This file is indexed.

/usr/include/CLAM/BPFTmplDef.hxx is in libclam-dev 1.4.0-6.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
/*
 * Copyright (c) 2001-2004 MUSIC TECHNOLOGY GROUP (MTG)
 *                         UNIVERSITAT POMPEU FABRA
 *
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 *
 */


#ifndef _BPFTmplDef_
#define _BPFTmplDef_

#include "GlobalEnums.hxx"

namespace CLAM
{
	

	template <typename TX, typename TY> const TData BPFTmpl<TX,TY>::Infinity = TData(1e30);

/**
* Default constructor: takes interpolation to be linear by default
*/
	template <class TX,class TY>
	BPFTmpl<TX,TY>::BPFTmpl() : 
		mArray(0),
		mSearch(mArray),
		mClosestPoints(10),
		mc(2),
		md(2),
		mOrder(1),
		mLastIndex(-1),
		mLastX(0),
		mSplineTable(0),
		mIsSplineUpdated(false),
		mLeftDerivative((TData)Infinity),
		mRightDerivative((TData)Infinity)
	{
		mClosestPoints.SetSize(mClosestPoints.AllocatedSize());
		mc.SetSize(2);
		md.SetSize(2);
		meInterpolation=EInterpolation::eLinear;
	}

/**
* Constructor from a given interpolation type. 
* @param Interpolation Type: EInterpolation (linear, polynomical, spline...)
*/
	template <class TX,class TY>
	BPFTmpl<TX,TY>::BPFTmpl(const EInterpolation& eInterpolation) : 
		mArray(0),
		mSearch(mArray),
		mClosestPoints(10),
		mc(0),
		md(0),
		mLastIndex(-1),
		mLastX(0),
		mSplineTable(0),
		mIsSplineUpdated(false),
		mLeftDerivative(Infinity),
		mRightDerivative(Infinity)
	{
		mClosestPoints.SetSize(mClosestPoints.AllocatedSize());
		SetIntpType(eInterpolation);
	}


/**
* Constructor from a given interpolation type and an initial size. The initial size is used
* to allocate the member mArray. Is the one to use for efficiency whenever a maximum size of
* the BPF is known beforehand.
* @param size: Allocation size for the member array of points.
* @param Interpolation Type: EInterpolation (linear, polynomical, spline...)
*/
	template <class TX,class TY>
	BPFTmpl<TX,TY>::BPFTmpl(TSize size) : 
		mArray(size),
		mSearch(mArray),
		mClosestPoints(10),
		mc(0),
		md(0),
		mLastIndex(-1),
		mLastX(0),
		mSplineTable(0),
		mIsSplineUpdated(false),
		mLeftDerivative(Infinity),
		mRightDerivative(Infinity)
	{
		mClosestPoints.SetSize(mClosestPoints.AllocatedSize());
		SetIntpType(EInterpolation::eLinear);
		SetSize(size);
	}

/**
* Constructor from a given interpolation type and an initial size. The initial size is used
* to allocate the member mArray. Is the one to use for efficiency whenever a maximum size of
* the BPF is known beforehand.
* @param size: Allocation size for the member array of points.
* @param Interpolation Type: EInterpolation (linear, polynomical, spline...)
*/
	template <class TX,class TY>
	BPFTmpl<TX,TY>::BPFTmpl(TSize size,const EInterpolation& eInterpolation) :
		mArray(size),
		mSearch(mArray),
		mClosestPoints(10),
		mc(0),
		md(0),
		mLastIndex(-1),
		mLastX(0),
		mSplineTable(0),
		mIsSplineUpdated(false),
		mLeftDerivative(Infinity),
		mRightDerivative(Infinity)
	{
		mClosestPoints.SetSize(mClosestPoints.AllocatedSize());
		SetIntpType(eInterpolation);
		SetSize(size);
	}

/**
* Copy Constructor.
* @param originalBPF
*/
	template <class TX,class TY>
	BPFTmpl<TX,TY>::BPFTmpl(const BPFTmpl<TX,TY>& orig)	:
		meInterpolation(orig.meInterpolation),
		mArray(orig.mArray),
		mClosestPoints(orig.mClosestPoints.AllocatedSize()),
		mc(orig.mc.AllocatedSize()),
		md(orig.md.AllocatedSize()),
		mOrder(orig.mOrder),
		mLastIndex(-1),
		mLastX(0),
		mSplineTable(orig.mSplineTable),
		mIsSplineUpdated(orig.mIsSplineUpdated),
		mLeftDerivative(orig.mLeftDerivative),
		mRightDerivative(orig.mRightDerivative)
	{
		mClosestPoints.SetSize(orig.mClosestPoints.Size());
		mc.SetSize(orig.mc.Size());
		md.SetSize(orig.md.Size());
		mSearch.Set(mArray);
		mnPoints=orig.mnPoints;

