/usr/include/dbstl_element_ref.h is in libdb5.3-stl-dev 5.3.28-9+deb8u1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 | /*-
* See the file LICENSE for redistribution information.
*
* Copyright (c) 2009, 2013 Oracle and/or its affiliates. All rights reserved.
*
* $Id$
*/
#ifndef _DB_STL_KDPAIR_H
#define _DB_STL_KDPAIR_H
#include <iostream>
#include "dbstl_common.h"
#include "dbstl_dbt.h"
#include "dbstl_exception.h"
#include "dbstl_base_iterator.h"
#include "dbstl_utility.h"
START_NS(dbstl)
using std::istream;
using std::ostream;
using std::basic_ostream;
using std::basic_istream;
template <Typename ddt>
class db_base_iterator;
template <Typename ddt>
class ElementHolder;
/** \ingroup dbstl_helper_classes
\defgroup Element_wrappers ElementRef and ElementHolder wrappers.
An ElementRef and ElementHolder object represents the reference to the
data element referenced by an iterator. Each iterator
object has an ElementRef or ElementHolder object that
stores the data element that the iterator points to.
The ElementHolder class is used to store primitive types into STL containers.
The ElementRef class is used to store other types into STL containers.
The ElementRef and ElementHolder classes have identical interfaces, and are
treated the same by other STL classes. Since the ElementRef class inherits
from the template data class, all methods have a _DB_STL_ prefix to avoid name
clashes.
An ElementRef or ElementHolder class corresponds to a single iterator instance.
An Element object is generally owned by an iterator object. The ownership
relationship is swapped in some specific situations, specifically for the
dereference and array index operator.
@{
*/
/// ElementRef element wrapper for classes and structures.
/// \sa ElementHolder
template <Typename ddt>
class _exported ElementRef : public ddt
{
public:
typedef ElementRef<ddt> self;
typedef ddt base;
typedef db_base_iterator<ddt> iterator_type;
typedef ddt content_type; // Used by assoc classes.
private:
// The iterator pointing the data element stored in this object.
iterator_type *_DB_STL_itr_;
// Whether or not to delete itr on destruction, by default it is
// false because this object is supposed to live in the lifetime of
// its _DB_STL_itr_ owner. But there is one exception: in
// db_vector<>::operator[]/front/back and db_map<>::operator[]
// functions, an ElementRef<T> object has to be
// returned instead of its reference, thus the
// returned ElementRef<> has to live longer than its _DB_STL_itr_,
// thus we new an iterator, and call _DB_STL_SetDelItr() method,
// setting this member to true,
// to tell this object that it should delete the
// _DB_STL_itr_ iterator on destruction, and duplicate the _DB_STL_itr_
// iterator on copy construction. Although
// std::vector<> returns reference rather than value, this is not a
// problem because the returned ElementRef<> will duplicate cursor and
// still points to the same key/data pair.
//
mutable bool _DB_STL_delete_itr_;
public:
////////////////////////////////////////////////////////////////////
//
// Begin constructors and destructor.
//
/// \name Constructors and destructor.
//@{
/// Destructor.
~ElementRef() {
if (_DB_STL_delete_itr_) {
// Prevent recursive destruction.
_DB_STL_delete_itr_ = false;
_DB_STL_itr_->delete_me();
}
}
/// Constructor.
/// If the pitr parameter is NULL or the default value is used, the
/// object created is a simple wrapper and not connected to a container.
/// If a valid iterator parameter is passed in, the wrapped element will
/// be associated with the matching key/data pair in the underlying
/// container.
/// \param pitr The iterator owning this object.
explicit ElementRef(iterator_type *pitr = NULL)
{
_DB_STL_delete_itr_ = false;
_DB_STL_itr_ = pitr;
}
/// Constructor.
/// Initializes an ElementRef wrapper without an iterator. It can only
/// be used to wrap a data element in memory, it can't access an
/// unerlying database.
/// \param dt The base class object to initialize this object.
ElementRef(const ddt &dt) : ddt(dt)
{
_DB_STL_delete_itr_ = false;
_DB_STL_itr_ = NULL;
}
/// Copy constructor.
/// The constructor takes a "deep" copy. The created object will be
/// identical to, but independent from the original object.
/// \param other The object to clone from.
ElementRef(const self &other) : ddt(other)
{
// Duplicate iterator if this object lives longer than
// _DB_STL_itr_.
_DB_STL_delete_itr_ = other._DB_STL_delete_itr_;
if (_DB_STL_delete_itr_) {
// Avoid recursive duplicate iterator calls.
other._DB_STL_delete_itr_ = false;
_DB_STL_itr_ = other._DB_STL_itr_->dup_itr();
other._DB_STL_delete_itr_ = true;
} else
_DB_STL_itr_ = other._DB_STL_itr_;
}
//@}
////////////////////////////////////////////////////////////////////
/// \name Assignment operators.
