This file is indexed.

/usr/include/CLAM/Stats.hxx is in libclam-dev 1.4.0-6.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
/*
 * Copyright (c) 2004 MUSIC TECHNOLOGY GROUP (MTG)
 *                         UNIVERSITAT POMPEU FABRA
 *
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 *
 */

#ifndef _Stats_
#define _Stats_


#include "BasicOps.hxx"
#include "Array.hxx"
#include <algorithm>

namespace CLAM{


template <unsigned int x,unsigned int y> class GreaterThan
{
	public: static StaticBool<(x>y)> mIs;
};


template <unsigned int x,unsigned int y> StaticBool<(x>y)>  GreaterThan<x,y>::mIs;


/**
 * An StatMemory may hold a T value and remembers whether
 * it has been set or is not initialized.
 * It has two states, value memorized and no value memorized.
 * By default is not memorized until it is assigned to a value that is copied.
 * Then you can query the value using the call operator.
 * By reseting it you are releasing the memory until a new assignement.
 */
template <typename T>
class StatMemory
{
public:
	StatMemory() : mMemorized(false) {}
	const StatMemory & operator = (const T & value)
	{
		mMemorized=true;
		mMemory=value;

		return *this;
	}
	bool HasValue()
	{
		return mMemorized;
	}
	void Reset()
	{
		mMemorized=false;
	}
	operator T()
	{
		CLAM_ASSERT(mMemorized,"Using a value that has not been memorized");
		return mMemory;
	}
private:
	T mMemory;
	bool mMemorized;
};


/** Class to hold basic statistics related to an array of arbitrary data. Statistics are computed
 *  efficiently and reusing computations whenever possible.
 *	@param abs whether the statistics are performed directly on the values (by default or template
 *	parameter=false) or on the absolute value of the array elements
 *	@param T the array type
 *	@param U the type of the resulting statistics
 *	@pre Most stats are not tolerant to size 0 data sets
 */
template <bool abs=false,class T=TData, class U=TData,int initOrder=5> class StatsTmpl
{

public:

/* @internal Only constructor available. We do not want a default constructor because then we could not be sure
 * that data is consisten and we would have to be constantly be doing checks.*/

	StatsTmpl(const Array<T>* data):mMoments(initOrder,5),mCentralMoments(initOrder,5),mCenterOfGravities(initOrder,5)
	{
		CLAM_ASSERT(data!=NULL,"Stats: A constructed array must be passed");
		mData=data;
		/*we initialize moments up to initOrder-th order, if higher moments are asked for
		arrays are then resized*/
		mMoments.SetSize(initOrder);
		mCentralMoments.SetSize(initOrder);
		mCenterOfGravities.SetSize(initOrder);
		for(unsigned i=0;i<initOrder;i++)
		{
			mMoments[i]=NULL;
			mCentralMoments[i]=NULL;
			mCenterOfGravities[i]= NULL;
		}
		InitMoment((O<initOrder>*)(0));
	}
	~StatsTmpl()
	{
		for (int i=0;i<mMoments.Size();i++)
		{
			if(mMoments[i]) delete mMoments[i];
		}
		for (int i=0;i<mCentralMoments.Size();i++)
		{
			if(mCentralMoments[i]) delete mCentralMoments[i];
		}
		for (int i=0;i<mCenterOfGravities.Size();i++)
		{
			if(mCenterOfGravities[i]) delete mCenterOfGravities[i];
		}
	}

	/** Method to change data array and reset all previous computations*/
	void SetArray(const Array<T>* data)
	{
		Reset();
		mData=data;
		mCentroid.Reset();
	}

	/**
	 *	Get order-th raw moment.
	 *	This method just acts as a selector, if order is greater than init order, we cannot assure
	 *	that the pointer has been initialized and we need extra checks (slow downs).
	 */
	template <int order> U GetMoment(const O<order>*)
	{
		return GetMoment((const O<order>*)(0),GreaterThan<order,initOrder>::mIs);
	}

