This file is indexed.

/usr/include/CGAL/boost/graph/helpers.h is in libcgal-dev 4.5-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
// Copyright (c) 2014 GeometryFactory (France). All rights reserved.
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org); you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; either version 3 of the License,
// or (at your option) any later version.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL$
// $Id$
// 
// Author(s) : Andreas Fabri

#ifndef CGAL_BOOST_GRAPH_HELPERS_H
#define CGAL_BOOST_GRAPH_HELPERS_H


#include <boost/foreach.hpp>

namespace CGAL {



template <typename FaceGraph>
bool is_border(typename boost::graph_traits<FaceGraph>::halfedge_descriptor hd, const FaceGraph& g)
{
  return face(hd,g) == boost::graph_traits<FaceGraph>::null_face();
}

template <typename FaceGraph>
bool is_border_edge(typename boost::graph_traits<FaceGraph>::halfedge_descriptor hd, const FaceGraph& g)
{
  return is_border(hd, g) || is_border(opposite(hd,g), g);
}

template <typename FaceGraph>
bool is_border(typename boost::graph_traits<FaceGraph>::edge_descriptor ed, const FaceGraph& g)
{
  return is_border_edge(halfedge(ed,g), g);
}

template <typename Graph>
boost::optional<typename boost::graph_traits<Graph>::halfedge_descriptor>
is_border(typename boost::graph_traits<Graph>::vertex_descriptor v,
          const Graph& g)
{
  CGAL::Halfedge_around_target_iterator<Graph> havib, havie;
  for(boost::tie(havib, havie) = halfedges_around_target(halfedge(v, g), g); havib != havie; ++havib) {
    if(is_border(*havib,g)) {
      typename boost::graph_traits<Graph>::halfedge_descriptor h = *havib;
      return h;
    }
  }
  // empty
  return boost::optional<typename boost::graph_traits<Graph>::halfedge_descriptor>();
}


 /*!
    returns `true` if there are no 
    border edges. 
  */
template <typename FaceGraph>
bool is_closed(const FaceGraph& g)
{
  typedef typename boost::graph_traits<FaceGraph>::halfedge_descriptor halfedge_descriptor;
  BOOST_FOREACH(halfedge_descriptor hd, halfedges(g)){
    if(is_border(hd,g)){
      return false;
    }
  }
  return true;
}


template <typename FaceGraph>
bool is_bivalent(typename boost::graph_traits<FaceGraph>::halfedge_descriptor hd, const FaceGraph& g)
{
  return hd == opposite(next(opposite(next(hd,g),g),g),g);
}

  /*!
    returns `true` if all 
    vertices have exactly two incident edges. 
  */ 
template <typename FaceGraph>
  bool is_pure_bivalent(const FaceGraph& g)  
{
  typedef typename boost::graph_traits<FaceGraph>::vertex_descriptor vertex_descriptor;
  typedef typename boost::graph_traits<FaceGraph>::halfedge_descriptor halfedge_descriptor;
  BOOST_FOREACH(vertex_descriptor vd, vertices(g)){
    halfedge_descriptor hd = halfedge(vd,g);
    if((hd == boost::graph_traits<FaceGraph>::null_halfedge()) ||
       (! is_bivalent(hd,g))){
      return false;
    }
  }
  return true;
}

template <typename FaceGraph>
bool is_trivalent(typename boost::graph_traits<FaceGraph>::halfedge_descriptor hd, const FaceGraph& g)
{
  return hd == opposite(next(opposite(next(opposite(next(hd,g),g),g),g),g),g);
}
	
  /*!
    returns `true` if all 
    vertices have exactly three incident edges. 
  */ 
template <typename FaceGraph>
  bool is_pure_trivalent(const FaceGraph& g)  
{
  typedef typename boost::graph_traits<FaceGraph>::vertex_descriptor vertex_descriptor;
  typedef typename boost::graph_traits<FaceGraph>::halfedge_descriptor halfedge_descriptor;
  BOOST_FOREACH(vertex_descriptor vd, vertices(g)){
    halfedge_descriptor hd = halfedge(vd,g);
    if((hd == boost::graph_traits<FaceGraph>::null_halfedge()) ||
       (! is_trivalent(hd,g))){
      return false;
    }
  }
  return true;
}

 /*!
    returns `true` iff the connected component denoted by `h` is a triangle. 
    \pre `g` must be valid.
  */ 
template <typename FaceGraph>
  bool is_triangle(typename boost::graph_traits<FaceGraph>::halfedge_descriptor hd, const FaceGraph& g)  
{ 
  typedef typename boost::graph_traits<FaceGraph>::halfedge_descriptor halfedge_descriptor;
  halfedge_descriptor beg = hd;
  if(is_border(hd,g)) return false;
  for(int i=0; i<3;i++){
    if(! is_border(opposite(hd,g),g)) return false;
    hd = next(hd,g);
  }
  return next(hd,g)== beg;
}

