/usr/include/CGAL/predicates_d.h is in libcgal-dev 4.5-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 | // Copyright (c) 2000,2001
// Utrecht University (The Netherlands),
// ETH Zurich (Switzerland),
// INRIA Sophia-Antipolis (France),
// Max-Planck-Institute Saarbruecken (Germany),
// and Tel-Aviv University (Israel). All rights reserved.
//
// This file is part of CGAL (www.cgal.org); you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; either version 3 of the License,
// or (at your option) any later version.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL$
// $Id$
//
//
// Author(s) : Michael Seel
#ifndef CGAL_PREDICATES_D_H
#define CGAL_PREDICATES_D_H
#include <CGAL/basic.h>
#include <CGAL/enum.h>
#include <CGAL/Kernel_d/Point_d.h>
namespace CGAL {
/*{\Moptions outfile=predicates_d.man}*/
/*{\Mtext \setopdims{4cm}{2cm}\computewidths
\headerline{Linear and affine predicates}
For an iterator range |[first,last)| we define |T = tuple [first,last)|
as the ordered tuple $(|T[0]|,|T[1]|, \ldots |T[d-1]|)$ where
$|T[i]| = |*| |++|^{(i)}|first|$ (the element obtained by $i$ times
forwarding the iterator by operator |++| and then dereferencing it to
get the value to which it points). We write |d = size [first,last)|.
This extends the syntax of random access iterators to input iterators.
If we index the tuple as above then we require that
$|++|^{(d+1)}|first == last|$.
In the following we require the Iterators to be globally
of value type |Point_d<R>|. Also if we are handed over an iterator
range |[first,last)|, then all points in |T = tuple [first,last)|
have the same dimension |dim|.
}*/
template <class R, class ForwardIterator, class OutputIterator>
OutputIterator barycentric_coordinates(
ForwardIterator first, ForwardIterator last, const Point_d<R>& p,
OutputIterator result)
/*{\Xfunc returns the barycentric coordinates of a point $p \in R^d$ in a
affine space of dimension $k$ spanned by the points in |tuple [first,last)|.
\precond value type of |ForwardIterator| is |Point_d<R>|,
|affinely_independed(first,last)| and
|affine_rank(tuple [first,last),p)==k|.}*/
{ typename R::Barycentric_coordinates_d coords;
return coords(first,last,p,result);
}
template <class ForwardIterator>
Orientation
orientation(ForwardIterator first, ForwardIterator last)
/*{\Mfunc determines the orientation of the points in the tuple
|A = tuple [first,last)| where $A$ consists of $d + 1$ points in $d$ - space.
This is the sign of the determinant
\[ \left\Lvert \begin{array}{cccc}
1 & 1 & 1 & 1 \\
A[0] & A[1] & \dots & A[d]
\end{array} \right\Lvert \]
where |A[i]| denotes the cartesian coordinate vector of
the $i$-th point in $A$.
\precond |size [first,last) == d+1| and |A[i].dimension() == d|
$\forall 0 \leq i \leq d$
and the value type of |ForwardIterator| is |Point_d<R>|.}*/
{ typedef typename std::iterator_traits<ForwardIterator>::value_type PointD;
typedef typename PointD::R R;
typename R::Orientation_d or_; return or_(first,last); }
template <class R, class ForwardIterator>
Oriented_side side_of_oriented_sphere(
ForwardIterator first, ForwardIterator last,
const Point_d<R>& x)
/*{\Mfuncl determines to which side of the sphere $S$ defined by the
points in |A = tuple [first,last)| the point $x$ belongs,
where $A$ consists of $d + 1$ points in $d$ - space.
The positive side is determined by the positive sign
of the determinant \[
\left\Lvert \begin{array}{ccccc}
1 & 1 & 1 & 1 & 1\\
|lift(A[0])| & |lift(A[1])| & \dots & |lift(A[d])| & |lift(x)|
\end{array} \right\Lvert \]
where for a point $p$ with cartesian coordinates $p_i$ we use
|lift(p)| to denote the $d + 1$-dimensional point with cartesian
coordinate vector $(p_0, \ldots,p_{d-1},\sum_{0 \le i < d}p_i^2)$. If
the points in $A$ are positively oriented then the positive
side is the inside of the sphere and the negative side is
the outside of the sphere.
\precond value type of |ForwardIterator| is |Point_d<R>|.}*/
{ typename R::Side_of_oriented_sphere_d side;
return side(first,last,x); }
template <class R, class ForwardIterator>
Bounded_side side_of_bounded_sphere(
ForwardIterator first, ForwardIterator last,
const Point_d<R> &p)
/*{\Mfunc determines whether the point |p| lies |ON_BOUNDED_SIDE|,
|ON_BOUNDARY|, or |ON_UNBOUNDED_SIDE| of the sphere defined by
the points in |A = tuple [first,last)| where $A$ consists of $d+1$
points in $d$-space.