	/** Get all raw moments up to the order indicated*/
	template<int order> void GetMoments(Array<U>& moments, const O<order>*)
	{
		if(moments.Size()<order)
		{
			moments.Resize(order);
			moments.SetSize(order);
		}
		pTmpArray=&moments;
		GetChainedMoment((const O<order>*)(0));
		pTmpArray=NULL;
	}

	/**
	 *	Get order-th central moment.
	 *	This method just acts as a selector, if order is greater than init order, we cannot assure
	 *	that the pointer has been initialized and we need extra checks (slow downs).
	 */
	template <int order> U GetCentralMoment(const O<order>*)
	{
		return GetCentralMoment((const O<order>*)(0),GreaterThan<order,initOrder>::mIs);
	}

	/** Get all central moments up to the order indicated*/
	template<int order> void GetCentralMoments(Array<U>& centralMoments,
		const O<order>*)
	{
		if(centralMoments.Size()<order)
		{
			centralMoments.Resize(order);
			centralMoments.SetSize(order);
		}
		pTmpArray=&centralMoments;
		GetChainedCentralMoment((const O<order>*)(0));
		pTmpArray=NULL;
	}

	/**
	 *	Get order-th center of gravity.
	 *	This method just acts as a selector, if order is greater than init order, we cannot assure
	 *	that the pointer has been initialized and we need extra checks (slow downs).
	 */
	template <int order> U GetCenterOfGravity(const O<order>*)
	{
		return GetCenterOfGravity((const O<order>*)(0),GreaterThan<order,initOrder>::mIs);
	}

	/** Get all center of gravities up to the order indicated*/
	template<int order> void GetCenterOfGravities(Array<U>& centerOfGravities,
		const O<order>*)
	{
		if(centerOfGravities.Size()<order)
		{
			centerOfGravities.Resize(order);
			centerOfGravities.SetSize(order);
		}
		pTmpArray=&centerOfGravities;
		GetChainedCenterOfGravity((const O<order>*)(0));
		pTmpArray=NULL;
	}

	/**
	 * Get mean, compute it if necessary.
	 *
	 * \f[
	 * 	Mean(X) = \frac {\sum x_i} { Size(X) }
	 * \f]
	 */
	U GetMean()
	{
		if (mData->Size()<=0) return U(.0);
		//FirstOrder* first;
		return GetMoment(FirstOrder);
	}

	/**
	 * Get centroid, compute it if necessary.
	 *
	 * The centroid of a function returns the position \f$i\f$ 
	 * around which most higher values are concentrated.
	 *
	 * \f[
	 * 	Centroid(X) = \frac 
	 * 		{\sum i \cdot x_i }
	 * 		{\sum x_i}
	 * \f]
	 *
	 * whenever the Mean(X) is less than 1e-7, then it will return the mid position
	 * \f[
	 * 	\frac{Size(X)-1}{2}
	 * \f]
	 *
	 */
	U GetCentroid()
	{
//		return GetCenterOfGravity(FirstOrder);
		if (mCentroid.HasValue()) return mCentroid;
		unsigned N = mData->Size();
		U mean = GetMean();
		if (mean < 1e-7 ) 
		{
			mCentroid = U(N-1)/2;
			return mCentroid;
		}
		U centroid=0.0;
		for (unsigned i = 0; i < N; i++)
		{
			centroid += (abs?Abs((*mData)[i]):(*mData)[i]) * (i+1);
		}
		mCentroid=centroid/mean/U(N) - 1;
		return mCentroid;
	}