 /*!
    returns `true` iff the face is a triangle, that is it has three incident halfedges. 
 */
template <typename FaceGraph>
bool is_triangle(typename boost::graph_traits<FaceGraph>::face_descriptor fd, const FaceGraph& g)
{
  typedef typename boost::graph_traits<FaceGraph>::halfedge_descriptor halfedge_descriptor;
  halfedge_descriptor hd = halfedge(fd,g);
  return hd == next(next(next(hd,g),g),g);
}

  /*!
    returns `true` if all faces are triangles. 
  */ 
template <typename FaceGraph>
  bool is_pure_triangle(const FaceGraph& g)  
{
  typedef typename boost::graph_traits<FaceGraph>::face_descriptor face_descriptor;
  BOOST_FOREACH(face_descriptor fd, faces(g)){
    if(! is_triangle(fd,g)){
      return false;
    }
  }
  return true;
}


/*!
    returns `true` iff the connected component denoted by `h` is a quadrilateral. 
  */
template <typename FaceGraph>
bool is_quad(typename boost::graph_traits<FaceGraph>::halfedge_descriptor hd, const FaceGraph& g)
{
 typedef typename boost::graph_traits<FaceGraph>::halfedge_descriptor halfedge_descriptor;
  halfedge_descriptor beg = hd;
  if(is_border(hd,g)) return false;
  for(int i=0; i<4;i++){
    if(! is_border(opposite(hd,g),g)) return false;
    hd = next(hd,g);
  }
  return next(hd,g)== beg;
}


 /*!
    returns `true` iff the face is a quad, that is it has four incident halfedges. 
 */
template <typename FaceGraph>
bool is_quad(typename boost::graph_traits<FaceGraph>::face_descriptor fd, const FaceGraph& g)
{
 typedef typename boost::graph_traits<FaceGraph>::halfedge_descriptor halfedge_descriptor;
  halfedge_descriptor hd = halfedge(fd,g);
  return hd == next(next(next(next(hd,g),g),g),g);
}

  /*!
    returns `true` if all faces are quadrilaterals. 
  */ 
template <typename FaceGraph>
  bool is_pure_quad(const FaceGraph& g)  
{
    typedef typename boost::graph_traits<FaceGraph>::face_descriptor face_descriptor;
  BOOST_FOREACH(face_descriptor fd, faces(g)){
    if(! is_quad(fd,g)){
      return false;
    }
  }
  return true;
}
 
  /*!
    returns `true` iff the connected component denoted by `h` is a tetrahedron. 
  */ 
template <typename FaceGraph>
bool is_tetrahedron( typename boost::graph_traits<FaceGraph>::halfedge_descriptor h1, const FaceGraph& g)   
{
  typedef typename boost::graph_traits<FaceGraph>::halfedge_descriptor halfedge_descriptor;
  halfedge_descriptor h2 = next(h1,g);
  halfedge_descriptor h3 = next(h2,g);
  halfedge_descriptor h4 = next(opposite(h1,g),g );
  halfedge_descriptor h5 = next(opposite(h2,g),g );
  halfedge_descriptor h6 = next(opposite(h3,g),g );
  // check halfedge combinatorics.
  // at least three edges at vertices 1, 2, 3.
  if ( h4 == opposite(h3,g) ) return false;
  if ( h5 == opposite(h1,g) ) return false;
  if ( h6 == opposite(h2,g) ) return false;
  // exact three edges at vertices 1, 2, 3.
  if ( next(opposite(h4,g),g) != opposite(h3,g) ) return false;
  if ( next(opposite(h5,g),g) != opposite(h1,g) ) return false;
  if ( next(opposite(h6,g),g) != opposite(h2,g) ) return false;
  // three edges at v4.
  if ( opposite(next(h4,g),g) != h5 ) return false;
  if ( opposite(next(h5,g),g) != h6 ) return false;
  if ( opposite(next(h6,g),g) != h4 ) return false;
  // All facets are triangles.
  if ( next(next(next(h1,g),g),g) != h1 ) return false;
  if ( next(next(next(h4,g),g),g) != h4 ) return false;
  if ( next(next(next(h5,g),g),g) != h5 ) return false;
  if ( next(next(next(h6,g),g),g) != h6 ) return false;
  // all edges are non-border edges.
  if ( is_border(h1,g) ) return false;  // implies h2 and h3
  if ( is_border(h4,g) ) return false;
  if ( is_border(h5,g) ) return false;
  if ( is_border(h6,g) ) return false;
  return true;
  }



} // namespace CGAL

#endif // CGAL_BOOST_GRAPH_HELPERS_H