/usr/include/CLHEP/Vector/BoostY.icc is in libclhep-dev 2.1.4.1-1.1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 | // -*- C++ -*-
// ---------------------------------------------------------------------------
//
// This file is a part of the CLHEP - a Class Library for High Energy Physics.
//
// This is the definitions of the inline member functions of the
// HepBoostY class
//
#include <cmath>
namespace CLHEP {
// ---------- Constructors and Assignment:
inline HepBoostY::HepBoostY() : beta_(0.0), gamma_(1.0) {}
inline HepBoostY::HepBoostY(const HepBoostY & b) :
beta_ (b.beta_),
gamma_(b.gamma_) {}
inline HepBoostY & HepBoostY::operator = (const HepBoostY & b) {
beta_ = b.beta_;
gamma_ = b.gamma_;
return *this;
}
inline HepBoostY::HepBoostY(double bbeta) { set(bbeta); }
// - Protected method:
inline HepBoostY::HepBoostY( double bbeta, double ggamma ) :
beta_(bbeta), gamma_(ggamma) {}
// ---------- Accessors:
inline double HepBoostY::beta() const {
return beta_;
}
inline double HepBoostY::gamma() const {
return gamma_;
}
inline Hep3Vector HepBoostY::boostVector() const {
return Hep3Vector( 0, beta_, 0 );
}
inline Hep3Vector HepBoostY::getDirection() const {
return Hep3Vector( 0.0, 1.0, 0.0 );
}
inline double HepBoostY::xx() const { return 1.0;}
inline double HepBoostY::xy() const { return 0.0;}
inline double HepBoostY::xz() const { return 0.0;}
inline double HepBoostY::xt() const { return 0.0;}
inline double HepBoostY::yx() const { return 0.0;}
inline double HepBoostY::yy() const { return gamma();}
inline double HepBoostY::yz() const { return 0.0;}
inline double HepBoostY::yt() const { return beta()*gamma();}
inline double HepBoostY::zx() const { return 0.0;}
inline double HepBoostY::zy() const { return 0.0;}
inline double HepBoostY::zz() const { return 1.0;}
inline double HepBoostY::zt() const { return 0.0;}
inline double HepBoostY::tx() const { return 0.0;}
inline double HepBoostY::ty() const { return beta()*gamma();}
inline double HepBoostY::tz() const { return 0.0;}
inline double HepBoostY::tt() const { return gamma();}
inline HepLorentzVector HepBoostY::col1() const {
return HepLorentzVector ( 1, 0, 0, 0 );
}
inline HepLorentzVector HepBoostY::col2() const {
return HepLorentzVector ( 0, gamma(), 0, beta()*gamma() );
}
inline HepLorentzVector HepBoostY::col3() const {
return HepLorentzVector ( 0, 0, 1, 0 );
}
inline HepLorentzVector HepBoostY::col4() const {
return HepLorentzVector ( 0, beta()*gamma(), 0, gamma() );
}
inline HepLorentzVector HepBoostY::row1() const {
return HepLorentzVector ( col1() );
}
inline HepLorentzVector HepBoostY::row2() const {
return HepLorentzVector ( col2() );
}
inline HepLorentzVector HepBoostY::row3() const {
return HepLorentzVector ( col3() );
}
inline HepLorentzVector HepBoostY::row4() const {
return HepLorentzVector ( col4() );
}
// ---------- Comparisons:
inline int HepBoostY::compare( const HepBoostY & b ) const {
if (beta() < b.beta()) {
return -1;
} else if (beta() > b.beta()) {
return 1;
} else {
return 0;
}
}
inline bool HepBoostY::operator == ( const HepBoostY & b ) const {
return beta_ == b.beta_;
}
inline bool HepBoostY::operator != ( const HepBoostY & b ) const {
return beta_ != b.beta_;
}
inline bool HepBoostY::operator <= ( const HepBoostY & b ) const {
return beta_ <= b.beta_;
}
inline bool HepBoostY::operator >= ( const HepBoostY & b ) const {
return beta_ >= b.beta_;
}
inline bool HepBoostY::operator < ( const HepBoostY & b ) const {
return beta_ < b.beta_;
}
inline bool HepBoostY::operator > ( const HepBoostY & b ) const {
return beta_ > b.beta_;
}
inline bool HepBoostY::isIdentity() const {
return ( beta() == 0 );
}
inline double HepBoostY::distance2( const HepBoostY & b ) const {
double d = beta()*gamma() - b.beta()*b.gamma();
return d*d;
}
inline double HepBoostY::howNear(const HepBoostY & b) const {
return std::sqrt(distance2(b)); }
inline double HepBoostY::howNear(const HepBoost & b) const {
return std::sqrt(distance2(b)); }
inline double HepBoostY::howNear(const HepRotation & r) const {
return std::sqrt(distance2(r)); }
inline double HepBoostY::howNear(const HepLorentzRotation & lt) const {
return std::sqrt(distance2(lt)); }
inline bool HepBoostY::isNear(const HepBoostY & b,
double epsilon) const {
return (distance2(b) <= epsilon*epsilon);
}
inline bool HepBoostY::isNear(const HepBoost & b,
double epsilon) const {
return (distance2(b) <= epsilon*epsilon);
}
// ---------- Properties:
double HepBoostY::norm2() const {
register double bg = beta_*gamma_;
return bg*bg;
}
// ---------- Application:
inline HepLorentzVector
HepBoostY::operator * (const HepLorentzVector & p) const {
double bg = beta_*gamma_;
return HepLorentzVector( p.x(),
gamma_*p.y() + bg*p.t(),
p.z(),
gamma_*p.t() + bg*p.y());
}
HepLorentzVector HepBoostY::operator() (const HepLorentzVector & w) const {
return operator*(w);
}
// ---------- Operations in the group of 4-Rotations
inline HepBoostY HepBoostY::inverse() const {
return HepBoostY( -beta(), gamma() );
}
inline HepBoostY inverseOf ( const HepBoostY & b ) {
return HepBoostY( -b.beta(), b.gamma());
}
inline HepBoostY & HepBoostY::invert() {
beta_ = -beta_;
return *this;
}
// ---------- Tolerance:
inline double HepBoostY::getTolerance() {
return Hep4RotationInterface::tolerance;
}
inline double HepBoostY::setTolerance(double tol) {
return Hep4RotationInterface::setTolerance(tol);
}
} // namespace CLHEP
|