	}

/**
* Special initializer. All points up to the allocated size are initialized with the X value
* being the actual index in the array.
*/
	template <class TX,class TY>
	void BPFTmpl<TX,TY>::Init()
	{
		mArray.SetSize(AllocatedSize());
		for(int i=0;i<AllocatedSize();i++)
		{
			mArray[i].SetX((TX)i);
			SetValue(i,0);
		}
	}


/**
* Inserts a point in the correct position. Note that points in the array are always sorted
* according to their X value. Must therefore perform a previous serch.
* @param point to insert
* @return the index at which the element was inserted
* @see CLAM::SearchArray
*/
	template <class TX,class TY>
	TIndex BPFTmpl<TX,TY>::Insert(const PointTmpl<TX,TY> &point)
	{
		mIsSplineUpdated = false;
		if (mArray.Size() == 0 || point.GetX() > mArray[Size()-1].GetX())
		{
			mArray.AddElem(point);
			return Size()-1;
		}

		TIndex closestIndex = mSearch.Find(point);
		if (closestIndex == -1)
		{
			if (point.GetX() >= GetXValue(Size() - 1))
			{
				mArray.AddElem(point);
				return Size()-1;
			}
			else
			{
				mArray.InsertElem(0, point);
				return 0;
			}
		}
		else
		{
			if (GetXValue(closestIndex) == point.GetX())
			{
				SetValue(closestIndex, point.GetY());
				return closestIndex;
			}
			else
			{
				mArray.InsertElem(closestIndex+1 ,point);
				return closestIndex+1;
			}
		}
	}

/**
* Inserts a point made of an X and a Y value in the correct position. Note that
* points in the array are always sorted according to their X value. Must therefore
* perform a previous serch.
* @param : X value
* @param : Y value
* @see : Insert
*/
	template <class TX,class TY>
	TIndex BPFTmpl<TX,TY>::Insert(const TX &x,const TX &y)
	{
		PointTmpl<TX,TY> tmpPoint(x,y);
		return Insert(tmpPoint);
	}

/**
* Deletes the point found at the given index
* @param : index of the point to delete
*/
	template <class TX,class TY>
	void BPFTmpl<TX,TY>::DeleteIndex(TIndex index){
		mArray.DeleteElem(index);
		mIsSplineUpdated=false;
	}
/**

* Deletes the point with a closest X value to the one given
* @param : X value of the point to delete
*/
	template <class TX,class TY>
	void BPFTmpl<TX,TY>::DeleteThroughXValue(const TX& x)
	{
		mArray.DeleteElem(GetPosition(x));
		mIsSplineUpdated=false;
	}

/**
* Deletes the points between indices given
* @param : left index
* @param : right index
*/
	template <class TX,class TY>
	void BPFTmpl<TX,TY>::DeleteBetweenIndex(TIndex leftIndex,TIndex rightIndex)
	{
		for (int i=leftIndex; i<=rightIndex; i++)
		{
			DeleteIndex(leftIndex);
		}
		mIsSplineUpdated=false;
	}
/**
* Deletes the points having an X value in between the ones given
* @param : left X value
* @param : right X value
*/
	template <class TX,class TY>
	void BPFTmpl<TX,TY>::DeleteBetweenXValues(const TX& leftX,const TX& rightX)
	{
		TIndex leftIndex=GetPosition(leftX);
		TIndex rightIndex=GetPosition(rightX);
		DeleteBetweenIndex(leftIndex,rightIndex);
		mIsSplineUpdated=false;
	}

/**
* Setting a different interpolation type. Auxiliary member arrays mc and md are resized if
* necessary.
* @param : new interpolation type
*/
	template <class TX,class TY>
	void BPFTmpl<TX,TY>::SetIntpType(const EInterpolation& eInterpolation)
	{
		meInterpolation=eInterpolation;
		switch(eInterpolation)
		{
			case(EInterpolation::eLinear)://linear interpolation between two closest points
			{
				mOrder=1;
				break;
			}
			case(EInterpolation::ePolynomial2)://parabolic interpolation
			{
				mOrder=2;
				break;
			}
			case(EInterpolation::ePolynomial3)://3rd order polynomial interpolation
			{
				mOrder=3;
				break;
			}
			case(EInterpolation::ePolynomial4)://4th order polynomial interpolation
			{
				mOrder=4;
				break;
			}
			case(EInterpolation::ePolynomial5)://5th order polynomial interpolation
			{
				mOrder=5;
				break;
			}
			case(EInterpolation::ePolynomialn):/*nth order polynomial interpolation where n is number
				of points in the BPF-1. Must be less than 10*/
			{
				CLAM_ASSERT(Size()<11,"BPF::SetIntpType:Cannot ser more than 10th order interpolation");
				mOrder=Size()-1;
				break;
			}
			case(EInterpolation::eSpline ): // MRJ: Nice refactoring, but forgot about the Spline...
			{
				return;
			}
			default:
			{
				CLAM_ASSERT( false, "Unsupported interpolation method" );
			}
		}
		const unsigned newSize = mOrder+1;
		mc.Resize(newSize);
		mc.SetSize(newSize);
		md.Resize(newSize);
		md.SetSize(newSize);
	}