	/**
	 * Computes and returns the Spread arround the Centroid.
	 * \f[
	 * 	Spread(Y) = \frac
	 * 		{\sum_{i=0}^{N-1}{(Centroid(Y)-x_i)^2 y_i} }
	 * 		{ \sum_{i=0}^{N-1}{y_i} }
	 * \f]
	 * The spread gives an idea on how much the distribution
	 * is NOT concentrated over the distribution centroid.
	 * Taking the array as a distribution and the values being probabilities,
	 * the spread would be the variance of such distribution.
	 * 
	 * Significant values:
	 * - For a full concentration on a single bin: 0.0
	 * - For two balanced diracs on the extreme bins
	 * \f[
	 * 	Spread(BalancedDiracsDistribution) = {N^2 \over 4}
	 * \f]
	 * - For a uniform distribution the spread it's:
	 * \f[
	 * 	Spread(UniformDistribution) = \frac{(N-1)(N+1)}{12}
	 * \f]
	 *
	 * Singularities and solution:
	 * - When \f$\sum{y_i}\f$ is less than 1e-14 it return the uniform distribution
	 *   formula above.
	 * - Centroid NaN silence NaN is solved inside GetCentroid
	 * - When Centroid is less than 0.2, 0.2 is taken as the centroid value.
	 *
	 * Normalization: Multiply the result by the square of the gap between
	 * arrays positions. ex. in an array representing a spectrum multiply by
	 * \f$ BinFreq^2 \f$
	 * 
	 * @todo still not tested as stats but tested its usage for SpectralSpread
	 * @todo should use other stats than centroid to save computations
	 * @see GetCentroid
	 */
	U GetSpread()
	{
		const unsigned N = mData->Size();
		const Array<T> & data = *mData;
		const U centroid = GetCentroid();

		// Compute spectrum variance around centroid frequency
		TData variance = 0;
		TData sumMags  = 0;
		for (unsigned i=0; i<N; i++)
		{
			U centroidDistance = i - centroid;
			centroidDistance *= centroidDistance;
			variance += centroidDistance * data[i];
			sumMags  += data[i];
		}
		// NaN solving: Silence is like a plain distribution
		if (sumMags < 1e-14) return U(N+1) * (N-1) / 12;

		return variance / sumMags;
	}

	/** Get standard deviation, compute it if necessary*/
	U GetStandardDeviation()
	{
		return mStdDev(*mData,GetCentralMomentFunctor<2>(),true);
	}

	/**
	 * Get skewness coefficient, compute it if necessary.
	 *
	 * The Skewness of a distribution gives an idea of 
	 * the assimetry of the variance of the values.
	 * @f[
	 * Skewness(X) = \frac
	 * 	{\sum{\left( (x_i-Mean(X))^3\right)} } 
	 * 	{\left(
	 * 		\sum{\left(
	 * 			x_i-Mean(X)
	 * 		\right)^2}
	 * 	\right) ^\frac{3}{2} }
	 * @f]
	 * Tipical values:
	 * - This function returns greater positive values when
	 *   there are more extreme values above the median than below.
	 * - Returns negative values when 
	 *   there are more extreme values below the median than above.
	 * - Returns zero when the distribution of the \f$x_i\f$ 
	 *   values around the Median is equilibrated.
	 *
	 * Singularities and solutions:
	 * - Constant functions: Currently returns NaN but, in the future,
	 *   it should return 0 because it can be considered an 
	 *   equilibrated function.
	 *
	 * @todo Give an order of magnitude, limits or something
	 */
	U GetSkew()
	{
		return mSkew(*mData,mStdDev,GetCentralMomentFunctor<3>(),true);
	}

	/**
	 * Get kurtosis, compute it if necessary.
	 *
	 * The Kurtosis of a distribution gives an idea 
	 * of the degree of pickness of the distribution.
	 * @f[
	 * Kurtosis(X) = \frac
	 * 	{\sum{\left( (x_i-Mean(X))^4\right)} } 
	 * 	{\left(
	 * 		\sum{\left(
	 * 			x_i-Mean(X)
	 * 		\right)^2}
	 * 	\right) ^2 }
	 * @f]
	 *
	 * Tipical values:
	 * - A normal distribution of \f$x_i\f$ values has a kurtosis near to 3.
	 * - A constant distribution has a kurtosis of \f$\frac{-6(n^2+1)}{5(n^2-1)} + 3 \f$
	 *
	 * Singularities and solutions:
	 * - Constant functions: Currently returns 3 althought it is not clear
	 *   that it should be the right one, and it can vary on future implementations.
	 */
	U GetKurtosis()
	{
		return mKurtosis(*mData,GetCentralMomentFunctor<2>(),GetCentralMomentFunctor<4>(),true);
	}

