This file is indexed.

/usr/include/CLHEP/Vector/Rotation.h is in libclhep-dev 2.1.4.1-1.1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
// -*- C++ -*-
// CLASSDOC OFF
// $Id: Rotation.h,v 1.3 2003/10/23 21:29:52 garren Exp $
// ---------------------------------------------------------------------------
// CLASSDOC ON
//
// This file is a part of the CLHEP - a Class Library for High Energy Physics.
//
// This is the definition of the HepRotation class for performing rotations
// on objects of the Hep3Vector (and HepLorentzVector) class.
//
// HepRotation is a concrete implementation of Hep3RotationInterface.
//
// .SS See Also
// RotationInterfaces.h
// ThreeVector.h, LorentzVector.h, LorentzRotation.h
//
// .SS Author
// Leif Lonnblad, Mark Fischler

#ifndef HEP_ROTATION_H
#define HEP_ROTATION_H

#ifdef GNUPRAGMA
#pragma interface
#endif

#include "CLHEP/Vector/defs.h" 
#include "CLHEP/Vector/RotationInterfaces.h"
#include "CLHEP/Vector/RotationX.h"
#include "CLHEP/Vector/RotationY.h"
#include "CLHEP/Vector/RotationZ.h"
#include "CLHEP/Vector/LorentzVector.h"

namespace CLHEP {

// Declarations of classes and global methods
class HepRotation;
inline HepRotation inverseOf ( const HepRotation & r );
inline HepRotation operator * (const HepRotationX & rx, const HepRotation & r);
inline HepRotation operator * (const HepRotationY & ry, const HepRotation & r);
inline HepRotation operator * (const HepRotationZ & rz, const HepRotation & r);

/**
 * @author
 * @ingroup vector
 */
class HepRotation {

public:

  // ----------  Constructors and Assignment:

  inline HepRotation();
  // Default constructor. Gives a unit matrix.

  inline HepRotation(const HepRotation  & m);
  // Copy constructor.

  inline HepRotation(const HepRotationX & m);
  inline HepRotation(const HepRotationY & m);
  inline HepRotation(const HepRotationZ & m);
  // Construct from specialized rotation.

  HepRotation & set( const Hep3Vector & axis, double delta );
  HepRotation      ( const Hep3Vector & axis, double delta );
  // Construct from axis and angle.

  HepRotation & set( const HepAxisAngle & ax );
  HepRotation      ( const HepAxisAngle & ax );
  // Construct from AxisAngle structure.

  HepRotation & set( double phi, double theta, double psi );
  HepRotation      ( double phi, double theta, double psi );
  // Construct from three Euler angles (in radians).

  HepRotation & set( const HepEulerAngles & e );
  HepRotation      ( const HepEulerAngles & e );
  // Construct from EulerAngles structure.

  HepRotation ( const Hep3Vector & colX,
                const Hep3Vector & colY,
                const Hep3Vector & colZ );
  // Construct from three *orthogonal* unit vector columns.
  	// NOTE:	
  	//       This constructor, and the two set methods below, 
	//	 will check that the columns (or rows) form an orthonormal 
	//	 matrix, and will adjust values so that this relation is 
	//	 as exact as possible.

  HepRotation & set( const Hep3Vector & colX,
                             const Hep3Vector & colY,
                             const Hep3Vector & colZ );
  //   supply three *orthogonal* unit vectors for the columns.

  HepRotation & setRows( const Hep3Vector & rowX,
                                 const Hep3Vector & rowY,
                                 const Hep3Vector & rowZ );
  //   supply three *orthogonal* unit vectors for the rows.

  inline HepRotation & set(const HepRotationX & r);
  inline HepRotation & set(const HepRotationY & r);
  inline HepRotation & set(const HepRotationZ & r);
  // set from specialized rotation.

  inline  HepRotation & operator = (const HepRotation & r);
  // Assignment.

  inline  HepRotation & operator = (const HepRotationX & r);
  inline  HepRotation & operator = (const HepRotationY & r);
  inline  HepRotation & operator = (const HepRotationZ & r);
  // Assignment from specialized rotation.

  inline HepRotation &set( const HepRep3x3 & m );
  inline HepRotation     ( const HepRep3x3 & m );
  // WARNING - NO CHECKING IS DONE!
  // Constructon directly from from a 3x3 representation,
  // which is required to be an orthogonal matrix.

  inline ~HepRotation();
  // Trivial destructor.

