/usr/share/libctl/utils/geom.c is in libctl5 3.2.2-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 | /* libctl: flexible Guile-based control files for scientific software
* Copyright (C) 1998-2014 Massachusetts Institute of Technology and Steven G. Johnson
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the
* Free Software Foundation, Inc., 59 Temple Place - Suite 330,
* Boston, MA 02111-1307, USA.
*
* Steven G. Johnson can be contacted at stevenj@alum.mit.edu.
*/
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include "ctl-io.h"
#include <ctlgeom.h>
#ifdef CXX_CTL_IO
using namespace ctlio;
# define CTLIO ctlio::
# define GEOM geometric_object::
# define BLK block::
# define CYL cylinder::
# define MAT material_type::
#else
# define CTLIO
# define GEOM
# define BLK
# define CYL
# define MAT
#endif
#ifdef __cplusplus
# define MALLOC(type,num) (new type[num])
# define MALLOC1(type) (new type)
# define FREE(p) delete[] (p)
# define FREE1(p) delete (p)
#else
# define MALLOC(type,num) ((type *) malloc(sizeof(type) * (num)))
# define MALLOC1(type) MALLOC(type,1)
# define FREE(p) free(p)
# define FREE1(p) free(p)
#endif
#define K_PI 3.14159265358979323846
/**************************************************************************/
/* If v is a vector in the lattice basis, normalize v so that
its cartesian length is unity. */
static void lattice_normalize(vector3 *v)
{
*v = vector3_scale(
1.0 /
sqrt(vector3_dot(*v,
matrix3x3_vector3_mult(geometry_lattice.metric,
*v))),
*v);
}
static vector3 lattice_to_cartesian(vector3 v)
{
return matrix3x3_vector3_mult(geometry_lattice.basis, v);
}
static vector3 cartesian_to_lattice(vector3 v)
{
return matrix3x3_vector3_mult(matrix3x3_inverse(geometry_lattice.basis),
v);
}
/* "Fix" the parameters of the given object to account for the
geometry_lattice basis, which may be non-orthogonal. In particular,
this means that the normalization of several unit vectors, such
as the cylinder or block axes, needs to be changed.
Unfortunately, we can't do this stuff at object-creation time
in Guile, because the geometry_lattice variable may not have
been assigned to its final value at that point. */
void geom_fix_object(geometric_object o)
{
switch(o.which_subclass) {
case GEOM CYLINDER:
lattice_normalize(&o.subclass.cylinder_data->axis);
if (o.subclass.cylinder_data->which_subclass == CYL WEDGE) {
vector3 a = o.subclass.cylinder_data->axis;
vector3 s = o.subclass.cylinder_data->subclass.wedge_data->wedge_start;
double p = vector3_dot(s, matrix3x3_vector3_mult(geometry_lattice.metric, a));
o.subclass.cylinder_data->subclass.wedge_data->e1 =
vector3_minus(s, vector3_scale(p, a));
lattice_normalize(&o.subclass.cylinder_data->subclass.wedge_data->e1);
o.subclass.cylinder_data->subclass.wedge_data->e2 =
cartesian_to_lattice(
vector3_cross(lattice_to_cartesian(o.subclass.cylinder_data->axis),
lattice_to_cartesian(o.subclass.cylinder_data->subclass.wedge_data->e1)));
}
break;
case GEOM BLOCK:
{
matrix3x3 m;
lattice_normalize(&o.subclass.block_data->e1);
lattice_normalize(&o.subclass.block_data->e2);
lattice_normalize(&o.subclass.block_data->e3);
m.c0 = o.subclass.block_data->e1;
m.c1 = o.subclass.block_data->e2;
m.c2 = o.subclass.block_data->e3;
o.subclass.block_data->projection_matrix = matrix3x3_inverse(m);
break;
}
case GEOM COMPOUND_GEOMETRIC_OBJECT:
{
int i;
int n = o.subclass.compound_geometric_object_data
->component_objects.num_items;
geometric_object *os = o.subclass.compound_geometric_object_data
->component_objects.items;
for (i = 0; i < n; ++i) {
#if MATERIAL_TYPE_ABSTRACT
if (os[i].material.which_subclass == MAT MATERIAL_TYPE_SELF)
material_type_copy(&o.material, &os[i].material);
#endif
geom_fix_object(os[i]);
}
break;
}
case GEOM GEOMETRIC_OBJECT_SELF: case GEOM SPHERE:
break; /* these objects are fine */
}
}
/* fix all objects in the geometry list as described in
geom_fix_object, above */
void geom_fix_objects0(geometric_object_list geometry)
{
int index;
for (index = 0; index < geometry.num_items; ++index)
geom_fix_object(geometry.items[index]);
}
void geom_fix_objects(void)
{
geom_fix_objects0(geometry);
}
void geom_fix_lattice0(lattice *L)
{
L->basis1 = unit_vector3(L->basis1);
L->basis2 = unit_vector3(L->basis2);
L->basis3 = unit_vector3(L->basis3);
L->b1 = vector3_scale(L->basis_size.x, L->basis1);
L->b2 = vector3_scale(L->basis_size.y, L->basis2);
L->b3 = vector3_scale(L->basis_size.z, L->basis3);
L->basis.c0 = L->b1;
L->basis.c1 = L->b2;
L->basis.c2 = L->b3;
L->metric = matrix3x3_mult(matrix3x3_transpose(L->basis), L->basis);
}
void geom_fix_lattice(void)
{
geom_fix_lattice0(&geometry_lattice);
}
void geom_cartesian_lattice0(lattice *L)
{
L->basis1.x = 1; L->basis1.y = 0; L->basis1.z = 0;
L->basis2.x = 0; L->basis2.y = 1; L->basis2.z = 0;
L->basis3.x = 0; L->basis3.y = 0; L->basis3.z = 1;
L->basis_size.x = L->basis_size.y = L->basis_size.z = 1;
geom_fix_lattice0(L);
}
void geom_cartesian_lattice(void)
{
geom_cartesian_lattice0(&geometry_lattice);
}
void geom_initialize(void)
{
/* initialize many of the input variables that are normally
initialized from Scheme, except for default_material and
geometry_lattice.size. */
geom_cartesian_lattice();
geometry_center.x = geometry_center.y = geometry_center.z = 0;
dimensions = 3;
ensure_periodicity = 1;
geometry.num_items = 0;
geometry.items = 0;
}
/**************************************************************************/
/* Return whether or not the point p (in the lattice basis) is inside
the object o.
Requires that the global input var geometry_lattice already be
initialized.