	/**
	 * Get variance, compute it if necessary.
	 *
	 * The variance is the mean cuadratic distance from the mean.
	 * @f[
	 * Variance(X) = \frac
	 * 	{\sum{\left( (x_i-Mean(X))^2\right)} } 
	 * 	{Size(X)}
	 * @f]
	 */
	U GetVariance()
	{
		return GetCentralMoment(SecondOrder);
	}

	/**
	 * Get energy, compute it if necessary.
	 *
	 * @f[
	 * 	Energy(X) = \sum{{x_i}^2 }
	 * @f]
	 * 
	 */
	T GetEnergy()
	{
		return mEnergy(*mData);
	}

	/**
	 * Get the Geometric mean, and computes it if necessary.
	 *
	 * The Geometric mean gives the mean magnitude order.
	 * It converges with the mean when all the values \f$x_i\f$ are closer.
	 *
	 * @f[
	 * 	GeometricMean(X) = {\left( \prod x_i \right)} ^ \frac{1}{Size(X) }
	 * @f]
	 * In order to make the computation cheap, For easy computation, logarithms are used.
	 * @f[
	 * 	\log (GeometricMean(X)) = \frac 
	 * 		{ \sum \log_e x_i }
	 * 		{ Size(X) }
	 * @f]
	 */

	U GetGeometricMean()
	{
		return mGeometricMean(*mData);
	}

	/**
	 * Get the root means square (RMS), compute it if necessary.
	 * \f[
	 * 	\sqrt { \sum{{x_i}^2 } }
	 * \f]
	 * @todo Is it a mean??
	 * */
	T GetRMS()
	{
		return mRMS(*mData);
	}

	/** Get maximum value */
	T GetMax()
	{
		return mMaxElement(*mData);
	}

	/** Get minimum value */
	T GetMin()
	{
		return mMinElement(*mData);
	}

	/**
	 * Computes and returns the Slope.
	 *
	 * The slope gives an idea of the mean pendent on the array:
	 * - Less than zero means that is decreasing
	 * - More than zero means that is increasing
	 * - Zero means that any tendency is the dominant
	 * 
	 * The Slope is defined as:
	 * \f[
	 * 	{1 \over \sum{x_i}}
	 * 	{ N \sum{i x_i } - \sum{i} \sum{x_i}
	 * 		\over
	 * 	{N \sum{i^2} - (\sum{i})^2 }}
	 * \f]
	 *
	 * We can transform this formula into one depending on the Centroid
	 * which is already calculated in order to obtain other stats:
	 * \f[
	 * 	6 {
	 * 		{ 2 Centroid - N + 1}
	 * 			\over
	 * 		{ N (N-1) (N+1)}
	 * 	}
	 * \f]
	 * 
	 * The slope is relative to the array position index.
	 * If you want to give to the array position a dimentional meaning,
	 * (p.e. frequency or time) then you should divide by the gap between array positions.
	 * for example GetSlope/BinFreq for a FFT or GetSlope*SampleRate for an audio
	 *
	 */

	U GetSlope()
	{
		// TODO: Sums where Y is used can be taken from Mean and Centroid

		const TSize size  = mData->Size();

		// \sum^{i=0}_{N-1}(x_i)
//		const TData sumY = GetMean()*size;
		// \sum^{i=0}_{N-1}(i x_i)
//		const TData sumXY = GetCentroid()*GetMean()*size;
		// \sum^{i=0}_{N-1}(i)
//		const TData sumX = (size-1)*size/2.0;
		// \sum^{i=0}_{N-1}(i^2)
//		const TData sumXX = (size-1)*(size)*(size+size-1)/6.0;