/// The assignment operators are used to store right-values into the
/// wrapped object, and also to store values into an underlying
/// container.
//@{
/// Assignment Operator.
/// \param dt2 The data value to assign with.
/// \return The object dt2's reference.
inline const ddt& operator=(const ddt& dt2)
{
*((ddt*)this) = dt2;
if (_DB_STL_itr_ != NULL) {
if (!_DB_STL_itr_->is_set_iterator())
_DB_STL_itr_->replace_current(dt2);
else
_DB_STL_itr_->replace_current_key(dt2);
}
return dt2;
}
/// Assignment Operator.
/// \param me The object to assign with.
/// \return The object me's reference.
inline const self& operator=(const self& me)
{
ASSIGNMENT_PREDCOND(me)
*((ddt*)this) = (ddt)me;
if (_DB_STL_itr_ != NULL) {
// This object is the reference of an valid data
// element, so we must keep it that way, we don't
// use me's iterator here.
if (!_DB_STL_itr_->is_set_iterator())
_DB_STL_itr_->replace_current(
me._DB_STL_value());
else
_DB_STL_itr_->replace_current_key(
me._DB_STL_value());
} else if (me._DB_STL_delete_itr_) {
// Duplicate an iterator from me.
_DB_STL_delete_itr_ = true;
me._DB_STL_delete_itr_ = false;
_DB_STL_itr_ = me._DB_STL_itr_->dup_itr();
me._DB_STL_delete_itr_ = true;
}
return me;
}
//@}
/// Function to store the data element.
/// The user needs to call this method after modifying the underlying
/// object, so that the version stored in the container can be updated.
///
/// When db_base_iterator's directdb_get_ member is true, this function
/// must be called after modifying the data member and before any
/// subsequent container iterator dereference operations. If this step
/// is not carried out any changes will be lost.
///
/// If the data element is changed via ElementHolder<>::operator=(),
/// you don't need to call this function.
inline void _DB_STL_StoreElement()
{
assert(_DB_STL_itr_ != NULL);
_DB_STL_itr_->replace_current(*this);
}
/// Returns the data element this wrapper object wraps.
inline const ddt& _DB_STL_value() const
{
return *((ddt*)this);
}
/// Returns the data element this wrapper object wraps.
inline ddt& _DB_STL_value()
{
return *((ddt*)this);
}
#ifndef DOXYGEN_CANNOT_SEE_THIS
////////////////////////////////////////////////////////////////////
//
// The following methods are not part of the official public API,
// but can't be declared as protected, since it is not possible
// to declare template-specialised classes as friends.
//
// Call this function to tell this object that it should delete the
// _DB_STL_itr_ iterator because that iterator was allocated in
// the heap. Methods like db_vector/db_map<>::operator[] should call
// this function.
inline void _DB_STL_SetDelItr()
{
_DB_STL_delete_itr_ = true;
}
// Only copy data into this object, do not store into database.
inline void _DB_STL_CopyData(const self&dt2)
{
*((ddt*)this) = (ddt)dt2;
}
inline void _DB_STL_CopyData(const ddt&dt2)
{
*((ddt*)this) = dt2;
}
// Following functions are prefixed with _DB_STL_ to avoid
// potential name clash with ddt members.
//
inline iterator_type* _DB_STL_GetIterator() const
{
return _DB_STL_itr_;
}
inline int _DB_STL_GetData(ddt& d) const
{
d = *((ddt*)this);
return 0;
}
inline void _DB_STL_SetIterator(iterator_type*pitr)
{
_DB_STL_itr_ = pitr;
}
inline void _DB_STL_SetData(const ddt&d)
{
*(ddt*)this = d;
}
////////////////////////////////////////////////////////////////////
}; // ElementRef<>
template<typename T>
class DbstlSeqWriter;
#else
};
#endif // DOXYGEN_CANNOT_SEE_THIS
// The ElementHolder class must have an identical public interface to
// the ElementRef class.
/// A wrapper class for primitive types. It has identical usage and public
/// interface to the ElementRef class.
/// \sa ElementRef.
template <typename ptype>
class _exported ElementHolder
{
protected:
typedef ElementHolder<ptype> self;
inline void _DB_STL_put_new_value_to_db()
{
if (_DB_STL_itr_ != NULL) {
if (!_DB_STL_itr_->is_set_iterator())
_DB_STL_itr_->replace_current(dbstl_my_value_);
else
_DB_STL_itr_->replace_current_key(
dbstl_my_value_);
}
}
inline void _DB_STL_put_new_value_to_db(const self &me)
{
if (_DB_STL_itr_ != NULL) {
if (!_DB_STL_itr_->is_set_iterator())
_DB_STL_itr_->replace_current(dbstl_my_value_);
else
_DB_STL_itr_->replace_current_key(
dbstl_my_value_);
} else if (me._DB_STL_delete_itr_) {
// Duplicate an iterator from me.