/**
* Getting the value of a point from the value of its X component. Performs the kind
* of interpolation passed as parameter
* @param : X value
* @param : interpolation type
* @see : GetValueFromIndex
*/
	template <class TX,class TY>
	TY BPFTmpl<TX,TY>::GetValue(const TX& x,const EInterpolation& eInterpolation) const	/*Gets value
		according to the interpolation type set*/
	{
		// First we should check if the the x value belongs to the BPF itself
		// and there is no need to interpolate

		if(x<mLastX)  mLastIndex=0;

		TIndex i=mSearch.Find( PointTmpl<TX,TY>(x,0.0), mLastIndex);
		if(i==-1)
		{
			// Outside of the BPF; get the first or last value
			if (GetXValue(0)>x)
				return GetValueFromIndex(0);
			else
				return GetValueFromIndex(Size()-1);
		}
		mLastIndex=i;
		mLastX=x;
		if(GetXValue(mLastIndex)==x) return GetValueFromIndex(mLastIndex);
		switch(eInterpolation)
		{
			case(EInterpolation::eStep)://returns previous point value
			{
				GetnClosest(mLastIndex);
				if(GetXValue(mClosestPoints[0])<=x)
					return GetValueFromIndex(mClosestPoints[0]);
				return GetValueFromIndex(mClosestPoints[0]+1);
			}
			case(EInterpolation::eRound)://return closest point value
			{
				GetnClosest(mLastIndex);
				return GetValueFromIndex(mClosestPoints[0]);
			}
			case(EInterpolation::eLinear)://linear interpolation between two closest points
			{
				TData error=0;
				if(GetXValue(mLastIndex)<=x)
				{
					mClosestPoints[0]=mLastIndex;
					mClosestPoints[1]=mLastIndex+1;
				}
				else
				{
					mClosestPoints[0]=mLastIndex-1;
					mClosestPoints[1]=mLastIndex;
				}
				return BPFPolInt(x,mClosestPoints,error);
			}
			case(EInterpolation::eSpline)://3rd order spline interpolation
			{
				CLAM_ASSERT(mIsSplineUpdated,"BPF::Spline table not updated");
				return BPFSplineInt(x);//get actual value
			}
			case(EInterpolation::ePolynomial2)://parabolic interpolation
			case(EInterpolation::ePolynomial3)://3rd order polynomial interpolation
			case(EInterpolation::ePolynomial4)://4th order polynomial interpolation
			case(EInterpolation::ePolynomial5)://5th order polynomial interpolation
			{
				TData error=0;
				GetnClosest(mLastIndex);
				return BPFPolInt(x,mClosestPoints,error);
			}
			case(EInterpolation::ePolynomialn):/*nth order polynomial interpolation where n is number
				of points in the BPF-1*/
			{
				Array<TIndex> indexArray(mArray.Size());
				TData error=0;
				for(TIndex i=0; i<mArray.Size(); i++)
				{
					indexArray[i]=i;
				}
				return BPFPolInt(x,indexArray,error);
			}
			default:
			{
				CLAM_ASSERT(false, "Invalid BPF interpolation method.");
				return 0;
			}
		}
	}

/**
* Fills the interpolation points index buffer with the n closest points to
* the selected point, trying to keep n/2 points to the right and n/2 to the left
* whenever possible, being n the interpolation order plus one.
* <p>
* When the point are too near the BPF edges, selected points are adjusted to this edge.
* When n is an even value, only n/2-1 points are selected at the left side of the selected index.
* @param foundIndex The index of the central point.
*/
	template <class TX,class TY>
	void BPFTmpl<TX,TY>::GetnClosest(TIndex foundIndex) const
	{
		CLAM_ASSERT(Size() >= mOrder+1, "BPF size must be at least the interpolation order plus one");
		int first = foundIndex-mOrder/2;
		// Fix the first index when it goes too
		if (first<0) first=0;
		// At least mOrder+1 fordward
		int safelimit = Size()-(mOrder+1);
		if (first>safelimit) first = safelimit;

		for(int i=0; i<mOrder+1; i++) {
			mClosestPoints[i]=first+i;
		}

		/*
		TIndex oP=GetPosition(x);
		int N = mArray.Size();
		TIndex i, j;

