/usr/include/CGAL/Sqrt_extension.h is in libcgal-dev 4.5-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 | // Copyright (c) 2006-2008 Max-Planck-Institute Saarbruecken (Germany).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org); you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; either version 3 of the License,
// or (at your option) any later version.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL$
// $Id$
//
//
// Author(s) : Michael Hemmer <hemmer@mpi-inf.mpg.de>
// Ron Wein <wein@post.tau.ac.il>
#ifndef CGAL_SQRT_EXTENSION_H
#define CGAL_SQRT_EXTENSION_H
// COMMENTS FROM EXACUS
/*! \ingroup NiX_Sqrt_extension
\brief represents an extension of a number type by one square root.
An instance of this class
represents an extension of the type NT by a square root of the
type ROOT. In case NT and ROOT do not coincide,
NT must be constructible from ROOT. The number type NT
must be at least a model of the IntegralDomainWithoutDiv concept.
An Sqrt_extension is a model of RealComparable if NT is RealComparable.\n
The <B>algebraic type</B> of NiX::Sqrt_extension depends on the algebraic type
of NT:
- IntegralDomainWithoutDiv -> IntegralDomainWithoutDiv
- IntegralDomain -> IntegralDomain
- UFDomain -> IntegralDomain
- EuclideanRing -> IntegralDomain
- Field -> Field
- FieldWithSqrt -> Field (not recommended)
Note that NT and ROOT can themselves be an instance of
NiX::Sqrt_extension, yielding a nested extension.\n
Note that the extension of an UFDomain or EuclideanRing is just an
IntegralDomain, since the extension in general destroys the unique
factorization property.
*/
#include <CGAL/number_type_basic.h>
#include <CGAL/Sqrt_extension/Sqrt_extension_type.h>
#include <CGAL/Sqrt_extension/Algebraic_structure_traits.h>
#include <CGAL/Sqrt_extension/Real_embeddable_traits.h>
#include <CGAL/Sqrt_extension/Fraction_traits.h>
#include <CGAL/Sqrt_extension/Coercion_traits.h>
#include <CGAL/Sqrt_extension/Modular_traits.h>
#include <CGAL/Sqrt_extension/Scalar_factor_traits.h>
#include <CGAL/Sqrt_extension/Algebraic_extension_traits.h>
#include <CGAL/Sqrt_extension/Chinese_remainder_traits.h>
#include <CGAL/Sqrt_extension/io.h>
#include <CGAL/Sqrt_extension/Get_arithmetic_kernel.h>
#include <CGAL/Sqrt_extension/convert_to_bfi.h>
#include <CGAL/Sqrt_extension/Wang_traits.h>
#include <CGAL/Sqrt_extension/Eigen_NumTraits.h>
#endif // CGAL_SQRT_EXTENSION_H
// EOF
|