This file is indexed.

/usr/include/CLAM/SpectrumProduct.hxx is in libclam-dev 1.4.0-6.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
/*
 * Copyright (c) 2001-2004 MUSIC TECHNOLOGY GROUP (MTG)
 *                         UNIVERSITAT POMPEU FABRA
 *
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 *
 */

#ifndef _SPECTRUM_PRODUCT_
#define _SPECTRUM_PRODUCT_

#include "Processing.hxx"
#include "DynamicType.hxx"
#include "InPort.hxx"
#include "OutPort.hxx"
#include "Spectrum.hxx"

namespace CLAM {

/** This class performs the product of two Spectrum processing data
 * objects. Its primary use will be to allow frecuency domain
 * filtering, by taking the frecuency response as one of its inputs.
 * (It implements the funcionality provided in the old
 * CCLAMApplyFDFilter class).
 * <p>
 * It Allows any possible attribute configuration in its inputs and in
 * its output, but it performs faster when prototype configuration of
 * the data is specified using SetPrototypes(...), in certain
 * situations:
 * <ul>
 * <li> When all the inputs and the outputs have a common attribute
 *      (not the BPF), and the same scale.
 * <li> When one of the inputs has just a BPF attribute, and both the
 *      other input and the output have a common (non-BPF) attribute
 *      with the same scale in both objects.
 * <li> In other cases, at least a vector conversion will be executed
 *      in one of the involved processing data objects. In some bad
 *      situations two conversions might be needed.
 * </ul><p>
 * @todo
 * Possible optimisations (which require more states):
 * <ul>
 * <li> Implement direct product routines with inputs/outpust in
 *      different formats, and add the corresponding prototype states.
 * <li> Expand the state space to avoid checking if the attribute to be
 *      used in the computation is instantiated in each of the objects.
 *      Right now the same state is used when the three objects have a
 *      common attribute, and when a common attribute is to be used, but
 *      some of the objects lack it (and need format conversion).
 * </ul>
 * <p>
 * The BPFxBPF product is being thought. If both BPFs have the same
 * range and point possition, the way to go is obvious, but in other
 * situations it is not so simple. Whe should probably merge both
 * BPFs, into a new BPF.  */
	class SpectrumProduct: public Processing 
	{
		/** Size of the input/output vectors */
		int mSize;

		/** Possible configuration/prototype states */
		typedef enum {
			// Type states in with the same attribute is used for all
			// of the inputs and the outputs (it may or may not be
			// present; in the second case it will be added at Do(...)
			// time.
			SMagPhase, SComplex, SPolar,

			// BPF output product
			SBPF,

			// Type states with only a BPF attribute in one of the
			// inputs, other type in the other input and the
			// output. The non-BPF attribute may or may not be
			// instantiated. In the second case it will be added at
			// Do(...) time.

			SBPFMagPhase, SBPFComplex, SBPFPolar, SMagPhaseBPF,
			SComplexBPF, SPolarBPF,

			// State in which nothing is known about prototypes.
			SOther
		} PrototypeState;

		/** Possible scale combinations */
		typedef enum { Slinlin,	Sloglog, Slinlog, Sloglin} ScaleState;

		/** Config/Prototype state */
		PrototypeState mProtoState;
		/** Scale combination state */
		ScaleState mScaleState;

		const char *GetClassName() const {return "SpectrumProduct";}

	public:

		InPort<Spectrum> mInput1;
		InPort<Spectrum> mInput2;
		OutPort<Spectrum> mOutput;

		SpectrumProduct(const Config &c=Config());
		virtual ~SpectrumProduct();


		bool Do();

		bool Do(Spectrum& in1, Spectrum& in2, Spectrum& out);

		// Port interfaces.

