplify(res);
return res;
}
/*! \ingroup CGAL_Polynomial
* \relates CGAL::Polynomial
* \brief compute the resultant of polynomials \c A and \c B
*
* The resultant of two polynomials is computed from their
* polynomial remainder sequence (PRS), in the Euclidean or
* subresultant version. This depends on the coefficient type:
* If \c NT is a \c UFDomain , the subresultant PRS is formed.
* If \c NT is a \c Field that is not decomposable (see
* \c CGAL::Fraction_traits ), then a Euclidean PRS is formed.
* If \c NT is a \c Field that is decomposable, then the
* \c Numerator must be a \c UFDomain, and the subresultant
* PRS is formed for the decomposed polynomials.
*
* Using \c CGAL::hybrid_bezout_subresultant() may be faster in some cases
* and works for non-UFDomains, too.
* Using \c CGAL::resultant() from \c CGAL/resultant.h
* chooses automatically among these alternative methods of resultant
* computation for you.
*
* For the benefit of those who want to do their own template
* metaprogramming to choose the method of resultant computation,
* the three variants of resultant computation from a PRS
* can be called directly as \c prs_resultant_field() ,
* \c prs_resultant_ufd() and \c prs_resultant_decompose() .
* <b>Do not use them directly unless you know what you are doing!</b>
*
*/
template <class NT> inline
NT prs_resultant(Polynomial<NT> A, Polynomial<NT> B) {
typedef typename Algebraic_structure_traits<NT>::Algebraic_category
Algebraic_category;
return INTERN_PRS_RESULTANT::prs_resultant_(A, B, Algebraic_category());
}
} //namespace CGAL
#endif // CGAL_POLYNOMIAL_PRS_RESULTANT_H
// EOF
|