point_in_fixed_objectp additionally requires that geom_fix_object
has been called on o (if the lattice basis is non-orthogonal). */
boolean CTLIO point_in_objectp(vector3 p, geometric_object o)
{
geom_fix_object(o);
return point_in_fixed_objectp(p, o);
}
boolean point_in_fixed_objectp(vector3 p, geometric_object o)
{
return point_in_fixed_pobjectp(p, &o);
}
/* as point_in_fixed_objectp, but sets o to the object in question (if true)
(which may be different from the input o if o is a compound object) */
boolean point_in_fixed_pobjectp(vector3 p, geometric_object *o)
{
vector3 r = vector3_minus(p,o->center);
switch (o->which_subclass) {
case GEOM GEOMETRIC_OBJECT_SELF:
return 0;
case GEOM SPHERE:
{
number radius = o->subclass.sphere_data->radius;
return(radius > 0.0 &&
vector3_dot(r,matrix3x3_vector3_mult(geometry_lattice.metric, r))
<= radius*radius);
}
case GEOM CYLINDER:
{
vector3 rm = matrix3x3_vector3_mult(geometry_lattice.metric, r);
number proj = vector3_dot(o->subclass.cylinder_data->axis, rm);
number height = o->subclass.cylinder_data->height;
if (fabs(proj) <= 0.5 * height) {
number radius = o->subclass.cylinder_data->radius;
if (o->subclass.cylinder_data->which_subclass == CYL CONE)
radius += (proj/height + 0.5) *
(o->subclass.cylinder_data->subclass.cone_data->radius2
- radius);
else if (o->subclass.cylinder_data->which_subclass == CYL WEDGE) {
number x = vector3_dot(rm, o->subclass.cylinder_data->subclass.wedge_data->e1);
number y = vector3_dot(rm, o->subclass.cylinder_data->subclass.wedge_data->e2);
number theta = atan2(y, x);
number wedge_angle = o->subclass.cylinder_data->subclass.wedge_data->wedge_angle;
if (wedge_angle > 0) {
if (theta < 0) theta = theta + 2 * K_PI;
if (theta > wedge_angle) return 0;
}
else {
if (theta > 0) theta = theta - 2 * K_PI;
if (theta < wedge_angle) return 0;
}
}
return(radius != 0.0 && vector3_dot(r,rm) - proj*proj <= radius*radius);
}
else
return 0;
}
case GEOM BLOCK:
{
vector3 proj =
matrix3x3_vector3_mult(o->subclass.block_data->projection_matrix, r);
switch (o->subclass.block_data->which_subclass) {
case BLK BLOCK_SELF:
{
vector3 size = o->subclass.block_data->size;
return(fabs(proj.x) <= 0.5 * size.x &&
fabs(proj.y) <= 0.5 * size.y &&
fabs(proj.z) <= 0.5 * size.z);
}
case BLK ELLIPSOID:
{
vector3 isa =
o->subclass.block_data->subclass.ellipsoid_data->inverse_semi_axes;
double
a = proj.x * isa.x,
b = proj.y * isa.y,
c = proj.z * isa.z;
return(a*a + b*b + c*c <= 1.0);
}
}
}
case GEOM COMPOUND_GEOMETRIC_OBJECT:
{
int i;
int n = o->subclass.compound_geometric_object_data
->component_objects.num_items;
geometric_object *os = o->subclass.compound_geometric_object_data
->component_objects.items;
vector3 shiftby = o->center;
for (i = 0; i < n; ++i) {
*o = os[i];
o->center = vector3_plus(o->center, shiftby);
if (point_in_fixed_pobjectp(p, o))
return 1;
}
break;
}
}
return 0;
}
/**************************************************************************/
/* convert a point p inside o to a coordinate in [0,1]^3 that
is some "natural" coordinate for the object */
vector3 to_geom_object_coords(vector3 p, geometric_object o)
{
const vector3 half = {0.5, 0.5, 0.5};
vector3 r = vector3_minus(p,o.center);
switch (o.which_subclass) {
default: {
vector3 po = {0,0,0};
return po;
}
case GEOM SPHERE:
{
number radius = o.subclass.sphere_data->radius;
return vector3_plus(half, vector3_scale(0.5 / radius, r));
}
/* case GEOM CYLINDER:
NOT YET IMPLEMENTED */
case GEOM BLOCK:
{
vector3 proj =
matrix3x3_vector3_mult(o.subclass.block_data->projection_matrix, r);
vector3 size = o.subclass.block_data->size;
if (size.x != 0.0) proj.x /= size.x;
if (size.y != 0.0) proj.y /= size.y;
if (size.z != 0.0) proj.z /= size.z;
return vector3_plus(half, proj);
}
}
}
/* inverse of to_geom_object_coords */
vector3 from_geom_object_coords(vector3 p, geometric_object o)
{
const vector3 half = {0.5, 0.5, 0.5};
p = vector3_minus(p, half);
switch (o.which_subclass) {
default:
return o.center;
case GEOM SPHERE:
{
number radius = o.subclass.sphere_data->radius;
return vector3_plus(o.center, vector3_scale(radius / 0.5, p));
}
/* case GEOM CYLINDER:
NOT YET IMPLEMENTED */
case GEOM BLOCK:
{
vector3 size = o.subclass.block_data->size;
return vector3_plus(
o.center,
vector3_plus(
vector3_scale(size.x * p.x, o.subclass.block_data->e1),
vector3_plus(
vector3_scale(size.y * p.y, o.subclass.block_data->e2),
vector3_scale(size.z * p.z, o.subclass.block_data->e3))
));
}
}
}
/**************************************************************************/
/* Return the normal vector from the given object to the given point,
in lattice coordinates, using the surface of the object that the
point is "closest" to for some definition of "closest" that is
reasonable (at least for points near to the object). The length and
sign of the normal vector are arbitrary. */
vector3 CTLIO normal_to_object(vector3 p, geometric_object o)
{
geom_fix_object(o);
return normal_to_fixed_object(p, o);
}
vector3 normal_to_fixed_object(vector3 p, geometric_object o)
{
vector3 r = vector3_minus(p,o.center);
switch (o.which_subclass) {
case GEOM CYLINDER:
{
vector3 rm = matrix3x3_vector3_mult(geometry_lattice.metric, r);
double proj = vector3_dot(o.subclass.cylinder_data->axis, rm),
height = o.subclass.cylinder_data->height,
radius, prad;
if (fabs(proj) > height * 0.5)
return o.subclass.cylinder_data->axis;
radius = o.subclass.cylinder_data->radius;
prad = sqrt(fabs(vector3_dot(r,rm) - proj*proj));
if (o.subclass.cylinder_data->which_subclass == CYL CONE)
radius += (proj/height + 0.5) *
(o.subclass.cylinder_data->subclass.cone_data->radius2
- radius);
if (fabs(fabs(proj) - height * 0.5) < fabs(prad - radius))
return o.subclass.cylinder_data->axis;
if (o.subclass.cylinder_data->which_subclass == CYL CONE)
return vector3_minus(r, vector3_scale(proj + prad * (o.subclass.cylinder_data->subclass.cone_data->radius2 - radius) / height, o.subclass.cylinder_data->axis));
else
return vector3_minus(r, vector3_scale(proj, o.subclass.cylinder_data->axis));
}
case GEOM BLOCK:
{
vector3 proj =
matrix3x3_vector3_mult(o.subclass.block_data->projection_matrix, r);
switch (o.subclass.block_data->which_subclass) {
case BLK BLOCK_SELF:
{
vector3 size = o.subclass.block_data->size;
double d1 = fabs(fabs(proj.x) - 0.5 * size.x);
double d2 = fabs(fabs(proj.y) - 0.5 * size.y);
double d3 = fabs(fabs(proj.z) - 0.5 * size.z);
if (d1 < d2 && d1 < d3)
return matrix3x3_row1(o.subclass.block_data->projection_matrix);
else if (d2 < d3)
return matrix3x3_row2(o.subclass.block_data->projection_matrix);
else
return matrix3x3_row3(o.subclass.block_data->projection_matrix);
}
case BLK ELLIPSOID:
{
vector3 isa =
o.subclass.block_data->subclass.ellipsoid_data->inverse_semi_axes;
proj.x *= isa.x * isa.x;
proj.y *= isa.y * isa.y;
proj.z *= isa.z * isa.z;
return matrix3x3_transpose_vector3_mult(
o.subclass.block_data->projection_matrix, proj);
}
}
}
default:
return r;
}
}
/**************************************************************************/
/* Here is a useful macro to loop over different possible shifts of
the lattice vectors. body is executed for each possible shift,
where the shift is given by the value of shiftby (which should
be a vector3 variable). I would much rather make this a function,
but C's lack of lambda-like function construction or closures makes
this easier to do as a macro. (One could at least wish for
an easier way to make multi-line macros.) */
#define LOOP_PERIODIC(shiftby, body) { \
switch (dimensions) { \
case 1: \
{ \
int iii; \
shiftby.y = shiftby.z = 0; \
for (iii = -1; iii <= 1; ++iii) { \
shiftby.x = iii * geometry_lattice.size.x; \
body; \
} \
break; \
} \
case 2: \
{ \
int iii, jjj; \
shiftby.z = 0; \
for (iii = -1; iii <= 1; ++iii) { \
shiftby.x = iii * geometry_lattice.size.x; \
for (jjj = -1; jjj <= 1; ++jjj) { \
shiftby.y = jjj * geometry_lattice.size.y; \
body; \
} \
} \
break; \
} \
case 3: \
{ \
int iii, jjj, kkk; \
for (iii = -1; iii <= 1; ++iii) { \
shiftby.x = iii * geometry_lattice.size.x; \
for (jjj = -1; jjj <= 1; ++jjj) { \
shiftby.y = jjj * geometry_lattice.size.y; \
for (kkk = -1; kkk <= 1; ++kkk) { \
shiftby.z = kkk * geometry_lattice.size.z; \
body; \
} \
} \
} \
break; \
} \
} \
}
/**************************************************************************/
/* Like point_in_objectp, but also checks the object shifted
by the lattice vectors: */
boolean CTLIO point_in_periodic_objectp(vector3 p, geometric_object o)
{
geom_fix_object(o);
return point_in_periodic_fixed_objectp(p, o);
}
boolean point_in_periodic_fixed_objectp(vector3 p, geometric_object o)
{
vector3 shiftby;
LOOP_PERIODIC(shiftby,
if (point_in_fixed_objectp(vector3_minus(p, shiftby), o))
return 1);
return 0;
}
boolean point_shift_in_periodic_fixed_pobjectp(vector3 p, geometric_object *o,
vector3 *shiftby)
{
geometric_object o0 = *o;
LOOP_PERIODIC((*shiftby),
{
*o = o0;
if (point_in_fixed_pobjectp(
vector3_minus(p, *shiftby), o))
return 1;
});
return 0;
}
/**************************************************************************/
/* Functions to return the object or material type corresponding to
the point p (in the lattice basis). Returns default_material if p
is not in any object.
