/usr/include/CGAL/Polynomial/resultant.h is in libcgal-dev 4.5-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 | // Copyright (c) 2008 Max-Planck-Institute Saarbruecken (Germany).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org); you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; either version 3 of the License,
// or (at your option) any later version.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL$
// $Id$
//
//
// Author(s) : Michael Hemmer <hemmer@mpi-inf.mpg.de>
#ifndef CGAL_POLYNOMIAL_RESULTANT_H
#define CGAL_POLYNOMIAL_RESULTANT_H
// Modular arithmetic is slower, hence the default is 0
#ifndef CGAL_RESULTANT_USE_MODULAR_ARITHMETIC
#define CGAL_RESULTANT_USE_MODULAR_ARITHMETIC 0
#endif
#ifndef CGAL_RESULTANT_USE_DECOMPOSE
#define CGAL_RESULTANT_USE_DECOMPOSE 1
#endif
#include <CGAL/basic.h>
#include <CGAL/Polynomial.h>
#include <CGAL/Polynomial_traits_d.h>
#include <CGAL/Polynomial/Interpolator.h>
#include <CGAL/Polynomial/prs_resultant.h>
#include <CGAL/Polynomial/bezout_matrix.h>
#include <CGAL/Residue.h>
#include <CGAL/Modular_traits.h>
#include <CGAL/Chinese_remainder_traits.h>
#include <CGAL/primes.h>
#include <CGAL/Polynomial/Cached_extended_euclidean_algorithm.h>
namespace CGAL {
// The main function provided within this file is CGAL::internal::resultant(F,G),
// all other functions are used for dispatching.
// The implementation uses interpolatation for multivariate polynomials
// Due to the recursive structuture of CGAL::Polynomial<Coeff> it is better
// to write the function such that the inner most variabel is eliminated.
// However, CGAL::internal::resultant(F,G) eliminates the outer most variabel.
// This is due to backward compatibility issues with code base on EXACUS.
// In turn CGAL::internal::resultant_(F,G) eliminates the innermost variable.
// Dispatching
// CGAL::internal::resultant_decompose applies if Coeff is a Fraction
// CGAL::internal::resultant_modularize applies if Coeff is Modularizable
// CGAL::internal::resultant_interpolate applies for multivairate polynomials
// CGAL::internal::resultant_univariate selects the proper algorithm for IC
// CGAL_RESULTANT_USE_DECOMPOSE ( default = 1 )
// CGAL_RESULTANT_USE_MODULAR_ARITHMETIC (default = 0 )
namespace internal{
template <class Coeff>
inline Coeff resultant_interpolate(
const CGAL::Polynomial<Coeff>&, const CGAL::Polynomial<Coeff>& );
template <class Coeff>
inline Coeff resultant_modularize(
const CGAL::Polynomial<Coeff>&,
const CGAL::Polynomial<Coeff>&, CGAL::Tag_true);
template <class Coeff>
inline Coeff resultant_modularize(
const CGAL::Polynomial<Coeff>&,
const CGAL::Polynomial<Coeff>&, CGAL::Tag_false);
template <class Coeff>
inline Coeff resultant_decompose(
const CGAL::Polynomial<Coeff>&,
const CGAL::Polynomial<Coeff>&, CGAL::Tag_true);
template <class Coeff>
inline Coeff resultant_decompose(
const CGAL::Polynomial<Coeff>&,
const CGAL::Polynomial<Coeff>&, CGAL::Tag_false);
template <class Coeff>
inline Coeff resultant_(
const CGAL::Polynomial<Coeff>&, const CGAL::Polynomial<Coeff>&);
template <class Coeff>
inline Coeff resultant_univariate(
const CGAL::Polynomial<Coeff>& A,
const CGAL::Polynomial<Coeff>& B,
CGAL::Integral_domain_without_division_tag){
return hybrid_bezout_subresultant(A,B,0);
}
template <class Coeff>
inline Coeff resultant_univariate(
const CGAL::Polynomial<Coeff>& A,
const CGAL::Polynomial<Coeff>& B, CGAL::Integral_domain_tag){
// this seems to help for for large polynomials
return prs_resultant_integral_domain(A,B);
}
template <class Coeff>
inline Coeff resultant_univariate(
const CGAL::Polynomial<Coeff>& A,
const CGAL::Polynomial<Coeff>& B, CGAL::Unique_factorization_domain_tag){
return prs_resultant_ufd(A,B);
}
template <class Coeff>
inline Coeff resultant_univariate(
const CGAL::Polynomial<Coeff>& A,
const CGAL::Polynomial<Coeff>& B, CGAL::Field_tag){
return prs_resultant_field(A,B);
}
} // namespace internal
namespace internal{
template <class IC>
inline IC
resultant_interpolate(
const CGAL::Polynomial<IC>& F,
const CGAL::Polynomial<IC>& G){
CGAL_precondition(CGAL::Polynomial_traits_d<CGAL::Polynomial<IC> >::d == 1);
typedef CGAL::Algebraic_structure_traits<IC> AST_IC;
typedef typename AST_IC::Algebraic_category Algebraic_category;
return internal::resultant_univariate(F,G,Algebraic_category());
}
template <class Coeff_2>
inline
CGAL::Polynomial<Coeff_2> resultant_interpolate(
