This file is indexed.

/usr/include/CGAL/predicates_d.h is in libcgal-dev 4.5-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
// Copyright (c) 2000,2001  
// Utrecht University (The Netherlands),
// ETH Zurich (Switzerland),
// INRIA Sophia-Antipolis (France),
// Max-Planck-Institute Saarbruecken (Germany),
// and Tel-Aviv University (Israel).  All rights reserved. 
//
// This file is part of CGAL (www.cgal.org); you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; either version 3 of the License,
// or (at your option) any later version.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL$
// $Id$
// 
//
// Author(s)     : Michael Seel

#ifndef CGAL_PREDICATES_D_H
#define CGAL_PREDICATES_D_H

#include <CGAL/basic.h>
#include <CGAL/enum.h>
#include <CGAL/Kernel_d/Point_d.h>

namespace CGAL {

/*{\Moptions outfile=predicates_d.man}*/
/*{\Mtext \setopdims{4cm}{2cm}\computewidths
\headerline{Linear and affine predicates}

For an iterator range |[first,last)| we define |T = tuple [first,last)|
as the ordered tuple $(|T[0]|,|T[1]|, \ldots |T[d-1]|)$ where 
$|T[i]| = |*| |++|^{(i)}|first|$ (the element obtained by $i$ times 
forwarding the iterator by operator |++| and then dereferencing it to
get the value to which it points). We write |d = size [first,last)|.
This extends the syntax of random access iterators to input iterators. 
If we index the tuple as above then we require that 
$|++|^{(d+1)}|first == last|$.

In the following we require the Iterators to be globally 
of value type |Point_d<R>|. Also if we are handed over an iterator
range |[first,last)|, then all points in |T = tuple [first,last)|
have the same dimension |dim|.
}*/

template <class R, class ForwardIterator, class OutputIterator>
OutputIterator barycentric_coordinates(
  ForwardIterator first, ForwardIterator last, const Point_d<R>& p, 
  OutputIterator result)
/*{\Xfunc returns the barycentric coordinates of a point $p \in R^d$ in a
affine space of dimension $k$ spanned by the points in |tuple [first,last)|.
\precond value type of |ForwardIterator| is |Point_d<R>|,
|affinely_independed(first,last)| and 
|affine_rank(tuple [first,last),p)==k|.}*/
{ typename R::Barycentric_coordinates_d coords;
  return coords(first,last,p,result);
}

template <class ForwardIterator>
Orientation
orientation(ForwardIterator first, ForwardIterator last)
/*{\Mfunc determines the orientation of the points in the tuple 
|A = tuple [first,last)| where $A$ consists of $d + 1$ points in $d$ - space. 
This is the sign of the determinant
  \[ \left\Lvert \begin{array}{cccc}
  1 & 1 & 1 & 1 \\
  A[0] & A[1] & \dots & A[d]
  \end{array}  \right\Lvert  \]
  where |A[i]| denotes the cartesian coordinate vector of 
  the $i$-th point in $A$.
  \precond |size [first,last) == d+1| and |A[i].dimension() == d| 
  $\forall 0 \leq i \leq d$
  and the value type of |ForwardIterator| is |Point_d<R>|.}*/
{ typedef typename std::iterator_traits<ForwardIterator>::value_type PointD;
  typedef typename PointD::R R;
  typename R::Orientation_d or_; return or_(first,last); }

template <class R, class ForwardIterator>
Oriented_side side_of_oriented_sphere(
  ForwardIterator first, ForwardIterator last, 
  const Point_d<R>& x)
/*{\Mfuncl determines to which side of the sphere $S$ defined by the
    points in |A = tuple [first,last)| the point $x$ belongs, 
    where $A$ consists of $d + 1$ points in $d$ - space.  
    The positive side is determined by the positive sign 
    of the determinant \[
    \left\Lvert \begin{array}{ccccc} 
    1 & 1 & 1 & 1 & 1\\
    |lift(A[0])| & |lift(A[1])| & \dots & |lift(A[d])| & |lift(x)| 
    \end{array} \right\Lvert \] 
    where for a point $p$ with cartesian coordinates $p_i$ we use 
    |lift(p)| to denote the $d + 1$-dimensional point with cartesian 
    coordinate vector $(p_0, \ldots,p_{d-1},\sum_{0 \le i < d}p_i^2)$. If
    the points in $A$ are positively oriented then the positive
    side is the inside of the sphere and the negative side is
    the outside of the sphere.  
\precond value type of |ForwardIterator| is |Point_d<R>|.}*/
{ typename R::Side_of_oriented_sphere_d side; 
  return side(first,last,x); }

