/usr/include/CGAL/extremal_polygon_2.h is in libcgal-dev 4.5-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 | // Copyright (c) 1998-2003 ETH Zurich (Switzerland).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org).
// You can redistribute it and/or modify it under the terms of the GNU
// General Public License as published by the Free Software Foundation,
// either version 3 of the License, or (at your option) any later version.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL$
// $Id$
//
//
// Author(s) : Michael Hoffmann <hoffmann@inf.ethz.ch>
#ifndef CGAL_EXTREMAL_POLYGON_2_H
#define CGAL_EXTREMAL_POLYGON_2_H 1
#include <CGAL/Optimisation/assertions.h>
#include <CGAL/monotone_matrix_search.h>
#include <CGAL/Dynamic_matrix.h>
#include <CGAL/Transform_iterator.h>
#include <CGAL/Polygon_2_algorithms.h>
#include <vector>
#include <functional>
#include <algorithm>
#include <CGAL/Extremal_polygon_traits_2.h>
namespace CGAL {
//!!! This will eventually be integrated into function_objects.h
template < class Array, class Index, class Element >
struct Index_operator
: public std::binary_function< Array, Index, Element >
{
Element&
operator()( Array& a, const Index& i) const
{ return a[i]; }
const Element&
operator()( const Array& a, const Index& i) const
{ return a[i]; }
};
template < class RandomAccessIC_object_,
class RandomAccessIC_value_,
class Operation_ >
// This class describes the kind of matrices used for the
// computation of extremal polygons.
//
// RandomAccessIC_object is a random access iterator or circulator
// with value type Object
// RandomAccessIC_value is a random access iterator or circulator
// with value type Value
// Operation is an adatable binary function:
// Object x Object -> Value
//
// objects can be constructed using the helper function
// extremal_polygon_matrix.
//
class Extremal_polygon_matrix {
public:
typedef RandomAccessIC_object_ RandomAccessIC_object;
typedef RandomAccessIC_value_ RandomAccessIC_value;
typedef Operation_ Operation;
typedef typename
std::iterator_traits< RandomAccessIC_object >::value_type
Object;
typedef typename
std::iterator_traits< RandomAccessIC_value >::value_type
Value;
Extremal_polygon_matrix(
RandomAccessIC_object begin_row,
RandomAccessIC_object end_row,
RandomAccessIC_object begin_col,
RandomAccessIC_object end_col,
RandomAccessIC_value begin_value,
RandomAccessIC_value CGAL_optimisation_precondition_code(end_value),
const Operation& o)
// initialization with two ranges [begin_row, end_row) and
// [begin_col, end_col) of Objects, a range [begin_value, end_value)
// of Values and an Operation o.
//
// an entry (r, c) of this matrix is then defined as:
// begin_value[c] + op( begin_row[r], begin_col[c]).
//
: op( o),
begin_row_( begin_row),
begin_col_( begin_col),
begin_value_( begin_value),
n_rows( static_cast<int>(iterator_distance( begin_row, end_row))),
n_cols( static_cast<int>(iterator_distance( begin_col, end_col)))
{
CGAL_optimisation_precondition(
iterator_distance( begin_value, end_value) == n_cols);
CGAL_optimisation_assertion( n_rows > 0 && n_cols > 0);
}
int
number_of_rows() const
{ return n_rows; }
int
number_of_columns() const
{ return n_cols; }
Value
operator()( int r, int c) const
{
CGAL_optimisation_precondition( r >= 0 && r < n_rows);
CGAL_optimisation_precondition( c >= 0 && c < n_cols);
return begin_value_[c] + op( begin_row_[r], begin_col_[c]);
}
private:
Operation op;
RandomAccessIC_object begin_row_;
RandomAccessIC_object begin_col_;
RandomAccessIC_value begin_value_;
int n_rows;
int n_cols;
};
template < class RandomAccessIC_object,
class RandomAccessIC_value,
class Operation >
inline
Extremal_polygon_matrix< RandomAccessIC_object,
RandomAccessIC_value,
Operation >
extremal_polygon_matrix(
RandomAccessIC_object begin_row,
RandomAccessIC_object end_row,
RandomAccessIC_object begin_col,
RandomAccessIC_object end_col,
RandomAccessIC_value begin_value,
RandomAccessIC_value end_value,
const Operation& o)
{
return Extremal_polygon_matrix< RandomAccessIC_object,
RandomAccessIC_value,
Operation >
( begin_row, end_row,
begin_col, end_col,
begin_value, end_value,
o);
}
template < class RandomAccessIC, class Outputiterator, class Traits >
Outputiterator
CGAL_maximum_inscribed_rooted_k_gon_2(
RandomAccessIC points_begin,
RandomAccessIC points_end,
int k,
typename Traits::FT& max_area,
Outputiterator o,
const Traits& t)
//
// preconditions:
// --------------
// * Traits fulfills the requirements for an extremal polygon
// traits class
// * the range [points_begin, points_end) of size n > 0
// describes the vertices of a convex polygon $P$
// enumerated clock- or counterclockwise
// n > k,
// * k >= t.min_k()
// * value_type of RandomAccessIC is Traits::Point_2
// * OutputIterator accepts Traits::Point_2 as value_type
//
// functionality:
// --------------
// computes maximum (as specified by t) inscribed k-gon $P_k$
// of the polygon $P$,
// that is rooted at points_begin[0],
// sets max_area to its associated value (as specified by t)
// writes the indices (relative to points_begin)
// of $P_k$'s vertices to o and
// returns the past-the-end iterator of that sequence.