const CGAL::Polynomial<CGAL::Polynomial<Coeff_2> >& F,
const CGAL::Polynomial<CGAL::Polynomial<Coeff_2> >& G){
typedef CGAL::Polynomial<Coeff_2> Coeff_1;
typedef CGAL::Polynomial<Coeff_1> POLY;
typedef CGAL::Polynomial_traits_d<POLY> PT;
typedef typename PT::Innermost_coefficient_type IC;
CGAL_precondition(PT::d >= 2);
typename PT::Degree degree;
int maxdegree = degree(F,0)*degree(G,PT::d-1) + degree(F,PT::d-1)*degree(G,0);
typedef std::pair<IC,Coeff_2> Point;
std::vector<Point> points; // interpolation points
typename CGAL::Polynomial_traits_d<Coeff_1>::Degree coeff_degree;
int i(-maxdegree/2);
int deg_f(0);
int deg_g(0);
while((int) points.size() <= maxdegree + 1){
i++;
// timer1.start();
Coeff_1 c_i(i);
Coeff_1 Fat_i(typename PT::Evaluate()(F,c_i));
Coeff_1 Gat_i(typename PT::Evaluate()(G,c_i));
// timer1.stop();
int deg_f_at_i = coeff_degree(Fat_i,0);
int deg_g_at_i = coeff_degree(Gat_i,0);
// std::cout << F << std::endl;
// std::cout << Fat_i << std::endl;
// std::cout << deg_f_at_i << " vs. " << deg_f << std::endl;
if(deg_f_at_i > deg_f ){
points.clear();
deg_f = deg_f_at_i;
CGAL_postcondition(points.size() == 0);
}
if(deg_g_at_i > deg_g){
points.clear();
deg_g = deg_g_at_i;
CGAL_postcondition(points.size() == 0);
}
if(deg_f_at_i == deg_f && deg_g_at_i == deg_g){
// timer2.start();
Coeff_2 res_at_i = resultant_interpolate(Fat_i, Gat_i);
// timer2.stop();
points.push_back(Point(IC(i),res_at_i));
// std::cout << typename Polynomial_traits_d<Coeff_2>::Degree()(res_at_i) << std::endl ;
}
}
// timer3.start();
CGAL::internal::Interpolator<Coeff_1> interpolator(points.begin(),points.end());
Coeff_1 result = interpolator.get_interpolant();
// timer3.stop();
#ifndef CGAL_NDEBUG
while((int) points.size() <= maxdegree + 3){
i++;
Coeff_1 c_i(i);
Coeff_1 Fat_i(typename PT::Evaluate()(F,c_i));
Coeff_1 Gat_i(typename PT::Evaluate()(G,c_i));
CGAL_assertion(coeff_degree(Fat_i,0) <= deg_f);
CGAL_assertion(coeff_degree(Gat_i,0) <= deg_g);
if(coeff_degree( Fat_i , 0) == deg_f && coeff_degree( Gat_i , 0 ) == deg_g){
Coeff_2 res_at_i = resultant_interpolate(Fat_i, Gat_i);
points.push_back(Point(IC(i), res_at_i));
}
}
CGAL::internal::Interpolator<Coeff_1>
interpolator_(points.begin(),points.end());
Coeff_1 result_= interpolator_.get_interpolant();
// the interpolate polynomial has to be stable !
CGAL_assertion(result_ == result);
#endif
return result;
}
template <class Coeff>
inline
Coeff resultant_modularize(
const CGAL::Polynomial<Coeff>& F,
const CGAL::Polynomial<Coeff>& G,
CGAL::Tag_false){
return resultant_interpolate(F,G);
}
template <class Coeff>
inline
Coeff resultant_modularize(
const CGAL::Polynomial<Coeff>& F,
const CGAL::Polynomial<Coeff>& G,
CGAL::Tag_true){
// Enforce IEEE double precision and to nearest before using modular arithmetic
CGAL::Protect_FPU_rounding<true> pfr(CGAL_FE_TONEAREST);
typedef Polynomial_traits_d<CGAL::Polynomial<Coeff> > PT;
typedef typename PT::Polynomial_d Polynomial;
typedef Chinese_remainder_traits<Coeff> CRT;
typedef typename CRT::Scalar_type Scalar;
typedef typename CGAL::Modular_traits<Polynomial>::Residue_type MPolynomial;
typedef typename CGAL::Modular_traits<Coeff>::Residue_type MCoeff;
typename CRT::Chinese_remainder chinese_remainder;
typename CGAL::Modular_traits<Coeff>::Modular_image_representative inv_map;
typename PT::Degree_vector degree_vector;
typename CGAL::Polynomial_traits_d<MPolynomial>::Degree_vector mdegree_vector;
bool solved = false;
int prime_index = 0;
int n = 0;
Scalar p,q,pq,s,t;
Coeff R, R_old;
// CGAL::Timer timer_evaluate, timer_resultant, timer_cr;
do{
MPolynomial mF, mG;
MCoeff mR;
//timer_evaluate.start();
do{
// select a prime number
int current_prime = -1;
prime_index++;
if(prime_index >= 2000){
std::cerr<<"primes in the array exhausted"<<std::endl;
CGAL_assertion(false);
current_prime = internal::get_next_lower_prime(current_prime);
} else{
current_prime = internal::primes[prime_index];
}
CGAL::Residue::set_current_prime(current_prime);
mF = CGAL::modular_image(F);
mG = CGAL::modular_image(G);
}while( degree_vector(F) != mdegree_vector(mF) ||
degree_vector(G) != mdegree_vector(mG));
//timer_evaluate.stop();
//timer_resultant.start();
n++;
mR = resultant_interpolate(mF,mG);
//timer_resultant.stop();
//timer_cr.start();
if(n == 1){
// init chinese remainder
q = CGAL::Residue::get_current_prime(); // implicit !
