/usr/include/CGAL/Rational_traits.h is in libcgal-dev 4.5-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 | // Copyright (c) 2006-2007 Max-Planck-Institute Saarbruecken (Germany).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org); you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; either version 3 of the License,
// or (at your option) any later version.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL$
// $Id$
//
//
// Author(s) : Michael Hemmer <hemmer@mpi-inf.mpg.de>
//
// =============================================================================
// This file is for backward compatibility
// Rational_traits will be replaced by Fraction_traits
#ifndef CGAL_RATIONAL_TRAITS_H
#define CGAL_RATIONAL_TRAITS_H
#include <CGAL/number_type_basic.h>
#include <CGAL/Fraction_traits.h>
#include <CGAL/is_convertible.h>
#include <boost/utility/enable_if.hpp>
namespace CGAL {
namespace internal{
template <class Rational, bool >
struct Rational_traits_base
{
typedef Rational RT;
const RT& numerator (const Rational& r) const { return r; }
RT denominator (const Rational&) const { return RT(1); }
template<class T>
Rational make_rational(const T & x) const
{ return x; }
template<class T, class U>
Rational make_rational(const std::pair<T, U> & x) const
{ return make_rational(x.first, x.second); }
Rational make_rational(const RT & n, const RT & d) const
{ return n / d; }
};
template <class Rational>
struct Rational_traits_base<Rational, true>
{
private:
typedef Fraction_traits<Rational> FT;
typedef typename FT::Decompose Decomose;
typedef typename FT::Compose Compose;
public:
typedef typename FT::Numerator_type RT;
RT numerator (const Rational& r) const {
RT num,den;
Decomose()(r,num,den);
return num;
}
RT denominator (const Rational& r) const {
RT num,den;
Decomose()(r,num,den);
return den;
}
template<class T>
Rational make_rational(const T & x) const
{ return x; }
template<class T, class U>
Rational make_rational(const std::pair<T, U> & x) const
{ return make_rational(x.first, x.second); }
template<class N,class D>
Rational make_rational(const N& n, const D& d,typename boost::enable_if_c<is_implicit_convertible<N,RT>::value&&is_implicit_convertible<D,RT>::value,int>::type=0) const
{ return Compose()(n,d); }
template<class N,class D>
Rational make_rational(const N& n, const D& d,typename boost::enable_if_c<!is_implicit_convertible<N,RT>::value||!is_implicit_convertible<D,RT>::value,int>::type=0) const
{ return n/d; } // Assume that n or d is already a fraction
};
}// namespace internal
// use Fraction_traits if Is_fraction && Num and Den are the same
template <class T>
class Rational_traits
: public internal::Rational_traits_base<T,
::boost::is_same<typename Fraction_traits<T>::Is_fraction,Tag_true>::value
&&
::boost::is_same<
typename Fraction_traits<T>::Numerator_type,
typename Fraction_traits<T>::Denominator_type
>::value >
{};
} //namespace CGAL
#endif // CGAL_RATIONAL_TRAITS_H
// EOF
|