template <class R, class ForwardIterator>
Bounded_side side_of_bounded_sphere(
  ForwardIterator first, ForwardIterator last,
  const Point_d<R> &p)
/*{\Mfunc determines whether the point |p| lies |ON_BOUNDED_SIDE|, 
|ON_BOUNDARY|, or |ON_UNBOUNDED_SIDE| of the sphere defined by 
the points in |A = tuple [first,last)| where $A$ consists of $d+1$ 
points in $d$-space.
\precond value type of |ForwardIterator| is |Point_d<R>| and
$|orientation(first,last)| \neq |ZERO|$.}*/
{ typename R::Side_of_bounded_sphere_d side; 
  return side(first,last,p); }

template <class R, class ForwardIterator>
bool contained_in_simplex(
  ForwardIterator first, ForwardIterator last, const Point_d<R>& p) 
/*{\Mfunc determines whether |p| is contained in the simplex spanned
by the points in |A = tuple [first,last)|. |A| may consists of up to 
$d + 1$ points. 
\precond value type of |ForwardIterator| is |Point_d<R>| and
the points in |A| are affinely independent.}*/
{ typename R::Contained_in_simplex_d contained; 
  return contained(first,last,p); }

template <class R, class ForwardIterator>
bool contained_in_affine_hull(
     ForwardIterator first, ForwardIterator last,
     const Point_d<R>& p) 
/*{\Mfunc determines whether $p$ is contained in the affine hull
of the points in |A = tuple [first,last)|.
\precond value type of |ForwardIterator| is |Point_d<R>|.}*/
{ typename R::Contained_in_affine_hull_d contained; 
  return contained(first,last,p); }

template <class ForwardIterator>
int affine_rank(ForwardIterator first, ForwardIterator last)
/*{\Mfunc computes the affine rank of the points in |A = tuple [first,last)|.
\precond value type of |ForwardIterator| is |Point_d<R>|.}*/
{ typedef typename std::iterator_traits<ForwardIterator>::value_type PointD;
  typedef typename PointD::R R;
  typename R::Affine_rank_d rank; 
  return rank(first,last); }

template <class ForwardIterator>
bool affinely_independent(ForwardIterator first, ForwardIterator last)
/*{\Mfunc decides whether the points in |A = tuple [first,last)| are 
affinely independent. 
\precond value type of |ForwardIterator| is |Point_d<R>|.}*/
{ typedef typename std::iterator_traits<ForwardIterator>::value_type PointD;
  typedef typename PointD::R R;
  typename R::Affinely_independent_d ind; 
  return ind(first,last); }

template <class R>
Comparison_result compare_lexicographically( 
  const Point_d<R>& p1, const Point_d<R>& p2)
/*{\Mfunc compares the Cartesian coordiantes of points |p1| and |p2|
   lexicographically.}*/
{ typename R::Compare_lexicographically_d cmp; 
  return cmp(p1,p2); }

template <class R>
bool lexicographically_smaller( 
  const Point_d<R>& p1, const Point_d<R>& p2)
/*{\Mfunc returns true iff $|p1| < |p2|$ in the Cartesian lexicographic
   order of points.}*/
{ typename R::Less_lexicographically_d lt;
  return lt(p1,p2); }

template <class R>
bool lexicographically_smaller_or_equal(
  const Point_d<R>& p1, const Point_d<R>& p2)
/*{\Mfunc returns true iff $|p1| \leq |p2|$ in the Cartesian lexicographic
   order of points.}*/
{ typename R::Less_or_equal_lexicographically_d le;
  return le(p1,p2); }

template <class R, class ForwardIterator>
bool contained_in_linear_hull(
  ForwardIterator first, ForwardIterator last, const Vector_d<R>& x)
/*{\Mfunc determines whether $x$ is contained in the linear hull
of the vectors in |A = tuple [first,last)|. 
\precond value type of |ForwardIterator| is |Vector_d<R>|.}*/
{ typename R::Contained_in_linear_hull_d contained; 
  return contained(first,last,x); }

template <class ForwardIterator>
int linear_rank(
  ForwardIterator first, ForwardIterator last)
/*{\Mfunc computes the linear rank of the vectors in 
|A = tuple [first,last)|. 
\precond value type of |ForwardIterator| is |Vector_d<R>|.}*/
{ typedef typename std::iterator_traits<ForwardIterator>::
    value_type value_type;
  typedef typename value_type::R R;
  typename R::Linear_rank_d rank; 
  return rank(first,last); 
}

template <class ForwardIterator>
bool linearly_independent(
  ForwardIterator first, ForwardIterator last)
/*{\Mfunc decides whether the vectors in $A$ are linearly independent.
\precond value type of |ForwardIterator| is |Vector_d<R>|.}*/
{ TUPLE_DIM_CHECK(first,last,linearly_independent);
  typedef typename std::iterator_traits<ForwardIterator>::
    value_type value_type;
  typedef typename value_type::R R;
  typename R::Linearly_independent_d independent; 
  return independent(first,last);
}


} //namespace CGAL
#endif // CGAL_PREDICATES_D_H