{
// check preconditions:
CGAL_optimisation_precondition( k >= t.min_k());
int number_of_points(
static_cast<int>(iterator_distance( points_begin,
points_end)));
CGAL_optimisation_precondition( number_of_points > k);
typedef std::vector< int > Index_cont;
if ( k == t.min_k())
// compute min_k gon:
return t.compute_min_k_gon(
points_begin, points_end, max_area, o);
// current i-gon (i = 2/3...k)
Index_cont gon( k + 1);
// compute initial min_k-gon:
int i( t.min_k());
t.compute_min_k_gon(
points_begin, points_end, max_area, gon.rbegin() + k + 1 - i);
for (;;) {
CGAL_optimisation_assertion( gon[0] == 0);
gon[i] = number_of_points - 1;
if ( ++i >= k)
break;
CGAL_maximum_inscribed_rooted_k_gon_2(
points_begin,
points_end,
0,
gon.begin(),
gon.begin() + i - 1,
gon.begin() + 1,
gon.begin() + i,
max_area,
gon.rbegin() + k + 1 - i,
t);
} // for (;;)
return CGAL_maximum_inscribed_rooted_k_gon_2(
points_begin,
points_end,
0,
gon.begin(),
gon.begin() + k - 1,
gon.begin() + 1,
gon.begin() + k,
max_area,
o,
t);
} // CGAL_maximum_inscribed_rooted_k_gon_2( ... )
template < class RandomAccessIC_point,
class RandomAccessIC_int,
class OutputIterator,
class Traits >
OutputIterator
CGAL_maximum_inscribed_rooted_k_gon_2(
RandomAccessIC_point points_begin,
RandomAccessIC_point points_end,
int root,
RandomAccessIC_int left_c_begin,
RandomAccessIC_int CGAL_optimisation_precondition_code(left_c_end),
RandomAccessIC_int right_c_begin,
RandomAccessIC_int right_c_end,
typename Traits::FT& max_area,
OutputIterator o,
const Traits& t)
//
// preconditions:
// --------------
// * Traits fulfills the requirements for an extremal polygon
// traits class
// * the range [points_begin, points_end) of size n > 0
// describes the vertices of a convex polygon $P$
// enumerated clock- or counterclockwise
// * value_type of RandomAccessIC_point is Traits::Point
// * value_type of RandomAccessIC_int is int
// * OutputIterator accepts int as value type
// * length := right_c_end - right_c_begin == left_c_end - left_c_begin
// >= t.min_k() - 1 (the root is already fixed)
// * [left_c_begin, left_c_end) resp. [right_c_begin, right_c_end)
// describe two subpolygons of $P$ by giving the indices of its
// vertices relative to points_begin and for any 0 <= i < length:
// left_c_begin[i] <= right_c_begin[i]
// * for any 0 <= i < length: o + i must not be contained in
// the range [right_c_begin, right_c_begin + length - i - 2].
// (NOT checked!)
//
// functionality:
// --------------
// computes maximum (as specified by t) inscribed k-gon $P_k$
// of the polygon $P$,
// that is rooted at points_begin[left_c_begin[0]]
// such that for any 0 <= i < length:
// left_c_begin[i] <= vertex i of $P_k$ <= right_c_begin[i],
// sets max_area to its associated value (as specified by t),
// writes the indices (relative to points_begin)
// of $P_k$'s vertices to o and
// returns the past-the-end iterator of that sequence.
