This file is indexed.

/usr/include/CGAL/leda_real.h is in libcgal-dev 4.5-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
// Copyright (c) 1999,2007  
// Utrecht University (The Netherlands),
// ETH Zurich (Switzerland),
// INRIA Sophia-Antipolis (France),
// Max-Planck-Institute Saarbruecken (Germany),
// and Tel-Aviv University (Israel).  All rights reserved. 
//
// This file is part of CGAL (www.cgal.org); you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; either version 3 of the License,
// or (at your option) any later version.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL$
// $Id$
//
//
// Author(s)     : Stefan Schirra, Michael Hemmer

#ifndef CGAL_LEDA_REAL_H
#define CGAL_LEDA_REAL_H

#include <CGAL/number_type_basic.h>

#include <CGAL/leda_coercion_traits.h>

#include <CGAL/utils.h>
#include <CGAL/Interval_nt.h>

#include <utility>

#include <CGAL/LEDA_basic.h>
#if CGAL_LEDA_VERSION < 500
#include <LEDA/real.h>
#include <LEDA/interval.h>
#else
#include <LEDA/numbers/real.h>
#endif


namespace CGAL {

template <> class Algebraic_structure_traits< leda_real >

#if CGAL_LEDA_VERSION >= 500
  : public Algebraic_structure_traits_base< leda_real,
                                            Field_with_root_of_tag >  {
#else
  : public Algebraic_structure_traits_base< leda_real,
                                            Field_with_kth_root_tag >  {
#endif

  public:
    typedef Tag_true           Is_exact;
    typedef Tag_true           Is_numerical_sensitive;

    class Sqrt
      : public std::unary_function< Type, Type > {
      public:
        Type operator()( const Type& x ) const {
          return CGAL_LEDA_SCOPE::sqrt( x );
        }
    };

    class Kth_root
      : public std::binary_function<int, Type, Type> {
      public:
        Type operator()( int k,
                                        const Type& x) const {
            CGAL_precondition_msg(k > 0, "'k' must be positive for k-th roots");
            return CGAL_LEDA_SCOPE::root( x, k);
        }
    };

// Root_of is only available for LEDA versions >= 5.0
#if CGAL_LEDA_VERSION >= 500
    class Root_of {
      public:
        typedef Type result_type;

//        typedef leda_rational Boundary;
      private:
        template< class ForwardIterator >
        inline
        CGAL_LEDA_SCOPE::polynomial<Type>
        make_polynomial(ForwardIterator begin,
                        ForwardIterator end) const {
          CGAL_LEDA_SCOPE::growing_array<Type> coeffs;
          for(ForwardIterator it = begin; it < end; it++)
              coeffs.push_back(*it);
          return CGAL_LEDA_SCOPE::polynomial<Type>(coeffs);
        }
      public:
        template <class ForwardIterator>
        Type operator()( int k,
                       ForwardIterator begin,
                       ForwardIterator end) const {
            return CGAL_LEDA_SCOPE::diamond(k,make_polynomial(begin,end));
        }
/*        template <class ForwardIterator>
        Type operator()( leda_rational lower,
                                        leda_rational upper,
                                        ForwardIterator begin,
                                        ForwardIterator end) const {
            return CGAL_LEDA_SCOPE::diamond(lower,upper,
                                             make_polynomial(begin,end));
        };*/
    };

#endif


};

template <> class Real_embeddable_traits< leda_real >
  : public INTERN_RET::Real_embeddable_traits_base< leda_real , CGAL::Tag_true > {
  public:
    class Abs
      : public std::unary_function< Type, Type > {
      public:
        Type operator()( const Type& x ) const {
            return CGAL_LEDA_SCOPE::abs( x );
        }
    };

    class Sgn
      : public std::unary_function< Type, ::CGAL::Sign > {
      public:
        ::CGAL::Sign operator()( const Type& x ) const {
          return (::CGAL::Sign) CGAL_LEDA_SCOPE::sign( x );
        }
    };

    class Compare
      : public std::binary_function< Type, Type,
                                Comparison_result > {
      public:
        Comparison_result operator()( const Type& x,
                                            const Type& y ) const {
          return (Comparison_result) CGAL_LEDA_SCOPE::compare( x, y );
        }