		TData elemToTake = (n-1.0)/2.0;

		int toTakeToTheLeft = (int)elemToTake;
		int	toTakeToTheRight = (int)ceil(elemToTake);

		int dL = (oP) - toTakeToTheLeft;
		int dR = (N-oP) - toTakeToTheRight;

		if (dL>= 0 && dR >= 0)
		{
			i = oP - toTakeToTheLeft;
			j = oP + toTakeToTheRight;

			if (j == N)
			{
				j = N-1;
				i--;
			}
		}
		else if (dL<0 && dR >= 0)
		{
			i = 0;
			j = oP + toTakeToTheRight + (-1)*dL;
		}
		else if (dL>=0 && dR < 0)
		{
			j = N-1;
			i = oP - toTakeToTheLeft - (-1)*dR - 1 ;

		}
		else if (dL<0 && dR < 0)
		{
			throw Err("Not enough Points to interpolate");
		}

		for (int k=i; k<=j; k++)
		{
			mClosestPoints[k-i] = k;
		}*/

	}

/**
* Get point position in BPf from X value
* @param : X value
* @return : index position
*/
	template <class TX,class TY>
	TIndex BPFTmpl<TX,TY>::GetPosition(const TX& x) const
	{
		PointTmpl<TX,TY> tmpPoint(x,0);
		return mSearch.Find(tmpPoint);
	}

/**
*  = operator, TODO: check!!!!
*/
	template <class TX,class TY>
	BPFTmpl<TX,TY>& BPFTmpl<TX,TY>::operator=(const BPFTmpl<TX,TY> &originalBPF)
	{
		meInterpolation = originalBPF.meInterpolation;
		mArray	= originalBPF.mArray;
		mSearch.Set(mArray);
		mSplineTable = originalBPF.mSplineTable;
		mIsSplineUpdated = originalBPF.mIsSplineUpdated;
		mnPoints=originalBPF.mnPoints;
		mOrder=originalBPF.mOrder;
		return *this;
	}

/**
* Updates Spline table creating it from scratch
*/
	template <class TX,class TY>
	void BPFTmpl<TX,TY>::UpdateSplineTable()
	{
		if(!mIsSplineUpdated)
			CreateSplineTable(); // Create spline table if not updated
		mIsSplineUpdated=true;
	}

/**
* Changes the BPF border conditions
*/
	template <class TX,class TY>
	void BPFTmpl<TX,TY>::SetLeftDerivative(TData val)
	{
		mLeftDerivative = val;
		mIsSplineUpdated=false;
	}
	template <class TX,class TY>
	void BPFTmpl<TX,TY>::UnsetLeftDerivative(void)
	{
		if (mLeftDerivative < Infinity) {
			mLeftDerivative = Infinity;
			mIsSplineUpdated=false;
		}
	}
/**
* Changes the BPF border conditions
*/
	template <class TX,class TY>
	void BPFTmpl<TX,TY>::SetRightDerivative(TData val)
	{
		mRightDerivative = val;
		mIsSplineUpdated=false;
	}
	template <class TX,class TY>
	void BPFTmpl<TX,TY>::UnsetRightDerivative(void)
	{
		if (mLeftDerivative < Infinity) {
			mRightDerivative = Infinity;
			mIsSplineUpdated=false;
		}
	}

/**
* Member protected method
* Performs the actual polynomial interpolation algorithm
*/
	template <class TX,class TY>
	TY BPFTmpl<TX,TY>::BPFPolInt
		(const TX& x,const Array<TIndex>& closestPointsIndex, TData &errorEstimate)
		const
	{
		int iClosest=0;
		TX dif=Abs(x-GetXValue(closestPointsIndex[0]));
		for(int i=0; i<=mOrder; i++)
		{
			TX dift=Abs(x-GetXValue(closestPointsIndex[i]));
			if(dift<dif)
			{
				iClosest=i;
				dif=dift;
			}
			md[i]=mc[i]=GetValueFromIndex(closestPointsIndex[i]);
		}