Requires that the global input vars geometry_lattice, geometry,
dimensions, default_material and ensure_periodicity already be
initialized.
Also requires that geom_fix_objects() has been called!
material_of_point_inobject is a variant that also returns whether
or not the point was in any object. */
geometric_object object_of_point0(geometric_object_list geometry, vector3 p,
vector3 *shiftby)
{
geometric_object o;
int index;
shiftby->x = shiftby->y = shiftby->z = 0;
/* loop in reverse order so that later items are given precedence: */
for (index = geometry.num_items - 1; index >= 0; --index) {
o = geometry.items[index];
if ((ensure_periodicity
&& point_shift_in_periodic_fixed_pobjectp(p, &o, shiftby))
|| point_in_fixed_pobjectp(p, &o))
return o;
}
o.which_subclass = GEOM GEOMETRIC_OBJECT_SELF; /* no object found */
return o;
}
geometric_object object_of_point(vector3 p, vector3 *shiftby)
{
return object_of_point0(geometry, p, shiftby);
}
material_type material_of_point_inobject0(geometric_object_list geometry,
vector3 p, boolean *inobject)
{
vector3 shiftby;
geometric_object o = object_of_point0(geometry, p, &shiftby);
*inobject = o.which_subclass != GEOM GEOMETRIC_OBJECT_SELF;;
return (*inobject ? o.material : default_material);
}
material_type material_of_point_inobject(vector3 p, boolean *inobject)
{
return material_of_point_inobject0(geometry, p, inobject);
}
material_type material_of_point0(geometric_object_list geometry, vector3 p)
{
boolean inobject;
return material_of_point_inobject0(geometry, p, &inobject);
}
material_type material_of_point(vector3 p)
{
return material_of_point0(geometry, p);
}
/**************************************************************************/
/* Given a geometric object o, display some information about it,
indented by indentby spaces. */
void CTLIO display_geometric_object_info(int indentby, geometric_object o)
{
geom_fix_object(o);
printf("%*s", indentby, "");
switch (o.which_subclass) {
case GEOM CYLINDER:
switch (o.subclass.cylinder_data->which_subclass) {
case CYL WEDGE:
printf("wedge");
break;
case CYL CONE:
printf("cone");
break;
case CYL CYLINDER_SELF:
printf("cylinder");
break;
}
break;
case GEOM SPHERE:
printf("sphere");
break;
case GEOM BLOCK:
switch (o.subclass.block_data->which_subclass) {
case BLK ELLIPSOID:
printf("ellipsoid");
break;
case BLK BLOCK_SELF:
printf("block");
break;
}
break;
case GEOM COMPOUND_GEOMETRIC_OBJECT:
printf("compound object");
break;
default:
printf("geometric object");
break;
}
printf(", center = (%g,%g,%g)\n",
o.center.x, o.center.y, o.center.z);
switch (o.which_subclass) {
case GEOM CYLINDER:
printf("%*s radius %g, height %g, axis (%g, %g, %g)\n",
indentby, "", o.subclass.cylinder_data->radius,
o.subclass.cylinder_data->height,
o.subclass.cylinder_data->axis.x,
o.subclass.cylinder_data->axis.y,
o.subclass.cylinder_data->axis.z);
if (o.subclass.cylinder_data->which_subclass == CYL CONE)
printf("%*s radius2 %g\n", indentby, "",
o.subclass.cylinder_data->subclass.cone_data->radius2);
else if (o.subclass.cylinder_data->which_subclass == CYL WEDGE)
printf("%*s wedge-theta %g\n", indentby, "",
o.subclass.cylinder_data->subclass.wedge_data->wedge_angle);
break;
case GEOM SPHERE:
printf("%*s radius %g\n", indentby, "",
o.subclass.sphere_data->radius);
break;
case GEOM BLOCK:
printf("%*s size (%g,%g,%g)\n", indentby, "",
o.subclass.block_data->size.x,
o.subclass.block_data->size.y,
o.subclass.block_data->size.z);
printf("%*s axes (%g,%g,%g), (%g,%g,%g), (%g,%g,%g)\n",
indentby, "",
o.subclass.block_data->e1.x,
o.subclass.block_data->e1.y,
o.subclass.block_data->e1.z,
o.subclass.block_data->e2.x,
o.subclass.block_data->e2.y,
o.subclass.block_data->e2.z,
o.subclass.block_data->e3.x,
o.subclass.block_data->e3.y,
o.subclass.block_data->e3.z);
break;
case GEOM COMPOUND_GEOMETRIC_OBJECT:
{
int i;
int n = o.subclass.compound_geometric_object_data
->component_objects.num_items;
geometric_object *os = o.subclass.compound_geometric_object_data
->component_objects.items;
printf("%*s %d components:\n", indentby, "", n);
for (i = 0; i < n; ++i)
display_geometric_object_info(indentby + 5, os[i]);
break;
}
default:
break;
}
}
/**************************************************************************/
/* Compute the intersections with o of a line along p+s*d, returning
the number of intersections (at most 2) and the two intersection "s"
values in s[0] and s[1]. (Note: o must not be a compound object.) */
int intersect_line_with_object(vector3 p, vector3 d, geometric_object o,
double s[2])
{
p = vector3_minus(p, o.center);
s[0] = s[1] = 0;
switch (o.which_subclass) {
case GEOM SPHERE: {
number radius = o.subclass.sphere_data->radius;
vector3 dm = matrix3x3_vector3_mult(geometry_lattice.metric, d);
double a = vector3_dot(d, dm);
double b2 = -vector3_dot(dm, p);
double c = vector3_dot(p, matrix3x3_vector3_mult(
geometry_lattice.metric, p)) - radius * radius;
double discrim = b2*b2 - a*c;
if (discrim < 0)
return 0;
else if (discrim == 0) {
s[0] = b2 / a;
return 1;
}
else {
discrim = sqrt(discrim);
s[0] = (b2 + discrim) / a;
s[1] = (b2 - discrim) / a;
return 2;
}
}
case GEOM CYLINDER: {
vector3 dm = matrix3x3_vector3_mult(geometry_lattice.metric, d);
vector3 pm = matrix3x3_vector3_mult(geometry_lattice.metric, p);
number height = o.subclass.cylinder_data->height;
number radius = o.subclass.cylinder_data->radius;
number radius2 = o.subclass.cylinder_data->which_subclass == CYL CONE ? o.subclass.cylinder_data->subclass.cone_data->radius2 : radius;
double dproj = vector3_dot(o.subclass.cylinder_data->axis, dm);
double pproj = vector3_dot(o.subclass.cylinder_data->axis, pm);
double D = (radius2 - radius) / height;
double L = radius + (radius2 - radius) * 0.5 + pproj*D;
double a = vector3_dot(d,dm) - dproj*dproj * (1 + D*D);
double b2 = dproj * (pproj + D*L) - vector3_dot(p,dm);
double c = vector3_dot(p,pm) - pproj*pproj - L*L;
double discrim = b2*b2 - a*c;
int ret;
if (a == 0) { /* linear equation */
if (b2 == 0) {
if (c == 0) { /* infinite intersections */
s[0] = ((height * 0.5) - pproj) / dproj;
s[1] = -((height * 0.5) + pproj) / dproj;
return 2;
}
else
ret = 0;
}
else {
s[0] = 0.5 * c / b2;
ret = 1;
}
}
else if (discrim < 0)
ret = 0;
else if (discrim == 0) {
s[0] = b2 / a;
ret = 1;
}
else {
discrim = sqrt(discrim);
s[0] = (b2 + discrim) / a;
s[1] = (b2 - discrim) / a;
ret = 2;
}
if (ret == 2 && fabs(pproj + s[1] * dproj) > height * 0.5)
ret = 1;
if (ret >= 1 && fabs(pproj + s[0] * dproj) > height * 0.5) {
--ret;
s[0] = s[1];
}
if (ret == 2 || dproj == 0)
return ret;
/* find intersections with endcaps */
s[ret] = (height * 0.5 - pproj) / dproj;
if (a * s[ret]*s[ret] - 2*b2 * s[ret] + c <= 0)
++ret;
if (ret < 2) {
s[ret] = -(height * 0.5 + pproj) / dproj;