{
using std::max_element;
// counter :)
int i;
// compute size of ranges:
int number_of_points = static_cast<int>(iterator_distance( points_begin,
points_end));
int size_of_gon = static_cast<int>(iterator_distance( right_c_begin,
right_c_end));
// check preconditions:
CGAL_optimisation_precondition( number_of_points > t.min_k());
CGAL_optimisation_precondition( size_of_gon >= t.min_k() - 1);
CGAL_optimisation_precondition(
iterator_distance( left_c_begin, left_c_end) ==
iterator_distance( right_c_begin, right_c_end));
CGAL_optimisation_precondition( left_c_begin[0] >= 0);
CGAL_optimisation_precondition( right_c_begin[0] >= 0);
CGAL_optimisation_precondition(
left_c_begin[size_of_gon-1] < number_of_points);
CGAL_optimisation_precondition(
right_c_begin[size_of_gon-1] < number_of_points);
CGAL_optimisation_expensive_precondition_code(
for ( i = 0; i < size_of_gon; ++i) {
CGAL_optimisation_expensive_precondition( left_c_begin[i] >= 0);
CGAL_optimisation_expensive_precondition( right_c_begin[i] >= 0);
CGAL_optimisation_expensive_precondition(
left_c_begin[i] < number_of_points);
CGAL_optimisation_expensive_precondition(
right_c_begin[i] < number_of_points);
CGAL_optimisation_expensive_precondition(
left_c_begin[i] <= right_c_begin[i]);
})
typedef typename Traits::FT FT;
typedef std::vector< FT > FT_cont;
typedef std::vector< int > Index_cont;
typedef typename Traits::Operation Operation;
//!!! static ???
// area container:
FT_cont area( number_of_points);
// last vertex container:
Index_cont last_vertex( number_of_points);
// matrix operation:
Operation op( t.operation( points_begin[root]));
// initialize area and last vertex containers:
for ( i = left_c_begin[0]; i <= right_c_begin[0]; ++i) {
area[i] = t.init( points_begin[i], points_begin[root]);
last_vertex[i] = root;
}
for ( i = 1; i < size_of_gon; ++i) {
monotone_matrix_search(
dynamic_matrix(
extremal_polygon_matrix(
points_begin + left_c_begin[i],
points_begin + right_c_begin[i] + 1,
points_begin + left_c_begin[i-1],
points_begin + right_c_begin[i-1] + 1,
area.begin() + left_c_begin[i-1],
area.begin() + right_c_begin[i-1] + 1,
op)),
last_vertex.begin() + left_c_begin[i]);
// compute new area values and adjust last_vertex values
// (they are relative to left_c_begin[i-1] now)
int j;
for ( j = right_c_begin[i]; j >= left_c_begin[i]; --j) {
last_vertex[j] += left_c_begin[i-1];
area[j] = area[last_vertex[j]] +
op( points_begin[j], points_begin[last_vertex[j]]);
}
} // for ( i = 1; i < size_of_gon; ++i)
// find maximum in last range:
int maxi =
static_cast<int>(iterator_distance(
area.begin(),
max_element( area.begin() + left_c_begin[size_of_gon - 1],
area.begin() + right_c_begin[size_of_gon - 1] + 1)));
// set max_area:
max_area = area[maxi];
// construct gon:
*o++ = maxi;
maxi = last_vertex[maxi];
for ( i = size_of_gon - 1; i > 0; --i) {
// We must not place the "*o++ = maxi" here,
// since o might be the same as left_c_begin + i ...
if ( maxi != right_c_begin[i-1]) {
*o++ = maxi;
maxi = last_vertex[maxi];
}
else {
*o++ = maxi;
maxi = right_c_begin[i-2];
}
} // for ( i = size_of_gon - 1; i > 0; --i)
*o++ = root;
return o;
} // CGAL_maximum_inscribed_rooted_k_gon_2( p, k, result)
template < class RandomAccessIC,
class OutputIterator,
class Traits >
inline
OutputIterator
extremal_polygon_2(
RandomAccessIC points_begin,
RandomAccessIC points_end,
int k,
OutputIterator o,
const Traits& t)
//
// preconditions:
// --------------
// * Traits fulfills the requirements for an extremal polygon
// traits class
// * the range [points_begin, points_end) of size n > 0
// describes the vertices of a convex polygon $P$
// enumerated clock- or counterclockwise
// * k >= t.min_k()
// * value_type of RandomAccessIC is Traits::Point_2
// * OutputIterator accepts Traits::Point_2 as value_type
//
// functionality:
// --------------
// computes maximum (as specified by t) inscribed k-gon $P_k$
// of the polygon $P$,
// writes the indices (relative to points_begin)
// of $P_k$'s vertices to o and
// returns the past-the-end iterator of that sequence.