        CGAL_IMPLICIT_INTEROPERABLE_BINARY_OPERATOR_WITH_RT( Type,
                                                      Comparison_result )

    };

    class To_double
      : public std::unary_function< Type, double > {
      public:
        double operator()( const Type& x ) const {
          // this call is required to get reasonable values for the double
          // approximation (as of LEDA-4.3.1)
          x.improve_approximation_to(53);
          return x.to_double();
        }
    };

    class To_interval
      : public std::unary_function< Type, std::pair< double, double > > {
      public:
        std::pair<double, double> operator()( const Type& x ) const {

#if CGAL_LEDA_VERSION >= 501
            leda_bigfloat bnum = x.to_bigfloat();
            leda_bigfloat berr = x.get_bigfloat_error();

            double dummy;
            double low = CGAL_LEDA_SCOPE::sub(bnum, berr, 53, CGAL_LEDA_SCOPE::TO_N_INF).to_double(dummy,
                                                     CGAL_LEDA_SCOPE::TO_N_INF);
            double upp = CGAL_LEDA_SCOPE::add(bnum, berr, 53, CGAL_LEDA_SCOPE::TO_P_INF).to_double(dummy,
                                                     CGAL_LEDA_SCOPE::TO_P_INF);

            std::pair<double, double> result(low, upp);
            CGAL_postcondition(Type(result.first)<=x);
            CGAL_postcondition(Type(result.second)>=x);
            return result;
#else
            CGAL_LEDA_SCOPE::interval temp(x); //bug in leda
            std::pair<double, double> result(temp.lower_bound(),temp.upper_bound());
            CGAL_postcondition_msg(Type(result.first)<=x,
                                                    "Known bug in LEDA <=5.0");
            CGAL_postcondition_msg(Type(result.first)>=x,
                                                    "Known bug in LEDA <=5.0");
            return result;
            // If x is very small and we look closer at x
            // (i.e. comparison or to_double() or to_bigfloat())
            // then x gets 0, which is really bad.
            // Therefore we do not touch x.
            // The LEDA interval above returns (-inf, inf) for
            // very small x, which is also bad and leads to
            // problems lateron. The postcondition fails in this
            // situation.
#endif
              // Original CGAL to_interval:
            //  Protect_FPU_rounding<true> P (CGAL_FE_TONEAREST);
            //  double approx = z.to_double();
            //  double rel_error = z.get_double_error();
            //  FPU_set_cw(CGAL_FE_UPWARD);
            //  Interval_nt_advanced ina(-rel_error,rel_error);
            //  ina += 1;
            //  ina *= approx;
            //  return ina.pair();
        }
    };
};


template <>
class Output_rep< ::leda::real > {
    const ::leda::real& t;
public:
    //! initialize with a const reference to \a t.
    Output_rep( const ::leda::real& tt) : t(tt) {}
    //! perform the output, calls \c operator\<\< by default.
    std::ostream& operator()( std::ostream& out) const {
        out << CGAL_NTS to_double(t);
        return out;
    }

};

template <>
class Output_rep< ::leda::real, CGAL::Parens_as_product_tag > {
    const ::leda::real& t;
public:
    //! initialize with a const reference to \a t.
    Output_rep( const ::leda::real& tt) : t(tt) {}
    //! perform the output, calls \c operator\<\< by default.
    std::ostream& operator()( std::ostream& out) const {
        if (t<0) out << "(" << ::CGAL::oformat(t)<<")";
        else out << ::CGAL::oformat(t);
        return out;
    }
};



} //namespace CGAL

// Unary + is missing for leda::real

namespace leda {
    inline real operator+( const real& i) { return i; }
} // namespace leda


//since types are included by LEDA_coercion_traits.h:
#include <CGAL/leda_integer.h>
#include <CGAL/leda_rational.h>
#include <CGAL/leda_bigfloat.h>
#include <CGAL/LEDA_arithmetic_kernel.h>

#endif // CGAL_LEDA_REAL_H