		TY y=GetValueFromIndex(closestPointsIndex[iClosest]);
		for(int m=0; m<mOrder; m++)
		{
			for(int i=0; i<mOrder-m; i++)
			{
				TX ho=GetXValue(closestPointsIndex[i])-x;
				TX hp=GetXValue(closestPointsIndex[i+m+1])-x;
				TX w=mc[i+1]-md[i];
				TX den=ho-hp;
				CLAM_ASSERT(den!=0, "Division by zero error interpolating BPF");
				den=w/den;
				md[i]=hp*den;
				mc[i]=ho*den;
			}
			if ( 2*iClosest < mOrder-m )
			{
				errorEstimate=mc[iClosest];
			}
			else
			{
				errorEstimate=md[iClosest-1];
				iClosest--;
			}
			y+=errorEstimate;
		}

		return y;
	}
/**
* Member protected method
* creates spline table from current points in BPF
*/
	template <class TX,class TY>
	void BPFTmpl<TX,TY>::CreateSplineTable()
	{
		int n=mArray.Size();

		CLAM_ASSERT(n > 2,"BPF size too small for spline");

		Array<TY> u(n);
		u.SetSize(n);
		mSplineTable.Resize(n);
		mSplineTable.SetSize(n);

		if (mLeftDerivative >= Infinity)
			mSplineTable[0]=u[0]=0.0; // For a 'natural' spline
		else {
			mSplineTable[0] = -0.5;
			u[0]= (TData(3.0) / (GetXValue(1)-GetXValue(0)) ) *
			      ( (GetValueFromIndex(1) - GetValueFromIndex(0)) /
			                (GetXValue(1)         - GetXValue(0))
			                        - mLeftDerivative );
		}

		for(int i=2;i<=n-1;i++)
		{
			TY sig=(GetXValue(i-1)-GetXValue(i-2))/(GetXValue(i)-GetXValue(i-2));
			TY p=sig*mSplineTable[i-2]+2;
			mSplineTable[i-1]=(sig-1)/p;
			u[i-1]=(GetValueFromIndex(i)-GetValueFromIndex(i-1))/(GetXValue(i)-GetXValue(i-1))-
				(GetValueFromIndex(i-1)-GetValueFromIndex(i-2))/(GetXValue(i-1)-GetXValue(i-2));
			u[i-1]=(6*u[i-1]/(GetXValue(i)-GetXValue(i-2))-sig*u[i-2])/p;
		}

		TY qn = 0.0;
		TY un = 0.0;
		if (mRightDerivative < Infinity) {
			qn = 0.5;
			un = (TData(3.0)/(GetXValue(n-1)-GetXValue(n-2))) *
			  ( mRightDerivative -
			      ( GetValueFromIndex(n-1) - GetValueFromIndex(n-2)) /
			      ( GetXValue(n-1)         - GetXValue(n-2)));
		}
		mSplineTable[n-1]=((un-qn*u[n-2])/(qn*mSplineTable[n-2]+1));
		for(int k=n-1; k>=1; k--)
		{
			mSplineTable[k-1]=mSplineTable[k-1]*mSplineTable[k]+u[k-1];
		}
	}
/**
* Member protected method
* Performs the actual 3rd order spline interpolation algorithm
*/
	template <class TX,class TY>
	TY BPFTmpl<TX,TY>::BPFSplineInt(const TX& x) const
	{
		int klo=1;
		int khi=mArray.Size();
		while(khi-klo>1)
		{
			int k=(khi+klo)>>1;
			if(GetXValue(k-1)>x) khi=k;
			else klo=k;
		}
		TX h=GetXValue(khi-1)-GetXValue(klo-1);
		CLAM_ASSERT(h!=0.0, "Error interpolating Spline");
		TX a=(GetXValue(khi-1)-x)/h;
		TX b=(x-GetXValue(klo-1))/h;
		return (a*GetValueFromIndex(klo-1)+b*GetValueFromIndex(khi-1)+((a*a*a-a)*
			mSplineTable[klo-1]+(b*b*b-b)*mSplineTable[khi-1])*(h*h)/6);
	}

	template <class TX,class TY>
	void BPFTmpl<TX,TY>::StoreOn(Storage & storage) const
	{
		XMLComponentAdapter adapterInt(meInterpolation,"Interpolation",true);
		storage.Store(adapterInt);
		XMLComponentAdapter adapter(mArray, "Points", true);
		storage.Store(adapter);
	}
	template <class TX,class TY>
	void BPFTmpl<TX,TY>::LoadFrom(Storage & storage)
	{
		XMLComponentAdapter adapterInt(meInterpolation,"Interpolation",true);
		storage.Load(adapterInt);
		XMLComponentAdapter adapter(mArray, "Points", true);
		storage.Load(adapter);
	}

} // namespace CLAM


#endif // _BPFTmplDef_