		//TData num = size*sumXY - sumX*sumY; 
		// = size Centroid Mean size - (size-1)(size)(size)Mean/2
		// = size^2 mean (Centroid - (size-1)/2)
		//num = size*size*GetMean()*(GetCentroid()-(size-1)/2.0);

		// size*sumXX - sumX*sumX =
		// = size (size-1) size (size+size-1)/6 - (size-1)^2(size)^2/4
		// = size^2 ( (size-1)(size+size-1)/6 - (size-1)^2/4 )
		// = size^2 (size-1)( (size+size-1)/6 - (size-1)/4 )
		// = size^2 (size-1)( (4*size-2) - (3*size-3) )/12
		// = size^2 (size-1) (size+1)/12

		//TData denum = (size*sumXX - sumX*sumX)*sumY;
		// = size mean size^2 (size-1) (size+1) / 12
		// = size^3 mean (size-1) (size+1) / 12
		//denum = size*size*size * GetMean() * (size-1) * (size+1) /12.0;

		// return num/denum;
		// = size^2 mean (Centroid - (size-1)/2) / (size^3 mean (size-1) (size+1) / 12)
		// = (Centroid - (size-1)/2) / (size (size-1) (size+1) /12)
		// = ( 12*centroid - 6*size + 6 ) / ( size (size-1) (size+1) )
		// = 6 (2*centroid - size + 1)) / ( size (size-1) (size+1) )
		return 6*(2*GetCentroid() - size + 1) / (size * (size-1) * (size+1));

	}
	/**
	 * Get flatness, compute it if necessary.
	 *
	 * The flatness is the relation among the geometric mean and the arithmetic mean.
	 *
	 * \f[
	 * 	Flatness(X) = \frac
	 * 		{GeometricMean(X)}
	 * 		{Mean(X)}
	 * \f]
	 *
	 * Singularities and solution:
	 * - When the mean is lower than 1e-20, it is set at 1e-20
	 * - When the geometric mean is lower than 1e-20, it is set at 1e-20
	 * @todo Explain why this is a mesure of the flatness
	 * @bug Singularity solution don't work for non absolute stats
	 */
	U GetFlatness()
	{
		U mean = GetMean();
		U geometricMean = GetGeometricMean();
		if (mean<1e-20) mean=TData(1e-20);
		if (geometricMean<1e-20 ) geometricMean=TData(1e-20);
		return geometricMean/mean;
	}

	/**
	 * Reset all the cached computations.
	 * This method is called automatically if you change the data pointer 
	 * using the SetData method, but it should be called explicitly whenever
	 * the values on that array changes externally.
	 */
	void Reset()
	{
		//Note: we keep previously allocated data, we just reset computations
		for (int i=0;i<mMoments.Size();i++)
			if(mMoments[i]!=NULL) mMoments[i]->Reset();
		for (int i=0;i<mCentralMoments.Size();i++)
			if(mCentralMoments[i]!=NULL) mCentralMoments[i]->Reset();
		for (int i=0;i<mCenterOfGravities.Size();i++)
			if(mCenterOfGravities[i]!=NULL) mCenterOfGravities[i]->Reset();

		mKurtosis.Reset();
		mStdDev.Reset();
		mSkew.Reset();
		mEnergy.Reset();
		mRMS.Reset();
		mGeometricMean.Reset();
		mMaxElement.Reset();
		mMinElement.Reset();
		mCentroid.Reset();
	}

private:
	/**
	 * @warning The implementation of this statistic is numerically unstable.
	 * Don't use it.
	 */
	U GetTilt()
	{
		const Array<T>& Y = *mData;
		const TSize size  = mData->Size();
		const U m1 = GetMean();