  // ----------  Accessors:

  inline Hep3Vector colX() const;
  inline Hep3Vector colY() const;
  inline Hep3Vector colZ() const;
  // orthogonal unit-length column vectors

  inline Hep3Vector rowX() const;
  inline Hep3Vector rowY() const;
  inline Hep3Vector rowZ() const;
  // orthogonal unit-length row vectors
                                
  inline double xx() const;
  inline double xy() const;
  inline double xz() const;
  inline double yx() const;
  inline double yy() const;
  inline double yz() const;
  inline double zx() const;
  inline double zy() const;
  inline double zz() const;
  // Elements of the rotation matrix (Geant4).

  inline HepRep3x3 rep3x3() const;
  //   3x3 representation:

  // ------------  Subscripting:

  class HepRotation_row {
  public:
    inline HepRotation_row(const HepRotation &, int);
    inline double operator [] (int) const;
  private:
    const HepRotation & rr;
    int ii;
  };
  // Helper class for implemention of C-style subscripting r[i][j] 

  inline const HepRotation_row operator [] (int) const; 
  // Returns object of the helper class for C-style subscripting r[i][j]
  // i and j range from 0 to 2.  

  double operator () (int, int) const;
  // Fortran-style subscripting: returns (i,j) element of the rotation matrix.
  // Note:  i and j still range from 0 to 2.			[Rotation.cc]

  // ------------  Euler angles:
  inline  double getPhi  () const;
  inline  double getTheta() const;
  inline  double getPsi  () const;
  double    phi  () const;
  double    theta() const;
  double    psi  () const;
  HepEulerAngles eulerAngles() const;

  // ------------  axis & angle of rotation:
  inline  double  getDelta() const;
  inline  Hep3Vector getAxis () const;
  double     delta() const;
  Hep3Vector    axis () const;
  HepAxisAngle  axisAngle() const;
  void getAngleAxis(double & delta, Hep3Vector & axis) const;
  // Returns the rotation angle and rotation axis (Geant4). 	[Rotation.cc]

  // ------------- Angles of rotated axes
  double phiX() const;
  double phiY() const;
  double phiZ() const;
  double thetaX() const;
  double thetaY() const;
  double thetaZ() const;
  // Return angles (RADS) made by rotated axes against original axes (Geant4).
  //								[Rotation.cc]

  // ----------  Other accessors treating pure rotation as a 4-rotation

  inline HepLorentzVector col1() const;
  inline HepLorentzVector col2() const;
  inline HepLorentzVector col3() const;
  //  orthosymplectic 4-vector columns - T component will be zero

  inline HepLorentzVector col4() const;
  // Will be (0,0,0,1) for this pure Rotation.

  inline HepLorentzVector row1() const;
  inline HepLorentzVector row2() const;
  inline HepLorentzVector row3() const;
  //  orthosymplectic 4-vector rows - T component will be zero

  inline HepLorentzVector row4() const;
  // Will be (0,0,0,1) for this pure Rotation.

  inline double xt() const;
  inline double yt() const;
  inline double zt() const;
  inline double tx() const;
  inline double ty() const;
  inline double tz() const;
  // Will be zero for this pure Rotation

  inline double tt() const;
  // Will be one for this pure Rotation

  inline HepRep4x4 rep4x4() const;
  //   4x4 representation.

  // ---------   Mutators 

  void setPhi (double phi);
  // change Euler angle phi, leaving theta and psi unchanged.

  void setTheta (double theta);
  // change Euler angle theta, leaving phi and psi unchanged.

  void setPsi (double psi);
  // change Euler angle psi, leaving theta and phi unchanged.

  void setAxis (const Hep3Vector & axis);
  // change rotation axis, leaving delta unchanged.

  void setDelta (double delta);
  // change angle of rotation, leaving rotation axis unchanged.

  // ----------  Decomposition:

  void decompose (HepAxisAngle & rotation, Hep3Vector & boost) const;
  void decompose (Hep3Vector & boost, HepAxisAngle & rotation) const;
  // These are trivial, as the boost vector is 0.		[RotationP.cc]

  // ----------  Comparisons: 
  
  bool isIdentity() const;				
  // Returns true if the identity matrix (Geant4).		[Rotation.cc]	

  int compare( const HepRotation & r  ) const;
  // Dictionary-order comparison, in order zz, zy, zx, yz, ... xx
  // Used in operator<, >, <=, >= 

  inline bool operator== ( const HepRotation & r ) const;
  inline bool operator!= ( const HepRotation & r ) const;
  inline bool operator<  ( const HepRotation & r ) const;
  inline bool operator>  ( const HepRotation & r ) const;
  inline bool operator<= ( const HepRotation & r ) const;
  inline bool operator>= ( const HepRotation & r ) const;
  
  double distance2( const HepRotation &  r  ) const; 
  // 3 - Tr ( this/r ) -- This works with RotationX, Y or Z also

  double howNear( const HepRotation & r ) const;
  bool isNear( const HepRotation & r,
             double epsilon=Hep4RotationInterface::tolerance) const;

  double distance2( const HepBoost           & lt  ) const; 
  // 3 - Tr ( this ) + |b|^2 / (1-|b|^2) 
  double distance2( const HepLorentzRotation & lt  ) const; 
  // 3 - Tr ( this/r ) + |b|^2 / (1-|b|^2) where b is the boost vector of lt

  double howNear( const HepBoost           & lt ) const;
  double howNear( const HepLorentzRotation & lt ) const;
  bool isNear( const HepBoost           & lt, 
             double epsilon=Hep4RotationInterface::tolerance) const;
  bool isNear( const HepLorentzRotation & lt,
             double epsilon=Hep4RotationInterface::tolerance) const;

  // ----------  Properties:

  double norm2() const; 
  // distance2 (IDENTITY), which is 3 - Tr ( *this )

  void rectify();
  // non-const but logically moot correction for accumulated roundoff errors
	// rectify averages the matrix with the transpose of its actual
	// inverse (absent accumulated roundoff errors, the transpose IS
	// the inverse)); this removes to first order those errors.
	// Then it formally extracts axis and delta, and forms a true
	// HepRotation with those values of axis and delta.