if (a * s[ret]*s[ret] - 2*b2 * s[ret] + c <= 0)
++ret;
}
if (ret == 2 && s[0] == s[1]) ret = 1;
return ret;
}
case GEOM BLOCK:
{
vector3 dproj = matrix3x3_vector3_mult(o.subclass.block_data->projection_matrix, d);
vector3 pproj = matrix3x3_vector3_mult(o.subclass.block_data->projection_matrix, p);
switch (o.subclass.block_data->which_subclass) {
case BLK BLOCK_SELF:
{
vector3 size = o.subclass.block_data->size;
int ret = 0;
size.x *= 0.5; size.y *= 0.5; size.z *= 0.5;
if (dproj.x != 0) {
s[ret] = (size.x - pproj.x) / dproj.x;
if (fabs(pproj.y+s[ret]*dproj.y) <= size.y &&
fabs(pproj.z+s[ret]*dproj.z) <= size.z)
++ret;
s[ret] = (-size.x - pproj.x) / dproj.x;
if (fabs(pproj.y+s[ret]*dproj.y) <= size.y &&
fabs(pproj.z+s[ret]*dproj.z) <= size.z)
++ret;
if (ret == 2) return 2;
}
if (dproj.y != 0) {
s[ret] = (size.y - pproj.y) / dproj.y;
if (fabs(pproj.x+s[ret]*dproj.x) <= size.x &&
fabs(pproj.z+s[ret]*dproj.z) <= size.z)
++ret;
if (ret == 2) return 2;
s[ret] = (-size.y - pproj.y) / dproj.y;
if (fabs(pproj.x+s[ret]*dproj.x) <= size.x &&
fabs(pproj.z+s[ret]*dproj.z) <= size.z)
++ret;
if (ret == 2) return 2;
}
if (dproj.z != 0) {
s[ret] = (size.z - pproj.z) / dproj.z;
if (fabs(pproj.x+s[ret]*dproj.x) <= size.x &&
fabs(pproj.y+s[ret]*dproj.y) <= size.y)
++ret;
if (ret == 2) return 2;
s[ret] = (-size.z - pproj.z) / dproj.z;
if (fabs(pproj.x+s[ret]*dproj.x) <= size.x &&
fabs(pproj.y+s[ret]*dproj.y) <= size.y)
++ret;
}
return ret;
}
case BLK ELLIPSOID:
{
vector3 isa = o.subclass.block_data->subclass.ellipsoid_data->inverse_semi_axes;
double a, b2, c, discrim;
dproj.x *= isa.x; dproj.y *= isa.y; dproj.z *= isa.z;
pproj.x *= isa.x; pproj.y *= isa.y; pproj.z *= isa.z;
a = vector3_dot(dproj, dproj);
b2 = -vector3_dot(dproj, pproj);
c = vector3_dot(pproj, pproj) - 1;
discrim = b2*b2 - a*c;
if (discrim < 0)
return 0;
else if (discrim == 0) {
s[0] = b2 / a;
return 1;
}
else {
discrim = sqrt(discrim);
s[0] = (b2 + discrim) / a;
s[1] = (b2 - discrim) / a;
return 2;
}
}
}
}
default:
return 0;
}
}
/**************************************************************************/
/* Given a basis (matrix columns are the basis unit vectors) and the
size of the lattice (in basis vectors), returns a new "square"
basis. This corresponds to a region of the same volume, but made
rectangular, suitable for outputing to an HDF file.
Given a vector in the range (0..1, 0..1, 0..1), multiplying by
the square basis matrix will yield the coordinates of a point
in the rectangular volume, given in the lattice basis. */
matrix3x3 CTLIO square_basis(matrix3x3 basis, vector3 size)
{
matrix3x3 square;
square.c0 = basis.c0;
square.c1 = vector3_minus(basis.c1, vector3_scale(vector3_dot(basis.c0,
basis.c1),
basis.c1));
square.c2 = vector3_minus(basis.c2, vector3_scale(vector3_dot(basis.c0,
basis.c2),
basis.c2));
square.c2 = vector3_minus(square.c2, vector3_scale(vector3_dot(basis.c0,
square.c2),
unit_vector3(square.c2)));
square.c0 = vector3_scale(size.x, square.c0);
square.c1 = vector3_scale(size.y, square.c1);
square.c2 = vector3_scale(size.z, square.c2);
return matrix3x3_mult(matrix3x3_inverse(basis), square);
}
/**************************************************************************/
/**************************************************************************/
/* Fast geometry routines */
/* Using the above material_of_point routine is way too slow, especially
when there are lots of objects to test. Thus, we develop the following
replacement routines.
The basic idea here is twofold. (1) Compute bounding boxes for
each geometric object, for which inclusion tests can be computed
quickly. (2) Build a tree that recursively breaks down the unit cell
in half, allowing us to perform searches in logarithmic time. */
/**************************************************************************/
/* geom_box utilities: */
#define MAX(a,b) ((a) > (b) ? (a) : (b))
#define MIN(a,b) ((a) < (b) ? (a) : (b))
static void geom_box_union(geom_box *bu,
const geom_box *b1, const geom_box *b2)
{
bu->low.x = MIN(b1->low.x, b2->low.x);
bu->low.y = MIN(b1->low.y, b2->low.y);
bu->low.z = MIN(b1->low.z, b2->low.z);
bu->high.x = MAX(b1->high.x, b2->high.x);
bu->high.y = MAX(b1->high.y, b2->high.y);
bu->high.z = MAX(b1->high.z, b2->high.z);
}
static void geom_box_intersection(geom_box *bi,
const geom_box *b1,
const geom_box *b2)
{
bi->low.x = MAX(b1->low.x, b2->low.x);
bi->low.y = MAX(b1->low.y, b2->low.y);
bi->low.z = MAX(b1->low.z, b2->low.z);
bi->high.x = MIN(b1->high.x, b2->high.x);
bi->high.y = MIN(b1->high.y, b2->high.y);
bi->high.z = MIN(b1->high.z, b2->high.z);
}
static void geom_box_add_pt(geom_box *b, vector3 p)
{
b->low.x = MIN(b->low.x, p.x);
b->low.y = MIN(b->low.y, p.y);
b->low.z = MIN(b->low.z, p.z);
b->high.x = MAX(b->high.x, p.x);
b->high.y = MAX(b->high.y, p.y);
b->high.z = MAX(b->high.z, p.z);
}
#define BETWEEN(x, low, high) ((x) >= (low) && (x) <= (high))
static int geom_box_contains_point(const geom_box *b, vector3 p)
{
return (BETWEEN(p.x, b->low.x, b->high.x) &&
BETWEEN(p.y, b->low.y, b->high.y) &&
BETWEEN(p.z, b->low.z, b->high.z));
}
/* return whether or not the given two boxes intersect */
static int geom_boxes_intersect(const geom_box *b1, const geom_box *b2)
{
/* true if the x, y, and z ranges all intersect. */
return ((BETWEEN(b1->low.x, b2->low.x, b2->high.x) ||
BETWEEN(b1->high.x, b2->low.x, b2->high.x) ||
BETWEEN(b2->low.x, b1->low.x, b1->high.x)) &&
(BETWEEN(b1->low.y, b2->low.y, b2->high.y) ||
BETWEEN(b1->high.y, b2->low.y, b2->high.y) ||
BETWEEN(b2->low.y, b1->low.y, b1->high.y)) &&
(BETWEEN(b1->low.z, b2->low.z, b2->high.z) ||
BETWEEN(b1->high.z, b2->low.z, b2->high.z) ||
BETWEEN(b2->low.z, b1->low.z, b1->high.z)));
}
static void geom_box_shift(geom_box *b, vector3 shiftby)
{
b->low = vector3_plus(b->low, shiftby);
b->high = vector3_plus(b->high, shiftby);
}
/**************************************************************************/
/* Computing a bounding box for a geometric object: */
/* compute | (b x c) / (a * (b x c)) |, for use below */
static number compute_dot_cross(vector3 a, vector3 b, vector3 c)
{
vector3 bxc = vector3_cross(b, c);
return fabs(vector3_norm(bxc) / vector3_dot(a, bxc));
}
/* Compute a bounding box for the object o, preferably the smallest
bounding box. The box is a parallelepiped with axes given by
the geometry lattice vectors, and its corners are given in the
lattice basis.
Requires that geometry_lattice global has been initialized,
etcetera. */
void geom_get_bounding_box(geometric_object o, geom_box *box)
{
geom_fix_object(o);
/* initialize to empty box at the center of the object: */
box->low = box->high = o.center;
switch (o.which_subclass) {
case GEOM GEOMETRIC_OBJECT_SELF:
break;
case GEOM SPHERE:
{
/* Find the parallelepiped that the sphere inscribes.