		TData d1=0;
		TData d2=0;
		for (unsigned i=0;i<size;i++)
		{
			d1 += i/Y[i];
			d2 += 1/Y[i];
		}

		// ti = m1/ai *(n - (d1/d2))
		// SpecTilt = m1²/ti² * SUM[1/ai *(i-d1/d2)]

		TData SumTi2 = 0;
		TData Tilt = 0;
		for (unsigned i=0;i<size;i++) 
		{
			Tilt += (1/Y[i] *(i-d1/d2));
			TData ti = m1/Y[i]*(i - (d1/d2));
			SumTi2 += ti*ti;
		}

		Tilt*= (m1*m1/SumTi2);
		return Tilt;
	}

	/** Chained method for initializing moments*/
	template<int order> void InitMoment(const O<order>*)
	{
		if(mMoments[order-1]!=NULL)
			delete mMoments[order-1];
		mMoments[order-1]=new Moment<order,abs,T,U>;
		if(mCentralMoments[order-1]!=NULL)
			delete mCentralMoments[order-1];
		mCentralMoments[order-1]=new CentralMoment<order,abs,T,U>;
		if(mCenterOfGravities[order-1]!=NULL)
			delete mCenterOfGravities[order-1];
		mCenterOfGravities[order-1]= new CenterOfGravity<order,abs,T,U>;
		InitMoment((O<order-1>*)(0));
	}

	/** Chained method terminator */
	void InitMoment(O<1>*)
	{
		mMoments[0]=new Moment<1,abs,T,U>;
		mCentralMoments[0]=new CentralMoment<1,abs,T,U>;
		mCenterOfGravities[0]= new CenterOfGravity<1,abs,T,U>;
	}

	/** Get order-th raw moment, order is smaller than init order*/
	template<int order> U GetMoment(const O<order>*,StaticFalse&)
	{
		return (*(dynamic_cast<Moment<order,abs,T,U>*> (mMoments[order-1])))(*mData);
	}

	/** Get order-th raw moment, order is greater than init order*/
	template<int order> U GetMoment(const O<order>*,StaticTrue&)
	{
		if(order>mMoments.Size())
		{
			int previousSize=mMoments.Size();
			mMoments.Resize(order);
			mMoments.SetSize(order);
			for(int i=previousSize;i<order;i++) mMoments[i]=NULL;
		}

		if(mMoments[order-1]==NULL)
		{
			mMoments[order-1]=new Moment<order,abs,T,U>;
		}
		//return GetMoment((const O<order>*)(0),StaticFalse());
		return (*(dynamic_cast<Moment<order,abs,T,U>*> (mMoments[order-1])))(*mData);
	}

	/** Chained method to return moment indicated by order and previous*/
	template<int order> void GetChainedMoment(const O<order>* )
	{
		(*pTmpArray)[order-1]=GetMoment((const O<order>*)(0));
		GetChainedMoment((O<order-1>*)(0));
	}

	/** Chained method terminator*/
	void GetChainedMoment(O<1>* )
	{
		(*pTmpArray)[0]=GetMoment((O<1>*)(0));
	}

	/** Get order-th central moment, order is smaller than init order*/
	template<int order> U GetCentralMoment(const O<order>*,StaticFalse&)
	{
		CentralMoment<order,abs,T,U> & tmpMoment = GetCentralMomentFunctor<order>();

		//first we see if we already have corresponding Raw Moments up to the order demanded
		for(int i=0;i<order;i++)
		{
			//if we don't, we will have to compute them
			if(mMoments[i]==NULL)
				return tmpMoment(*mData);
		}

		// if we do, we will use formula that relates Central Moments with Raw Moments
		return tmpMoment(*mData,mMoments);
	}

