/usr/include/CGAL/apply_to_range.h is in libcgal-dev 4.5-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 | // Copyright (c) 2002-2004 INRIA Sophia-Antipolis (France).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org); you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; either version 3 of the License,
// or (at your option) any later version.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL$
// $Id$
//
//
// Author(s) : Radu Ursu
#ifndef CGAL_apply_to_range_h
#define CGAL_apply_to_range_h
#include <CGAL/Point_2.h>
#include <CGAL/Unique_hash_map.h>
#include <stack>
namespace CGAL{
template <class Tr, class Fct, class R>
void apply_to_range(const Tr &t,
const Point_2<R> &p1, const Point_2<R> &p2,
Fct& fct)
{
if (t.dimension()<2) return;
typedef typename Tr::Point POINT;
typedef typename Tr::Face_handle hFACE;
typedef typename Tr::Vertex_handle hVERTEX;
typedef typename Tr::Line_face_circulator LFC;
typedef typename Tr::Finite_vertices_iterator FVI;
typedef typename Tr::Finite_faces_iterator FFI;
typedef typename Kernel_traits<POINT>::Kernel K;
typedef typename K::FT FT;
LFC l1, l2, l3, l4; //the faces that intersect the pixmap RECTANGLE
hFACE hface1, hface2,
hface3, hface4; //the faces where we start to search
FT xr_left, yr_top,
xr_right, yr_bottom;//the coordinates of the screen boundaries
CGAL::Unique_hash_map<hFACE, bool> visited(false);//used for DFS
std::stack<hFACE> face_stack; //used for DFS
xr_left = p1.x(); xr_right = p2.x();
yr_top = p1.y(); yr_bottom = p2.y();
hface1 = t.locate(POINT(xr_left, yr_top));
hface2 = t.locate(POINT(xr_right, yr_top));
hface3 = t.locate(POINT(xr_right, yr_bottom));
hface4 = t.locate(POINT(xr_left, yr_bottom));
l1 = t.line_walk(POINT(xr_left, yr_top), POINT(xr_right, yr_top), hface1);
l2 = t.line_walk(POINT(xr_right, yr_top), POINT(xr_right, yr_bottom), hface2);
l3 = t.line_walk(POINT(xr_right, yr_bottom), POINT(xr_left, yr_bottom), hface3);
l4 = t.line_walk(POINT(xr_left, yr_bottom), POINT(xr_left, yr_top), hface4);
//test if everything is inside or outside
if( (l1 == (Nullptr_t) NULL) && (l2 == (Nullptr_t) NULL) &&
(l3 == (Nullptr_t) NULL) && (l4 == (Nullptr_t) NULL))
{
FVI v = t.finite_vertices_begin();
if((*v).point().x() < xr_left || (*v).point().x() > xr_right ||
(*v).point().y() < yr_bottom || (*v).point().y() > yr_top) //true if everything is outside
return;
else{ //everything is inside
FFI it = t.finite_faces_begin();
while(it != t.finite_faces_end())
{
fct(it);
it++;
}
}
return;
}
//if we are here, then a part of the triangulation is inside, the other is outside
//put all the faces on the boundaries in the stack and the map
if(l1 != (Nullptr_t) NULL) //found at least one face that intersect the TOP segment
{
while (t.is_infinite(l1)) l1++; //we should start with a finite face
do{ //put all of them in the stack;
face_stack.push(l1);
visited[l1] = true;
l1++;
}while(!t.is_infinite(l1) &&
t.triangle(l1).has_on_unbounded_side(POINT(xr_right, yr_top)));
}
if(l2 != (Nullptr_t) NULL) //found at least one face that intersect the RIGHT segment
{
while (t.is_infinite(l2)) l2++; //we should start with a finite face
do{ //put all of them in the stack;
if(!visited[l2]){
face_stack.push(l2);
visited[l2] = true;
}
l2++;
}while(!t.is_infinite(l2) &&
t.triangle(l2).has_on_unbounded_side(POINT(xr_right, yr_bottom)));
}
if(l3 != (Nullptr_t) NULL) //found at least one face that intersect the BOTTOM segment
{
while (t.is_infinite(l3)) l3++; //we should start with a finite face
do{ //put all of them in the stack;
if(!visited[l3]){
face_stack.push(l3);
visited[l3] = true;
}
l3++;
}while(!t.is_infinite(l3) &&
t.triangle(l3).has_on_unbounded_side(POINT(xr_left, yr_bottom)));
}
if(l4 != (Nullptr_t) NULL) //found at least one face that intersect the LEFT segment
{
while (t.is_infinite(l4)) l4++; //we should start with a finite face
do{ //put all of them in the stack;
if(!visited[l4]){
face_stack.push(l4);
visited[l4] = true;
}
l4++;
}while(!t.is_infinite(l4) &&
t.triangle(l4).has_on_unbounded_side(POINT(xr_left, yr_top)));
}
//HERE we begin to walk through the faces DFS
hFACE hf;
typename CGAL::Unique_hash_map<hFACE,bool>::Data&
data_ref_start(visited[hf]);
data_ref_start = true;
while(!face_stack.empty()){
hf = face_stack.top();
face_stack.pop(); //done with this face
for (int i=0; i<3; i++){ //visit all the neighbors
if(!visited[(*hf).neighbor(i)] )
if(!t.is_infinite((*hf).neighbor(i))){ //true if it is not an infinite face
hVERTEX hv = (*(*hf).neighbor(i)).vertex((*(*hf).neighbor(i)).index(hf));
if(!((*hv).point().x() < xr_left || (*hv).point().x() > xr_right ||
(*hv).point().y() < yr_bottom || (*hv).point().y() > yr_top)) //true if the vertex is outside
face_stack.push((*hf).neighbor(i));
typename CGAL::Unique_hash_map<hFACE,bool>::Data&
data_ref(visited[(*hf).neighbor(i)]);
data_ref = true;
}
}
fct(hf);
}
}
}//end namespace
#endif
|