The math comes out surpisingly simple--try it! */
number radius = o.subclass.sphere_data->radius;
/* actually, we could achieve the same effect here
by inverting the geometry_lattice.basis matrix... */
number r1 = compute_dot_cross(geometry_lattice.b1,
geometry_lattice.b2,
geometry_lattice.b3) * radius;
number r2 = compute_dot_cross(geometry_lattice.b2,
geometry_lattice.b3,
geometry_lattice.b1) * radius;
number r3 = compute_dot_cross(geometry_lattice.b3,
geometry_lattice.b1,
geometry_lattice.b2) * radius;
box->low.x -= r1;
box->low.y -= r2;
box->low.z -= r3;
box->high.x += r1;
box->high.y += r2;
box->high.z += r3;
break;
}
case GEOM CYLINDER:
{
/* Find the bounding boxes of the two (circular) ends of
the cylinder, then take the union. Again, the math
for finding the bounding parallelepiped of a circle
comes out suprisingly simple in the end. Proof left
as an exercise for the reader. */
number radius = o.subclass.cylinder_data->radius;
number h = o.subclass.cylinder_data->height * 0.5;
vector3 axis = /* cylinder axis in cartesian coords */
matrix3x3_vector3_mult(geometry_lattice.basis,
o.subclass.cylinder_data->axis);
vector3 e12 = vector3_cross(geometry_lattice.basis1,
geometry_lattice.basis2);
vector3 e23 = vector3_cross(geometry_lattice.basis2,
geometry_lattice.basis3);
vector3 e31 = vector3_cross(geometry_lattice.basis3,
geometry_lattice.basis1);
number elen2, eproj;
number r1, r2, r3;
geom_box tmp_box;
/* Find bounding box dimensions, in lattice coords,
for the circular ends of the cylinder: */
elen2 = vector3_dot(e23, e23);
eproj = vector3_dot(e23, axis);
r1 = fabs(sqrt(fabs(elen2 - eproj*eproj)) /
vector3_dot(e23, geometry_lattice.b1));
elen2 = vector3_dot(e31, e31);
eproj = vector3_dot(e31, axis);
r2 = fabs(sqrt(fabs(elen2 - eproj*eproj)) /
vector3_dot(e31, geometry_lattice.b2));
elen2 = vector3_dot(e12, e12);
eproj = vector3_dot(e12, axis);
r3 = fabs(sqrt(fabs(elen2 - eproj*eproj)) /
vector3_dot(e12, geometry_lattice.b3));
/* Get axis in lattice coords: */
axis = o.subclass.cylinder_data->axis;
tmp_box = *box; /* set tmp_box to center of object */
/* bounding box for -h*axis cylinder end: */
box->low.x -= h * axis.x + r1*radius;
box->low.y -= h * axis.y + r2*radius;
box->low.z -= h * axis.z + r3*radius;
box->high.x -= h * axis.x - r1*radius;
box->high.y -= h * axis.y - r2*radius;
box->high.z -= h * axis.z - r3*radius;
if (o.subclass.cylinder_data->which_subclass == CYL CONE)
radius =
fabs(o.subclass.cylinder_data->subclass.cone_data->radius2);
/* bounding box for +h*axis cylinder end: */
tmp_box.low.x += h * axis.x - r1*radius;
tmp_box.low.y += h * axis.y - r2*radius;
tmp_box.low.z += h * axis.z - r3*radius;
tmp_box.high.x += h * axis.x + r1*radius;
tmp_box.high.y += h * axis.y + r2*radius;
tmp_box.high.z += h * axis.z + r3*radius;
geom_box_union(box, box, &tmp_box);
break;
}
case GEOM BLOCK:
{
/* blocks are easy: just enlarge the box to be big enough to
contain all 8 corners of the block. */
vector3 s1 = vector3_scale(o.subclass.block_data->size.x,
o.subclass.block_data->e1);
vector3 s2 = vector3_scale(o.subclass.block_data->size.y,
o.subclass.block_data->e2);
vector3 s3 = vector3_scale(o.subclass.block_data->size.z,
o.subclass.block_data->e3);
vector3 corner =
vector3_plus(o.center,
vector3_scale(-0.5,
vector3_plus(s1, vector3_plus(s2, s3))));
geom_box_add_pt(box, corner);
geom_box_add_pt(box, vector3_plus(corner, s1));
geom_box_add_pt(box, vector3_plus(corner, s2));
geom_box_add_pt(box, vector3_plus(corner, s3));
geom_box_add_pt(box, vector3_plus(corner, vector3_plus(s1, s2)));
geom_box_add_pt(box, vector3_plus(corner, vector3_plus(s1, s3)));
geom_box_add_pt(box, vector3_plus(corner, vector3_plus(s3, s2)));
geom_box_add_pt(box,
vector3_plus(corner, vector3_plus(s1, vector3_plus(s2, s3))));
break;
}
case GEOM COMPOUND_GEOMETRIC_OBJECT:
{
int i;
int n = o.subclass.compound_geometric_object_data
->component_objects.num_items;
geometric_object *os = o.subclass.compound_geometric_object_data
->component_objects.items;
for (i = 0; i < n; ++i) {
geom_box boxi;
geom_get_bounding_box(os[i], &boxi);
geom_box_shift(&boxi, o.center);
geom_box_union(box, box, &boxi);
}
break;
}
}
}
/**************************************************************************/
/* Compute the fraction of a box's volume (or area/length in 2d/1d) that
overlaps an object. Instead of a box, we also allow an ellipsoid
inscribed inside the box (or a skewed ellipsoid if the box is not
orthogonal). */
typedef struct {
geometric_object o;
vector3 p, dir;
int pdim[2]; /* the (up to two) integration directions */
double scx[2]; /* scale factor (e.g. sign flip) for x coordinates */
unsigned dim;
double a0, b0; /* box limits along analytic direction */
int is_ellipsoid; /* 0 for box, 1 for ellipsoid */
double winv[2], c[2]; /* ellipsoid width-inverses/centers in int. dirs */
double w0, c0; /* width/center along analytic direction */
} overlap_data;
static double overlap_integrand(integer ndim, number *x, void *data_)
{
overlap_data *data = (overlap_data *) data_;
double s[2];
const double *scx = data->scx;
vector3 p = data->p;
double a0 = data->a0, b0 = data->b0;
double scale_result = 1.0;
if (ndim > 0) {
switch (data->pdim[0]) {
case 0: p.x = scx[0] * x[0]; break;
case 1: p.y = scx[0] * x[0]; break;
case 2: p.z = scx[0] * x[0]; break;
}
if (ndim > 1) {
switch (data->pdim[1]) {
case 0: p.x = scx[1] * x[1]; break;
case 1: p.y = scx[1] * x[1]; break;
case 2: p.z = scx[1] * x[1]; break;
}
}
}
if (data->is_ellipsoid && ndim > 0) {
/* compute width of ellipsoid at this point, along the
analytic-intersection direction */
double dx = (x[0] - data->c[0]) * data->winv[0];
double w = 1.0 - dx * dx;
if (ndim > 1) { /* rescale 2nd dimension to stay inside ellipsoid */
double x1;
if (w < 0) return 0.0; /* outside the ellipsoid */
scale_result = sqrt(w);
x1 = data->c[1] + (x[1] - data->c[1]) * scale_result;
switch (data->pdim[1]) {
case 0: p.x = scx[1] * x1; break;
case 1: p.y = scx[1] * x1; break;
case 2: p.z = scx[1] * x1; break;
}
dx = (x1 - data->c[1]) * data->winv[1];
w -= dx * dx;
}
if (w < 0) return 0.0; /* outside the ellipsoid */
w = data->w0 * sqrt(w);
a0 = data->c0 - w; b0 = data->c0 + w;
}
if (2 == intersect_line_with_object(p, data->dir, data->o, s)) {
double ds = (s[0] < s[1]
? MIN(s[1],b0) - MAX(s[0],a0)
: MIN(s[0],b0) - MAX(s[1],a0));
return (ds > 0 ? ds * scale_result : 0.0);
}
return 0.0;
}
number overlap_with_object(geom_box b, int is_ellipsoid, geometric_object o,
number tol, integer maxeval)
{
overlap_data data;
int empty_x = b.low.x == b.high.x;
int empty_y = b.low.y == b.high.y;
int empty_z = b.low.z == b.high.z;
double V0 = ((empty_x ? 1 : b.high.x - b.low.x) *
(empty_y ? 1 : b.high.y - b.low.y) *
(empty_z ? 1 : b.high.z - b.low.z));
vector3 ex = {1,0,0}, ey = {0,1,0}, ez = {0,0,1};
geom_box bb;
double xmin[2] = {0,0}, xmax[2] = {0,0}, esterr;
int errflag;
unsigned i;
geom_get_bounding_box(o, &bb);