	/** Get order-th central moment, order is greater than init order*/
	template<int order> U GetCentralMoment(const O<order>*,StaticTrue&)
	{
		if(order>mCentralMoments.Size())
		{
			const int previousSize=mCentralMoments.Size();
			mCentralMoments.Resize(order+1);
			mCentralMoments.SetSize(order+1);
			for(int i=previousSize; i<order; i++) mCentralMoments[i]=NULL;
		}
		if(mCentralMoments[order-1]==NULL)
		{
			mCentralMoments[order-1] = new CentralMoment<order,abs,T,U>;
		}

		return GetCentralMoment((const O<order>*)(0),StaticFalse());
	}



	/** Chained method to return central moment indicated by order and previous*/
	template<int order> void GetChainedCentralMoment(const O<order>* )
	{
		(*pTmpArray)[order-1]=GetCentralMoment((const O<order>*)(0));
		GetChainedCentralMoment((O<order-1>*)(0));
	}

	/** Chained method terminator*/
	void GetChainedCentralMoment(O<1>* )
	{
		(*pTmpArray)[0]=GetCentralMoment((O<1>*)(0));
	}

	/** Get order-th center of gravity, order is smaller than init order*/
	template<int order> U GetCenterOfGravity(const O<order>*,StaticFalse& orderIsGreater)
	{
		return (*dynamic_cast<CenterOfGravity<order,abs,T,U>*> (mCenterOfGravities[order-1]))(*mData);
	}

	/** Get order-th center of gravity, order is greater than init order*/
	template<int order> U GetCenterOfGravity(const O<order>*,StaticTrue& orderIsGreater)
	{
		if(order>mCenterOfGravities.Size())
		{
			int previousSize=mCenterOfGravities.Size();
			mCenterOfGravities.Resize(order);
			mCenterOfGravities.SetSize(order);
			for(int i=previousSize;i<order;i++) mCenterOfGravities[i]=NULL;
		}
		if(mCenterOfGravities[order-1]=NULL)
		{
			mCenterOfGravities[order-1]=new CenterOfGravity<order,abs,T,U>;
		}

		return GetCenterOfGravity((const O<order>*)(0),StaticFalse());
	}

	/** Chained method to return center of gravity indicated by order and previous*/
	template<int order> void GetChainedCenterOfGravity(const O<order>* )
	{
		(*pTmpArray)[order-1]=GetCenterOfGravity((const O<order>*)(0));
		GetChainedCenterOfGravity((O<order-1>*)(0));
	}

	/** Chained method terminator*/
	void GetChainedCenterOfGravity(O<1>* )
	{
		(*pTmpArray)[0]=GetCenterOfGravity((O<1>*)(0));
	}

	template <unsigned order>
	CentralMoment<order,abs,T,U> & GetCentralMomentFunctor()
	{
		CLAM_ASSERT( signed(order-1) < mCentralMoments.Size(),
			"Calling for a Central Moment order above the configured one");

		typedef CentralMoment<order,abs,T,U> CentralMomentN;
		const unsigned int position = order-1;
		if (!mCentralMoments[position])
			mCentralMoments[position] = new CentralMomentN;
		return *dynamic_cast<CentralMomentN*>(mCentralMoments[position]);
	}


	Array<BaseMemOp*> mMoments;
	Array<BaseMemOp*> mCentralMoments;
	Array<BaseMemOp*> mCenterOfGravities;
	KurtosisTmpl<abs,T,U> mKurtosis;
	SkewTmpl<abs,T,U> mSkew;
	StandardDeviationTmpl<abs,T,U> mStdDev;
	EnergyTmpl<T> mEnergy;
	RMSTmpl<T> mRMS;
	GeometricMeanTmpl<T,U> mGeometricMean;
	ComplexMaxElement<abs,T> mMaxElement;
	ComplexMinElement<abs,T> mMinElement;
	StatMemory<U> mCentroid;

	const Array<T>* mData;

	/** Dummy pointer used because of some VC6 limitations*/
	Array<T>* pTmpArray;

};





typedef StatsTmpl<> Stats;



};//namespace



#endif