  // ---------- Application:

  inline Hep3Vector operator() (const Hep3Vector & p) const;
  // Rotate a Hep3Vector.					

  inline  Hep3Vector operator * (const Hep3Vector & p) const;
  // Multiplication with a Hep3Vector.

  inline HepLorentzVector operator()( const HepLorentzVector & w ) const;
  // Rotate (the space part of) a HepLorentzVector.		

  inline  HepLorentzVector operator* ( const HepLorentzVector & w ) const;
  // Multiplication with a HepLorentzVector.

  // ---------- Operations in the group of Rotations

  inline HepRotation operator * (const HepRotation & r) const;
  // Product of two rotations (this) * r - matrix multiplication  

  inline HepRotation operator * (const HepRotationX & rx) const; 
  inline HepRotation operator * (const HepRotationY & ry) const;
  inline HepRotation operator * (const HepRotationZ & rz) const;
  // Product of two rotations (this) * r - faster when specialized type 

  inline  HepRotation & operator *= (const HepRotation & r);
  inline  HepRotation & transform   (const HepRotation & r);
  // Matrix multiplication.
  // Note a *= b; <=> a = a * b; while a.transform(b); <=> a = b * a;

  inline  HepRotation & operator *= (const HepRotationX & r);
  inline  HepRotation & operator *= (const HepRotationY & r);
  inline  HepRotation & operator *= (const HepRotationZ & r);
  inline  HepRotation & transform   (const HepRotationX & r);
  inline  HepRotation & transform   (const HepRotationY & r);
  inline  HepRotation & transform   (const HepRotationZ & r);
  // Matrix multiplication by specialized matrices

  HepRotation & rotateX(double delta);
  // Rotation around the x-axis; equivalent to R = RotationX(delta) * R

  HepRotation & rotateY(double delta);
  // Rotation around the y-axis; equivalent to R = RotationY(delta) * R

  HepRotation & rotateZ(double delta);
  // Rotation around the z-axis; equivalent to R = RotationZ(delta) * R

         HepRotation & rotate(double delta, const Hep3Vector & axis);
  inline HepRotation & rotate(double delta, const Hep3Vector * axis);
  // Rotation around a specified vector.  
  // r.rotate(d,a) is equivalent to r = Rotation(d,a) * r

  HepRotation & rotateAxes(const Hep3Vector & newX,
                           const Hep3Vector & newY,
                           const Hep3Vector & newZ);
  // Rotation of local axes defined by 3 orthonormal vectors (Geant4).
  // Equivalent to r = Rotation (newX, newY, newZ) * r

  inline HepRotation inverse() const;
  // Returns the inverse.

  inline HepRotation & invert();
  // Inverts the Rotation matrix.

  // ---------- I/O: 

  std::ostream & print( std::ostream & os ) const;
  // Aligned six-digit-accurate output of the  rotation matrix.	[RotationIO.cc]

  // ---------- Identity Rotation:

  static const HepRotation IDENTITY;

  // ---------- Tolerance

  static inline double getTolerance();
  static inline double setTolerance(double tol); 

protected:

  inline HepRotation(double mxx, double mxy, double mxz, 
		     double myx, double myy, double myz,
		     double mzx, double mzy, double mzz);
  // Protected constructor.  
  // DOES NOT CHECK FOR VALIDITY AS A ROTATION.

  friend HepRotation operator* (const HepRotationX & rx, const HepRotation & r);
  friend HepRotation operator* (const HepRotationY & ry, const HepRotation & r);
  friend HepRotation operator* (const HepRotationZ & rz, const HepRotation & r);

  double rxx, rxy, rxz, 
	    ryx, ryy, ryz, 
	    rzx, rzy, rzz;
  // The matrix elements.

private:
  bool 
       setCols ( const Hep3Vector & u1,	// Vectors assume to be of unit length 
                 const Hep3Vector & u2,
                 const Hep3Vector & u3,
                 double u1u2,
                 Hep3Vector & v1,		// Returned vectors
                 Hep3Vector & v2,
                 Hep3Vector & v3 ) const;
  void setArbitrarily (const Hep3Vector & colX, // assumed to be of unit length
                      Hep3Vector & v1,
                      Hep3Vector & v2,
                      Hep3Vector & v3) const;
};  // HepRotation

inline   
std::ostream & operator << 
	( std::ostream & os, const HepRotation & r ) {return r.print(os);}

}  // namespace CLHEP

#include "CLHEP/Vector/Rotation.icc"

#ifdef ENABLE_BACKWARDS_COMPATIBILITY
//  backwards compatibility will be enabled ONLY in CLHEP 1.9
using namespace CLHEP;
#endif

#endif /* HEP_ROTATION_H */