geom_box_intersection(&bb, &b, &bb);
if (bb.low.x > bb.high.x || bb.low.y > bb.high.y || bb.low.z > bb.high.z
|| (!empty_x && bb.low.x == bb.high.x)
|| (!empty_y && bb.low.y == bb.high.y)
|| (!empty_z && bb.low.z == bb.high.z))
return 0.0;
data.winv[0] = data.winv[1] = data.w0 = 1.0;
data.c[0] = data.c[1] = data.c0 = 0;
data.o = o;
data.p.x = data.p.y = data.p.z = 0;
data.dim = 0;
if (!empty_x) {
data.dir = ex;
data.a0 = bb.low.x;
data.b0 = bb.high.x;
data.w0 = 0.5 * (b.high.x - b.low.x);
data.c0 = 0.5 * (b.high.x + b.low.x);
if (!empty_y) {
xmin[data.dim] = bb.low.y;
xmax[data.dim] = bb.high.y;
data.winv[data.dim] = 2.0 / (b.high.y - b.low.y);
data.c[data.dim] = 0.5 * (b.high.y + b.low.y);
data.pdim[data.dim++] = 1;
}
if (!empty_z) {
xmin[data.dim] = bb.low.z;
xmax[data.dim] = bb.high.z;
data.winv[data.dim] = 2.0 / (b.high.z - b.low.z);
data.c[data.dim] = 0.5 * (b.high.z + b.low.z);
data.pdim[data.dim++] = 2;
}
}
else if (!empty_y) {
data.dir = ey;
data.a0 = bb.low.y;
data.b0 = bb.high.y;
data.w0 = 0.5 * (b.high.y - b.low.y);
data.c0 = 0.5 * (b.high.y + b.low.y);
if (!empty_x) {
xmin[data.dim] = bb.low.x;
xmax[data.dim] = bb.high.x;
data.winv[data.dim] = 2.0 / (b.high.x - b.low.x);
data.c[data.dim] = 0.5 * (b.high.x + b.low.x);
data.pdim[data.dim++] = 0;
}
if (!empty_z) {
xmin[data.dim] = bb.low.z;
xmax[data.dim] = bb.high.z;
data.winv[data.dim] = 2.0 / (b.high.z - b.low.z);
data.c[data.dim] = 0.5 * (b.high.z + b.low.z);
data.pdim[data.dim++] = 2;
}
}
else if (!empty_z) {
data.dir = ez;
data.a0 = bb.low.z;
data.b0 = bb.high.z;
data.w0 = 0.5 * (b.high.z - b.low.z);
data.c0 = 0.5 * (b.high.z + b.low.z);
if (!empty_x) {
xmin[data.dim] = bb.low.x;
xmax[data.dim] = bb.high.x;
data.winv[data.dim] = 2.0 / (b.high.x - b.low.x);
data.c[data.dim] = 0.5 * (b.high.x + b.low.x);
data.pdim[data.dim++] = 0;
}
if (!empty_y) {
xmin[data.dim] = bb.low.y;
xmax[data.dim] = bb.high.y;
data.winv[data.dim] = 2.0 / (b.high.y - b.low.y);
data.c[data.dim] = 0.5 * (b.high.y + b.low.y);
data.pdim[data.dim++] = 1;
}
}
else
return 1.0;
#if 1
/* To maintain mirror symmetries through the x/y/z axes, we flip
the integration range whenever xmax < 0. (This is in case
the integration routine is not fully symmetric, which may
happen(?) due to the upper bound on the #evaluations.)*/
for (i = 0; i < data.dim; ++i) {
if (xmax[i] < 0) {
double xm = xmin[i];
data.scx[i] = -1;
xmin[i] = -xmax[i];
xmax[i] = -xm;
data.c[i] = -data.c[i];
}
else
data.scx[i] = 1;
}
#else
for (i = 0; i < data.dim; ++i) data.scx[i] = 1;
#endif
if ((data.is_ellipsoid = is_ellipsoid)) { /* data for ellipsoid calc. */
if (data.dim == 1)
V0 *= K_PI / 4;
else if (data.dim == 2)
V0 *= K_PI / 6;
}
return adaptive_integration(overlap_integrand, xmin, xmax,
data.dim, &data,
0.0, tol, maxeval,
&esterr, &errflag) / V0;
}
number box_overlap_with_object(geom_box b, geometric_object o,
number tol, integer maxeval)
{
return overlap_with_object(b, 0, o, tol, maxeval);
}
number ellipsoid_overlap_with_object(geom_box b, geometric_object o,
number tol, integer maxeval)
{
return overlap_with_object(b, 1, o, tol, maxeval);
}
number CTLIO range_overlap_with_object(vector3 low, vector3 high,
geometric_object o, number tol,
integer maxeval)
{
geom_box b;
b.low = low;
b.high = high;
return box_overlap_with_object(b, o, tol, maxeval);
}
/**************************************************************************/
/* geom_box_tree: a tree of boxes and the objects contained within
them. The tree recursively partitions the unit cell, allowing us
to perform binary searches for the object containing a given point. */
void destroy_geom_box_tree(geom_box_tree t)
{
if (t) {
destroy_geom_box_tree(t->t1);
destroy_geom_box_tree(t->t2);
if (t->nobjects && t->objects)
FREE(t->objects);
FREE1(t);
}
}
/* return whether the object o, shifted by the vector shiftby,
possibly intersects b. Upon return, obj_b is the bounding
box for o. */
static int object_in_box(geometric_object o, vector3 shiftby,
geom_box *obj_b, const geom_box *b)
{
geom_get_bounding_box(o, obj_b);
geom_box_shift(obj_b, shiftby);
return geom_boxes_intersect(obj_b, b);
}
#define CHECK(cond, s) if (!(cond)){fprintf(stderr,s "\n");exit(EXIT_FAILURE);}
static geom_box_tree new_geom_box_tree(void)
{
geom_box_tree t;
t = MALLOC1(struct geom_box_tree_struct);
CHECK(t, "out of memory");
t->t1 = t->t2 = NULL;
t->nobjects = 0;
t->objects = NULL;
return t;
}
/* Divide b into b1 and b2, cutting b in two along the axis
divide_axis (0 = x, 1 = y, 2 = z) at divide_point. */
static void divide_geom_box(const geom_box *b,
int divide_axis, number divide_point,
geom_box *b1, geom_box *b2)
{
*b1 = *b2 = *b;
switch (divide_axis) {
case 0:
b1->high.x = b2->low.x = divide_point;
break;
case 1:
b1->high.y = b2->low.y = divide_point;
break;
case 2:
b1->high.z = b2->low.z = divide_point;
break;
}
}
#define VEC_I(v,i) ((i) == 0 ? (v).x : ((i) == 1 ? (v).y : (v).z))
#define SMALL 1.0e-7
/* Find the best place (best_partition) to "cut" along the axis
divide_axis in order to maximally divide the objects between
the partitions. Upon return, n1 and n2 are the number of objects
below and above the partition, respectively. */
static void find_best_partition(int nobjects, const geom_box_object *objects,
int divide_axis,
number *best_partition, int *n1, int *n2)
{
number cur_partition;
int i, j, cur_n1, cur_n2;
*n1 = *n2 = nobjects + 1;
*best_partition = 0;
/* Search for the best partition, by checking all possible partitions
either just above the high end of an object or just below the
low end of an object. */
for (i = 0; i < nobjects; ++i) {
cur_partition = VEC_I(objects[i].box.high, divide_axis) + SMALL;
cur_n1 = cur_n2 = 0;
for (j = 0; j < nobjects; ++j) {
if (VEC_I(objects[j].box.low, divide_axis) <= cur_partition)
++cur_n1;
if (VEC_I(objects[j].box.high, divide_axis) >= cur_partition)
++cur_n2;
}
CHECK(cur_n1 + cur_n2 >= nobjects, "bug 1 in find_best_partition");
if (MAX(cur_n1, cur_n2) < MAX(*n1, *n2)) {
*best_partition = cur_partition;
*n1 = cur_n1;
*n2 = cur_n2;
}
}
for (i = 0; i < nobjects; ++i) {
cur_partition = VEC_I(objects[i].box.low, divide_axis) - SMALL;
cur_n1 = cur_n2 = 0;
for (j = 0; j < nobjects; ++j) {
if (VEC_I(objects[j].box.low, divide_axis) <= cur_partition)
++cur_n1;
if (VEC_I(objects[j].box.high, divide_axis) >= cur_partition)
++cur_n2;
}
CHECK(cur_n1 + cur_n2 >= nobjects, "bug 2 in find_best_partition");
if (MAX(cur_n1, cur_n2) < MAX(*n1, *n2)) {
*best_partition = cur_partition;
*n1 = cur_n1;
*n2 = cur_n2;
}
}
}
/* divide_geom_box_tree: recursively divide t in two, each time
dividing along the axis that maximally partitions the boxes,
and only stop partitioning when partitioning doesn't help any
more. Upon return, t points to the partitioned tree. */
static void divide_geom_box_tree(geom_box_tree t)
{
int division_nobjects[3][2] = {{0,0},{0,0},{0,0}};
number division_point[3];
int best = 0;
int i, j, n1, n2;
if (!t)
return;