{
using std::bind1st;
// check preconditions:
CGAL_optimisation_precondition_code(
int number_of_points(
static_cast<int>(iterator_distance( points_begin,
points_end)));)
CGAL_optimisation_precondition( number_of_points >= t.min_k());
CGAL_optimisation_expensive_precondition(
is_convex_2( points_begin, points_end, t));
typedef typename Traits::Point_2 Point_2;
return CGAL_maximum_inscribed_k_gon_2(
points_begin,
points_end,
k,
transform_iterator(
o,
bind1st(
Index_operator< RandomAccessIC, int, Point_2 >(),
points_begin)),
t);
}
// backwards compatibility
template < class RandomAccessIC,
class OutputIterator,
class Traits >
inline
OutputIterator
extremal_polygon(
RandomAccessIC points_begin,
RandomAccessIC points_end,
int k,
OutputIterator o,
const Traits& t)
{ return extremal_polygon_2(points_begin, points_end, k, o, t); }
template < class RandomAccessIC,
class OutputIterator,
class Traits >
OutputIterator
CGAL_maximum_inscribed_k_gon_2(
RandomAccessIC points_begin,
RandomAccessIC points_end,
int k,
OutputIterator o,
const Traits& t)
//
// preconditions:
// --------------
// * Traits fulfills the requirements for an extremal polygon
// traits class
// * the range [points_begin, points_end) of size n > 0
// describes the vertices of a convex polygon $P$
// enumerated clock- or counterclockwise
// * k >= t.min_k()
// * value_type of RandomAccessIC is Traits::Point_2
// * OutputIterator accepts Traits::Point_2 as value_type
//
// functionality:
// --------------
// computes maximum (as specified by t) inscribed k-gon $P_k$
// of the polygon $P$,
// writes the indices (relative to points_begin)
// of $P_k$'s vertices to o and
// returns the past-the-end iterator of that sequence.
{
// check preconditions:
CGAL_optimisation_precondition( k >= t.min_k());
int number_of_points(
static_cast<int>(iterator_distance( points_begin,
points_end)));
CGAL_optimisation_precondition( number_of_points > 0);
using std::copy;
typedef typename Traits::FT FT;
typedef std::vector< int > Index_cont;
if ( number_of_points <= k) {
for ( int j( k - 1); j >= 0; --j)
*o++ = (std::min)( j, number_of_points - 1);
return o;
}
// compute k-gon rooted at points_begin[0]
Index_cont P_0( k + 1);
FT area_0;
CGAL_maximum_inscribed_rooted_k_gon_2(
points_begin,
points_end,
k,
area_0,
P_0.rbegin() + 1,
t);
P_0[k] = number_of_points - 1;
CGAL_optimisation_assertion( P_0[0] == 0);
// compute k-gon rooted at points_begin[P_0[1]]
Index_cont P_1( k);
FT area_1;
CGAL_maximum_inscribed_rooted_k_gon_2(
points_begin,
points_end,
P_0[1],
P_0.begin() + 1,
P_0.begin() + k,
P_0.begin() + 2,
P_0.begin() + k + 1,
area_1,
P_1.rbegin(),
t);
CGAL_optimisation_assertion( P_1[0] == P_0[1]);
// start recursive computation:
FT area_r( 0);
Index_cont P_r( k);
if ( P_0[1] - P_0[0] > 1) {
CGAL_maximum_inscribed_k_gon_2(
points_begin,
points_end,
P_0[0] + 1,
P_0[1] - 1,
P_0.begin() + 1,
P_0.begin() + k,
P_0.begin() + 2,
P_0.begin() + k + 1,
k,
area_r,
P_r.rbegin(),
t);
}
if ( area_r > area_0)
if ( area_r > area_1)
// recursive is maximum
copy( P_r.begin(), P_r.end(), o);
else
// P_1 is maximum
copy( P_1.begin(), P_1.end(), o);
else if ( area_0 > area_1)
// P_0 is maximum
copy( P_0.begin(), P_0.begin() + k, o);
else
// P_1 is maximum
copy( P_1.begin(), P_1.end(), o);
return o;
} // CGAL_maximum_inscribed_k_gon_2( ... )
template < class RandomAccessIC_point,
class RandomAccessIC_int,
class OutputIterator,
class Traits >
OutputIterator
CGAL_maximum_inscribed_k_gon_2(
RandomAccessIC_point points_begin,
RandomAccessIC_point points_end,
int left_index,
int right_index,
RandomAccessIC_int left_c_begin,
RandomAccessIC_int left_c_end,
RandomAccessIC_int right_c_begin,
RandomAccessIC_int right_c_end,
int k,
typename Traits::FT& max_area,
OutputIterator o,
const Traits& t)
//
// preconditions:
// --------------
// * Traits fulfills the requirements for an extremal polygon
// traits class
// * the range [points_begin, points_end) of size n > 0
// describes the vertices of a convex polygon $P$
// enumerated clock- or counterclockwise
// * value_type of RandomAccessIC_point is Traits::Point
// * value_type of RandomAccessIC_int is int
// * OutputIterator accepts int as value type
// * 0 <= left_index <= right_index < |points_end - points_begin|
// * |left_c_end - left_c_begin| == |right_c_end - right_c_begin| == k - 1
// * [left_c_begin, left_c_end) resp. [right_c_begin, right_c_end)
// describe two subpolygons $P_l$ resp $P_r$ of $P$ by giving
// the indices of its vertices relative to points_begin and
// for any 0 <= i < k - 1:
// left_c_begin[i] <= right_c_begin[i]
// * k >= t.min_k()
//
// functionality:
// --------------
// computes maximum (as specified by t) inscribed k-gon $P_k$
// of the polygon $P$,
// * that is rooted at one of the vertices [points_begin[left_index],
// points_begin[right_index]] and
// * interleaves with both $P_l$ and $P_r$,
// sets max_area to its associated value (as specified by t),
// writes the indices (relative to points_begin)
// of $P_k$'s vertices to o and
// returns the past-the-end iterator of that sequence.