		/** Change the internal type state.  
		 * Apart from prototype configuration, the Size, Scale and
		 * SpectralRange attributes of each Spectrum are also
		 * checked.
		 */

		bool SetPrototypes(const Spectrum& in1,const Spectrum& in2,const Spectrum& out);

		bool SetPrototypes();

		bool UnsetPrototypes();

		bool MayDisableExecution() const {return true;}

	private:

		/** Unoptimised internal multiplication method, when
		 * prototypes are not known (state SOther)
		 */
		inline void Multiply(Spectrum& in1, Spectrum& in2, Spectrum& out);

		// Product methods for optimized configurations of the inputs/output

		// Direct products
		inline void MultiplyMagPhase(Spectrum& in1, Spectrum& in2, Spectrum& out);
		inline void MultiplyMagPhaseLin(Spectrum& in1, Spectrum& in2, Spectrum& out);
		inline void MultiplyMagPhaseLog(Spectrum& in1, Spectrum& in2, Spectrum& out);
		inline void MultiplyMagPhaseLinLog(Spectrum& in1, Spectrum& in2, Spectrum& out);
		inline void MultiplyComplex(Spectrum& in1, Spectrum& in2, Spectrum& out);
		inline void MultiplyComplexLin(Spectrum& in1, Spectrum& in2, Spectrum& out);
		inline void MultiplyComplexLog(Spectrum& in1, Spectrum& in2, Spectrum& out);
		inline void MultiplyComplexLinLog(Spectrum& in1, Spectrum& in2, Spectrum& out);
		inline void MultiplyPolar(Spectrum& in1, Spectrum& in2, Spectrum& out);
		inline void MultiplyPolarLin(Spectrum& in1, Spectrum& in2, Spectrum& out);
		inline void MultiplyPolarLog(Spectrum& in1, Spectrum& in2, Spectrum& out);
		inline void MultiplyPolarLinLog(Spectrum& in1, Spectrum& in2, Spectrum& out);
		// BPF Product
		inline void MultiplyBPF(Spectrum& in1, Spectrum& in2, Spectrum& out);
		// BPF filters application
		inline void MultiplyBPFLin(Spectrum& in1, Spectrum& in2, Spectrum& out);
		inline void MultiplyBPFLog(Spectrum& in1, Spectrum& in2, Spectrum& out);
		inline void MultiplyBPFLinLog(Spectrum& in1, Spectrum& in2, Spectrum& out);
		inline void MultiplyBPFMagPhase(Spectrum& in1, Spectrum& in2, Spectrum& out);
		inline void MultiplyMagPhaseBPF(Spectrum& in1, Spectrum& in2, Spectrum& out);
		inline void MultiplyBPFMagPhaseLin(Spectrum& in1, Spectrum& in2, Spectrum& out);
		inline void MultiplyBPFMagPhaseLog(Spectrum& in1, Spectrum& in2, Spectrum& out);
		inline void MultiplyBPFMagPhaseLinLog(Spectrum& in1, Spectrum& in2, Spectrum& out);
		inline void MultiplyBPFMagPhaseLogLin(Spectrum& in1, Spectrum& in2, Spectrum& out);
		inline void MultiplyBPFComplex(Spectrum& in1, Spectrum& in2, Spectrum& out);
		inline void MultiplyComplexBPF(Spectrum& in1, Spectrum& in2, Spectrum& out);
		inline void MultiplyBPFComplexLin(Spectrum& in1, Spectrum& in2, Spectrum& out);
		inline void MultiplyBPFComplexLog(Spectrum& in1, Spectrum& in2, Spectrum& out);
		inline void MultiplyBPFComplexLinLog(Spectrum& in1, Spectrum& in2, Spectrum& out);
		inline void MultiplyBPFComplexLogLin(Spectrum& in1, Spectrum& in2, Spectrum& out);
		inline void MultiplyBPFPolar(Spectrum& in1, Spectrum& in2, Spectrum& out);
		inline void MultiplyPolarBPF(Spectrum& in1, Spectrum& in2, Spectrum& out);
		inline void MultiplyBPFPolarLin(Spectrum& in1, Spectrum& in2, Spectrum& out);
		inline void MultiplyBPFPolarLog(Spectrum& in1, Spectrum& in2, Spectrum& out);
		inline void MultiplyBPFPolarLinLog(Spectrum& in1, Spectrum& in2, Spectrum& out);
		inline void MultiplyBPFPolarLogLin(Spectrum& in1, Spectrum& in2, Spectrum& out);

	};

}

#endif // _SPECTRUM_PRODUCT_