if (t->t1 || t->t2) { /* this node has already been divided */
divide_geom_box_tree(t->t1);
divide_geom_box_tree(t->t2);
return;
}
if (t->nobjects <= 2)
return; /* no point in partitioning */
/* Try partitioning along each dimension, counting the
number of objects in the partitioned boxes and finding
the best partition. */
for (i = 0; i < dimensions; ++i) {
find_best_partition(t->nobjects, t->objects, i, &division_point[i],
&division_nobjects[i][0],
&division_nobjects[i][1]);
if (MAX(division_nobjects[i][0], division_nobjects[i][1]) <
MAX(division_nobjects[best][0], division_nobjects[best][1]))
best = i;
}
/* don't do anything if division makes the worst case worse or if
it fails to improve the best case: */
if (MAX(division_nobjects[best][0], division_nobjects[best][1]) + 1 >
t->nobjects ||
MIN(division_nobjects[best][0], division_nobjects[best][1]) + 1 >=
t->nobjects)
return; /* division didn't help us */
divide_geom_box(&t->b, best, division_point[best], &t->b1, &t->b2);
t->t1 = new_geom_box_tree();
t->t2 = new_geom_box_tree();
t->t1->b = t->b1;
t->t2->b = t->b2;
t->t1->nobjects = division_nobjects[best][0];
t->t1->objects = MALLOC(geom_box_object, t->t1->nobjects);
CHECK(t->t1->objects, "out of memory");
t->t2->nobjects = division_nobjects[best][1];
t->t2->objects = MALLOC(geom_box_object, t->t2->nobjects);
CHECK(t->t2->objects, "out of memory");
for (j = n1 = n2 = 0; j < t->nobjects; ++j) {
if (geom_boxes_intersect(&t->b1, &t->objects[j].box)) {
CHECK(n1 < t->t1->nobjects, "BUG in divide_geom_box_tree");
t->t1->objects[n1++] = t->objects[j];
}
if (geom_boxes_intersect(&t->b2, &t->objects[j].box)) {
CHECK(n2 < t->t2->nobjects, "BUG in divide_geom_box_tree");
t->t2->objects[n2++] = t->objects[j];
}
}
CHECK(j == t->nobjects && n1 == t->t1->nobjects && n2 == t->t2->nobjects,
"BUG in divide_geom_box_tree: wrong nobjects");
t->nobjects = 0;
FREE(t->objects);
t->objects = NULL;
divide_geom_box_tree(t->t1);
divide_geom_box_tree(t->t2);
}
geom_box_tree create_geom_box_tree(void)
{
geom_box b0;
b0.low = vector3_plus(geometry_center,
vector3_scale(-0.5, geometry_lattice.size));
b0.high = vector3_plus(geometry_center,
vector3_scale(0.5, geometry_lattice.size));
return create_geom_box_tree0(geometry, b0);
}
static int num_objects_in_box(const geometric_object *o, vector3 shiftby,
const geom_box *b)
{
if (o->which_subclass == GEOM COMPOUND_GEOMETRIC_OBJECT) {
int n = o->subclass.compound_geometric_object_data
->component_objects.num_items;
geometric_object *os = o->subclass.compound_geometric_object_data
->component_objects.items;
int i, sum = 0;
shiftby = vector3_plus(shiftby, o->center);
for (i = 0; i < n; ++i)
sum += num_objects_in_box(os + i, shiftby, b);
return sum;
}
else {
geom_box ob;
return object_in_box(*o, shiftby, &ob, b);
}
}
static int store_objects_in_box(const geometric_object *o, vector3 shiftby,
const geom_box *b,
geom_box_object *bo,
int precedence)
{
if (o->which_subclass == GEOM COMPOUND_GEOMETRIC_OBJECT) {
int n = o->subclass.compound_geometric_object_data
->component_objects.num_items;
geometric_object *os = o->subclass.compound_geometric_object_data
->component_objects.items;
int i, sum = 0;
shiftby = vector3_plus(shiftby, o->center);
for (i = 0; i < n; ++i)
sum += store_objects_in_box(os + i, shiftby, b, bo + sum,
precedence - sum);
return sum;
}
else {
geom_box ob;
if (object_in_box(*o, shiftby, &ob, b)) {
bo->box = ob;
bo->o = o;
bo->shiftby = shiftby;
bo->precedence = precedence;
return 1;
}
else
return 0;
}
}
geom_box_tree create_geom_box_tree0(geometric_object_list geometry,
geom_box b0)
{
geom_box_tree t = new_geom_box_tree();
int i, index;
t->b = b0;
for (i = geometry.num_items - 1; i >= 0; --i) {
vector3 shiftby = {0,0,0};
if (ensure_periodicity) {
LOOP_PERIODIC(shiftby,
t->nobjects += num_objects_in_box(
geometry.items + i, shiftby, &t->b));
}
else
t->nobjects += num_objects_in_box(
geometry.items + i, shiftby, &t->b);
}
t->objects = MALLOC(geom_box_object, t->nobjects);
CHECK(t->objects || t->nobjects == 0, "out of memory");
for (i = geometry.num_items - 1, index = 0; i >= 0; --i) {
vector3 shiftby = {0,0,0};
if (ensure_periodicity) {
int precedence = t->nobjects - index;
LOOP_PERIODIC(shiftby,
index += store_objects_in_box(
geometry.items + i, shiftby, &t->b,
t->objects + index, precedence));
}
else
index += store_objects_in_box(
geometry.items + i, shiftby, &t->b,
t->objects + index, t->nobjects - index);
}
CHECK(index == t->nobjects, "bug in create_geom_box_tree0");
divide_geom_box_tree(t);
return t;
}
/* create a new tree from t, pruning all nodes that don't intersect b */
geom_box_tree restrict_geom_box_tree(geom_box_tree t, const geom_box *b)
{
geom_box_tree tr;
int i, j;
if (!t || !geom_boxes_intersect(&t->b, b))
return NULL;
tr = new_geom_box_tree();
for (i = 0, j = 0; i < t->nobjects; ++i)
if (geom_boxes_intersect(&t->objects[i].box, b))
++j;
tr->nobjects = j;
tr->objects = MALLOC(geom_box_object, tr->nobjects);
CHECK(tr->objects || tr->nobjects == 0, "out of memory");
for (i = 0, j = 0; i < t->nobjects; ++i)
if (geom_boxes_intersect(&t->objects[i].box, b))
tr->objects[j++] = t->objects[i];
tr->t1 = restrict_geom_box_tree(t->t1, b);
tr->t2 = restrict_geom_box_tree(t->t2, b);
if (tr->nobjects == 0) {
if (tr->t1 && !tr->t2) {
geom_box_tree tr0 = tr;
tr = tr->t1;
FREE1(tr0);
}
else if (tr->t2 && !tr->t1) {
geom_box_tree tr0 = tr;
tr = tr->t2;
FREE1(tr0);
}
}
return tr;
}
/**************************************************************************/
/* recursively search the tree for the given point, returning the
subtree (if any) that contains it and the index oindex of the
object in that tree. The input value of oindex indicates the
starting object to search in t (0 to search all). */
static geom_box_tree tree_search(vector3 p, geom_box_tree t, int *oindex)
{
int i;
geom_box_tree gbt;
if (!t || !geom_box_contains_point(&t->b, p))
return NULL;
for (i = *oindex; i < t->nobjects; ++i)
if (geom_box_contains_point(&t->objects[i].box, p) &&
point_in_fixed_objectp(vector3_minus(p, t->objects[i].shiftby),
*t->objects[i].o)) {
*oindex = i;
return t;
}
*oindex = 0;
gbt = tree_search(p, t->t1, oindex);
if (!gbt)
gbt = tree_search(p, t->t2, oindex);
return gbt;
}
/* shift p to be within the unit cell of the lattice (centered on the
origin) */
vector3 shift_to_unit_cell(vector3 p)
{
while (p.x >= 0.5 * geometry_lattice.size.x)
p.x -= geometry_lattice.size.x;
while (p.x < -0.5 * geometry_lattice.size.x)
p.x += geometry_lattice.size.x;
while (p.y >= 0.5 * geometry_lattice.size.y)
p.y -= geometry_lattice.size.y;
while (p.y < -0.5 * geometry_lattice.size.y)
p.y += geometry_lattice.size.y;
while (p.z >= 0.5 * geometry_lattice.size.z)
p.z -= geometry_lattice.size.z;
while (p.z < -0.5 * geometry_lattice.size.z)
p.z += geometry_lattice.size.z;
return p;
}
const geometric_object *object_of_point_in_tree(vector3 p, geom_box_tree t,
vector3 *shiftby,
int *precedence)
{
int oindex = 0;