{
// typedefs
typedef typename Traits::FT FT;
typedef std::vector< int > Index_cont;
using std::copy;
// check preconditions:
CGAL_optimisation_precondition( k >= t.min_k());
CGAL_optimisation_precondition( left_index <= right_index);
CGAL_optimisation_precondition( left_index >= 0);
CGAL_optimisation_precondition( right_index >= 0);
CGAL_optimisation_precondition_code(
int number_of_points(
static_cast<int>(iterator_distance( points_begin,
points_end)));)
CGAL_optimisation_precondition( left_index < number_of_points);
CGAL_optimisation_precondition( right_index < number_of_points);
CGAL_optimisation_precondition(
iterator_distance( left_c_begin, left_c_end) == k - 1);
CGAL_optimisation_precondition(
iterator_distance( right_c_begin, right_c_end) == k - 1);
CGAL_optimisation_expensive_precondition_code(
for ( int i( 0); i < k - 1; ++i) {
CGAL_optimisation_expensive_precondition( left_c_begin[i] >= 0);
CGAL_optimisation_expensive_precondition( right_c_begin[i] >= 0);
CGAL_optimisation_expensive_precondition(
left_c_begin[i] < number_of_points);
CGAL_optimisation_expensive_precondition(
right_c_begin[i] < number_of_points);
CGAL_optimisation_expensive_precondition(
left_c_begin[i] <= right_c_begin[i]);
})
int middle_index( (left_index + right_index) >> 1);
Index_cont P_m( k);
FT area_middle;
CGAL_maximum_inscribed_rooted_k_gon_2(
points_begin,
points_end,
middle_index,
left_c_begin,
left_c_end,
right_c_begin,
right_c_end,
area_middle,
P_m.rbegin(),
t);
CGAL_optimisation_assertion( P_m[0] == middle_index);
// left recursive branch:
FT area_left( 0);
Index_cont P_l( k);
if ( left_index < middle_index) {
CGAL_maximum_inscribed_k_gon_2(
points_begin,
points_end,
left_index,
middle_index - 1,
left_c_begin,
left_c_end,
P_m.begin() + 1,
P_m.end(),
k,
area_left,
P_l.rbegin(),
t);
} // if ( left_index < middle_index)
// right recursive branch:
FT area_right( 0);
Index_cont P_r( k);
if ( right_index > middle_index) {
CGAL_maximum_inscribed_k_gon_2(
points_begin,
points_end,
middle_index + 1,
right_index,
P_m.begin() + 1,
P_m.end(),
right_c_begin,
right_c_end,
k,
area_right,
P_r.rbegin(),
t);
} // if ( right_index > middle_index)
if ( area_left > area_right)
if ( area_left > area_middle) {
// left is maximum
max_area = area_left;
copy( P_l.begin(), P_l.end(), o);
}
else {
// middle is maximum
max_area = area_middle;
copy( P_m.begin(), P_m.end(), o);
}
else if ( area_right > area_middle) {
// right is maximum
max_area = area_right;
copy( P_r.begin(), P_r.end(), o);
}
else {
// middle is maximum
max_area = area_middle;
copy( P_m.begin(), P_m.end(), o);
}
return o;
} // CGAL_maximum_inscribed_k_gon_2( ... )
} //namespace CGAL
#endif // ! (CGAL_EXTREMAL_POLYGON_2_H)
|