\precond value type of |ForwardIterator| is |Point_d<R>| and
$|orientation(first,last)| \neq |ZERO|$.}*/
{ typename R::Side_of_bounded_sphere_d side;
return side(first,last,p); }
template <class R, class ForwardIterator>
bool contained_in_simplex(
ForwardIterator first, ForwardIterator last, const Point_d<R>& p)
/*{\Mfunc determines whether |p| is contained in the simplex spanned
by the points in |A = tuple [first,last)|. |A| may consists of up to
$d + 1$ points.
\precond value type of |ForwardIterator| is |Point_d<R>| and
the points in |A| are affinely independent.}*/
{ typename R::Contained_in_simplex_d contained;
return contained(first,last,p); }
template <class R, class ForwardIterator>
bool contained_in_affine_hull(
ForwardIterator first, ForwardIterator last,
const Point_d<R>& p)
/*{\Mfunc determines whether $p$ is contained in the affine hull
of the points in |A = tuple [first,last)|.
\precond value type of |ForwardIterator| is |Point_d<R>|.}*/
{ typename R::Contained_in_affine_hull_d contained;
return contained(first,last,p); }
template <class ForwardIterator>
int affine_rank(ForwardIterator first, ForwardIterator last)
/*{\Mfunc computes the affine rank of the points in |A = tuple [first,last)|.
\precond value type of |ForwardIterator| is |Point_d<R>|.}*/
{ typedef typename std::iterator_traits<ForwardIterator>::value_type PointD;
typedef typename PointD::R R;
typename R::Affine_rank_d rank;
return rank(first,last); }
template <class ForwardIterator>
bool affinely_independent(ForwardIterator first, ForwardIterator last)
/*{\Mfunc decides whether the points in |A = tuple [first,last)| are
affinely independent.
\precond value type of |ForwardIterator| is |Point_d<R>|.}*/
{ typedef typename std::iterator_traits<ForwardIterator>::value_type PointD;
typedef typename PointD::R R;
typename R::Affinely_independent_d ind;
return ind(first,last); }
template <class R>
Comparison_result compare_lexicographically(
const Point_d<R>& p1, const Point_d<R>& p2)
/*{\Mfunc compares the Cartesian coordiantes of points |p1| and |p2|
lexicographically.}*/
{ typename R::Compare_lexicographically_d cmp;
return cmp(p1,p2); }
template <class R>
bool lexicographically_smaller(
const Point_d<R>& p1, const Point_d<R>& p2)
/*{\Mfunc returns true iff $|p1| < |p2|$ in the Cartesian lexicographic
order of points.}*/
{ typename R::Less_lexicographically_d lt;
return lt(p1,p2); }
template <class R>
bool lexicographically_smaller_or_equal(
const Point_d<R>& p1, const Point_d<R>& p2)
/*{\Mfunc returns true iff $|p1| \leq |p2|$ in the Cartesian lexicographic
order of points.}*/
{ typename R::Less_or_equal_lexicographically_d le;
return le(p1,p2); }
template <class R, class ForwardIterator>
bool contained_in_linear_hull(
ForwardIterator first, ForwardIterator last, const Vector_d<R>& x)
/*{\Mfunc determines whether $x$ is contained in the linear hull
of the vectors in |A = tuple [first,last)|.
\precond value type of |ForwardIterator| is |Vector_d<R>|.}*/
{ typename R::Contained_in_linear_hull_d contained;
return contained(first,last,x); }
template <class ForwardIterator>
int linear_rank(
ForwardIterator first, ForwardIterator last)
/*{\Mfunc computes the linear rank of the vectors in
|A = tuple [first,last)|.
\precond value type of |ForwardIterator| is |Vector_d<R>|.}*/
{ typedef typename std::iterator_traits<ForwardIterator>::
value_type value_type;
typedef typename value_type::R R;
typename R::Linear_rank_d rank;
return rank(first,last);
}
template <class ForwardIterator>
bool linearly_independent(
ForwardIterator first, ForwardIterator last)
/*{\Mfunc decides whether the vectors in $A$ are linearly independent.
\precond value type of |ForwardIterator| is |Vector_d<R>|.}*/
{ TUPLE_DIM_CHECK(first,last,linearly_independent);
typedef typename std::iterator_traits<ForwardIterator>::
value_type value_type;
typedef typename value_type::R R;
typename R::Linearly_independent_d independent;
return independent(first,last);
}
} //namespace CGAL
#endif // CGAL_PREDICATES_D_H
|