t = tree_search(p, t, &oindex);
if (t) {
geom_box_object *gbo = t->objects + oindex;
*shiftby = gbo->shiftby;
*precedence = gbo->precedence;
return gbo->o;
}
else {
shiftby->x = shiftby->y = shiftby->z = 0;
*precedence = 0;
return 0;
}
}
material_type material_of_unshifted_point_in_tree_inobject(
vector3 p, geom_box_tree t, boolean *inobject)
{
int oindex = 0;
t = tree_search(p, t, &oindex);
if (t) {
*inobject = 1;
return (t->objects[oindex].o->material);
}
else {
*inobject = 0;
return default_material;
}
}
material_type material_of_point_in_tree_inobject(vector3 p, geom_box_tree t,
boolean *inobject)
{
/* backwards compatibility */
return material_of_unshifted_point_in_tree_inobject(
shift_to_unit_cell(p), t, inobject);
}
material_type material_of_point_in_tree(vector3 p, geom_box_tree t)
{
boolean inobject;
return material_of_point_in_tree_inobject(p, t, &inobject);
}
geom_box_tree geom_tree_search_next(vector3 p, geom_box_tree t, int *oindex)
{
*oindex += 1; /* search starting at next oindex */
return tree_search(p, t, oindex);
}
geom_box_tree geom_tree_search(vector3 p, geom_box_tree t, int *oindex)
{
*oindex = -1; /* search all indices > -1 */
return geom_tree_search_next(p, t, oindex);
}
/**************************************************************************/
/* convert a vector p in the given object to some coordinate
in [0,1]^3 that is a more "natural" map of the object interior. */
vector3 to_geom_box_coords(vector3 p, geom_box_object *gbo)
{
return to_geom_object_coords(vector3_minus(p, gbo->shiftby), *gbo->o);
}
/**************************************************************************/
void display_geom_box_tree(int indentby, geom_box_tree t)
{
int i;
if (!t)
return;
printf("%*sbox (%g..%g, %g..%g, %g..%g)\n", indentby, "",
t->b.low.x, t->b.high.x,
t->b.low.y, t->b.high.y,
t->b.low.z, t->b.high.z);
for (i = 0; i < t->nobjects; ++i) {
printf("%*sbounding box (%g..%g, %g..%g, %g..%g)\n", indentby+5, "",
t->objects[i].box.low.x, t->objects[i].box.high.x,
t->objects[i].box.low.y, t->objects[i].box.high.y,
t->objects[i].box.low.z, t->objects[i].box.high.z);
printf("%*sshift object by (%g, %g, %g)\n", indentby+5, "",
t->objects[i].shiftby.x, t->objects[i].shiftby.y,
t->objects[i].shiftby.z);
display_geometric_object_info(indentby + 5, *t->objects[i].o);
}
display_geom_box_tree(indentby + 5, t->t1);
display_geom_box_tree(indentby + 5, t->t2);
}
/**************************************************************************/
/* Computing tree statistics (depth and number of nodes): */
/* helper function for geom_box_tree_stats */
static void get_tree_stats(geom_box_tree t, int *depth, int *nobjects)
{
if (t) {
int d1, d2;
*nobjects += t->nobjects;
d1 = d2 = *depth + 1;
get_tree_stats(t->t1, &d1, nobjects);
get_tree_stats(t->t2, &d2, nobjects);
*depth = MAX(d1, d2);
}
}
void geom_box_tree_stats(geom_box_tree t, int *depth, int *nobjects)
{
*depth = *nobjects = 0;
get_tree_stats(t, depth, nobjects);
}
/**************************************************************************/
vector3 get_grid_size(void)
{
return ctl_convert_vector3_to_c(gh_call0(gh_lookup("get-grid-size")));
}
vector3 get_resolution(void)
{
return ctl_convert_vector3_to_c(gh_call0(gh_lookup("get-resolution")));
}
void get_grid_size_n(int *nx, int *ny, int *nz)
{
vector3 grid_size;
grid_size = get_grid_size();
*nx = (int) grid_size.x;
*ny = (int) grid_size.y;
*nz = (int) grid_size.z;
}
/**************************************************************************/
/* constructors for the geometry types (ugh, wish these
could be automatically generated from geom.scm) */
geometric_object make_geometric_object(material_type material, vector3 center)
{
geometric_object o;
material_type_copy(&material, &o.material);
o.center = center;
o.which_subclass = GEOM GEOMETRIC_OBJECT_SELF;
return o;
}
geometric_object make_cylinder(material_type material, vector3 center,
number radius, number height, vector3 axis)
{
geometric_object o = make_geometric_object(material, center);
o.which_subclass = GEOM CYLINDER;
o.subclass.cylinder_data = MALLOC1(cylinder);
CHECK(o.subclass.cylinder_data, "out of memory");
o.subclass.cylinder_data->radius = radius;
o.subclass.cylinder_data->height = height;
o.subclass.cylinder_data->axis = axis;
o.subclass.cylinder_data->which_subclass = CYL CYLINDER_SELF;
geom_fix_object(o);
return o;
}
geometric_object make_cone(material_type material, vector3 center,
number radius, number height, vector3 axis,
number radius2)
{
geometric_object o = make_cylinder(material, center, radius,height, axis);
o.subclass.cylinder_data->which_subclass = CYL CONE;
o.subclass.cylinder_data->subclass.cone_data = MALLOC1(cone);
CHECK(o.subclass.cylinder_data->subclass.cone_data, "out of memory");
o.subclass.cylinder_data->subclass.cone_data->radius2 = radius2;
return o;
}
geometric_object make_wedge(material_type material, vector3 center,
number radius, number height, vector3 axis,
number wedge_angle, vector3 wedge_start)
{
geometric_object o = make_cylinder(material, center, radius,height, axis);
o.subclass.cylinder_data->which_subclass = CYL WEDGE;
o.subclass.cylinder_data->subclass.wedge_data = MALLOC1(wedge);
CHECK(o.subclass.cylinder_data->subclass.wedge_data, "out of memory");
o.subclass.cylinder_data->subclass.wedge_data->wedge_angle = wedge_angle;
o.subclass.cylinder_data->subclass.wedge_data->wedge_start = wedge_start;
geom_fix_object(o);
return o;
}
geometric_object make_sphere(material_type material, vector3 center,
number radius)
{
geometric_object o = make_geometric_object(material, center);
o.which_subclass = GEOM SPHERE;
o.subclass.sphere_data = MALLOC1(sphere);
CHECK(o.subclass.sphere_data, "out of memory");
o.subclass.sphere_data->radius = radius;
return o;
}
geometric_object make_block(material_type material, vector3 center,
vector3 e1, vector3 e2, vector3 e3,
vector3 size)
{
geometric_object o = make_geometric_object(material, center);
o.which_subclass = GEOM BLOCK;
o.subclass.block_data = MALLOC1(block);
CHECK(o.subclass.block_data, "out of memory");
o.subclass.block_data->e1 = e1;
o.subclass.block_data->e2 = e2;
o.subclass.block_data->e3 = e3;
o.subclass.block_data->size = size;
o.subclass.block_data->which_subclass = BLK BLOCK_SELF;
geom_fix_object(o);
return o;
}
geometric_object make_ellipsoid(material_type material, vector3 center,
vector3 e1, vector3 e2, vector3 e3,
vector3 size)
{
geometric_object o = make_block(material, center, e1,e2,e3, size);
o.subclass.block_data->which_subclass = BLK ELLIPSOID;
o.subclass.block_data->subclass.ellipsoid_data = MALLOC1(ellipsoid);
CHECK(o.subclass.block_data->subclass.ellipsoid_data, "out of memory");
o.subclass.block_data->subclass.ellipsoid_data->inverse_semi_axes.x
= 2.0 / size.x;
o.subclass.block_data->subclass.ellipsoid_data->inverse_semi_axes.y
= 2.0 / size.y;
o.subclass.block_data->subclass.ellipsoid_data->inverse_semi_axes.z
= 2.0 / size.z;
return o;
}
|