R = inv_map(mR);
}else{
// continue chinese remainder
p = CGAL::Residue::get_current_prime(); // implicit!
R_old = R ;
// chinese_remainder(q,Gs ,p,inv_map(mG_),pq,Gs);
// cached_extended_euclidean_algorithm(q,p,s,t);
internal::Cached_extended_euclidean_algorithm
<typename CRT::Scalar_type> ceea;
ceea(q,p,s,t);
pq =p*q;
chinese_remainder(q,p,pq,s,t,R_old,inv_map(mR),R);
q=pq;
}
solved = (R==R_old);
//timer_cr.stop();
} while(!solved);
//std::cout << "Time Evaluate : " << timer_evaluate.time() << std::endl;
//std::cout << "Time Resultant : " << timer_resultant.time() << std::endl;
//std::cout << "Time Chinese R : " << timer_cr.time() << std::endl;
// CGAL_postcondition(R == resultant_interpolate(F,G));
return R;
// return resultant_interpolate(F,G);
}
template <class Coeff>
inline
Coeff resultant_decompose(
const CGAL::Polynomial<Coeff>& F,
const CGAL::Polynomial<Coeff>& G,
CGAL::Tag_false){
#if CGAL_RESULTANT_USE_MODULAR_ARITHMETIC
typedef CGAL::Polynomial<Coeff> Polynomial;
typedef typename Modular_traits<Polynomial>::Is_modularizable Is_modularizable;
return resultant_modularize(F,G,Is_modularizable());
#else
return resultant_modularize(F,G,CGAL::Tag_false());
#endif
}
template <class Coeff>
inline
Coeff resultant_decompose(
const CGAL::Polynomial<Coeff>& F,
const CGAL::Polynomial<Coeff>& G,
CGAL::Tag_true){
typedef Polynomial<Coeff> POLY;
typedef typename Fraction_traits<POLY>::Numerator_type Numerator;
typedef typename Fraction_traits<POLY>::Denominator_type Denominator;
typename Fraction_traits<POLY>::Decompose decompose;
typedef typename Numerator::NT RES;
Denominator a, b;
// F.simplify_coefficients(); not const
// G.simplify_coefficients(); not const
Numerator F0; decompose(F,F0,a);
Numerator G0; decompose(G,G0,b);
Denominator c = CGAL::ipower(a, G.degree()) * CGAL::ipower(b, F.degree());
RES res0 = CGAL::internal::resultant_(F0, G0);
typename Fraction_traits<Coeff>::Compose comp_frac;
Coeff res = comp_frac(res0, c);
typename Algebraic_structure_traits<Coeff>::Simplify simplify;
simplify(res);
return res;
}
template <class Coeff>
inline
Coeff resultant_(
const CGAL::Polynomial<Coeff>& F,
const CGAL::Polynomial<Coeff>& G){
#if CGAL_RESULTANT_USE_DECOMPOSE
typedef CGAL::Fraction_traits<Polynomial<Coeff > > FT;
typedef typename FT::Is_fraction Is_fraction;
return resultant_decompose(F,G,Is_fraction());
#else
return resultant_decompose(F,G,CGAL::Tag_false());
#endif
}
template <class Coeff>
inline
Coeff resultant(
const CGAL::Polynomial<Coeff>& F_,
const CGAL::Polynomial<Coeff>& G_){
// make the variable to be elimnated the innermost one.
typedef CGAL::Polynomial_traits_d<CGAL::Polynomial<Coeff> > PT;
CGAL::Polynomial<Coeff> F = typename PT::Move()(F_, PT::d-1, 0);
CGAL::Polynomial<Coeff> G = typename PT::Move()(G_, PT::d-1, 0);
return internal::resultant_(F,G);
}
} // namespace internal
} //namespace CGAL
#endif // CGAL_POLYNOMIAL_RESULTANT_H
|