_DB_STL_delete_itr_ = true;
me._DB_STL_delete_itr_ = false;
_DB_STL_itr_ = me._DB_STL_itr_->dup_itr();
me._DB_STL_delete_itr_ = true;
}
}
public:
typedef ptype type1;
typedef db_base_iterator<ptype> iterator_type;
typedef ptype content_type;
////////////////////////////////////////////////////////////////////
//
// Begin constructors and destructor.
//
/// \name Constructors and destructor.
//@{
/// Constructor.
/// If the pitr parameter is NULL or the default value is used, the
/// object created is a simple wrapper and not connected to a container.
/// If a valid iterator parameter is passed in, the wrapped element will
/// be associated with the matching key/data pair in the underlying
/// container.
/// \param pitr The iterator owning this object.
explicit inline ElementHolder(iterator_type* pitr = NULL)
{
_DB_STL_delete_itr_ = false;
_DB_STL_itr_ = pitr;
dbstl_str_buf_ = NULL;
dbstl_str_buf_len_ = 0;
memset(&dbstl_my_value_, 0, sizeof(dbstl_my_value_));
}
/// Constructor.
/// Initializes an ElementRef wrapper without an iterator. It can only
/// be used to wrap a data element in memory, it can't access an
/// unerlying database.
/// \param dt The base class object to initialize this object.
inline ElementHolder(const ptype&dt)
{
dbstl_str_buf_ = NULL;
dbstl_str_buf_len_ = 0;
_DB_STL_delete_itr_ = false;
_DB_STL_itr_ = NULL;
_DB_STL_CopyData_int(dt);
}
/// Copy constructor.
/// The constructor takes a "deep" copy. The created object will be
/// identical to, but independent from the original object.
/// \param other The object to clone from.
inline ElementHolder(const self& other)
{
dbstl_str_buf_ = NULL;
dbstl_str_buf_len_ = 0;
_DB_STL_delete_itr_ = other._DB_STL_delete_itr_;
_DB_STL_CopyData(other);
// Duplicate iterator if this object lives longer than
// _DB_STL_itr_.
_DB_STL_delete_itr_ = other._DB_STL_delete_itr_;
if (_DB_STL_delete_itr_) {
// Avoid recursive duplicate iterator calls.
other._DB_STL_delete_itr_ = false;
_DB_STL_itr_ = other._DB_STL_itr_->dup_itr();
other._DB_STL_delete_itr_ = true;
} else
_DB_STL_itr_ = other._DB_STL_itr_;
}
/// Destructor.
~ElementHolder() {
if (_DB_STL_delete_itr_) {
_DB_STL_delete_itr_ = false;
_DB_STL_itr_->delete_me();
}
if (dbstl_str_buf_) {
free(dbstl_str_buf_);
dbstl_str_buf_ = NULL;
}
}
//@}
////////////////////////////////////////////////////////////////////
/// This operator is a type converter. Where an automatic type
/// conversion is needed, this function is called to convert this
/// object into the primitive type it wraps.
operator ptype () const
{
return dbstl_my_value_;
}
// ElementHolder is a wrapper for primitive types, and backed by db,
// so we need to override all assignment operations to store updated
// value to database. We don't need to implement other operators for
// primitive types because we have a convert operator which can
// automatically convert to primitive type and use its C++ built in
// operator.
//
/** \name Math operators.
ElementHolder class templates also have all C/C++ self mutating
operators for numeric primitive types, including:
+=, -=, *=, /=, %=, <<=, >>=, &=, |=, ^=, ++, --
These operators should not be used when ddt is a sequence pointer type
like char* or wchar_t* or T*, otherwise the behavior is undefined.
These methods exist only to override default bahavior to store the
new updated value, otherwise, the type convert operator could have
done all the job.
As you know, some of them are not applicable to float or double types
or ElementHolder wrapper types for float/double types.
These operators not only modifies the cached data element, but also
stores new value to database if it associates a database key/data pair.
@{
*/
template <Typename T2>
const self& operator +=(const ElementHolder<T2> &p2)
{
dbstl_my_value_ += p2.dbstl_my_value_;
_DB_STL_put_new_value_to_db(p2);
return *this;
}
template <Typename T2>
const self& operator -=(const ElementHolder<T2> &p2)
{
dbstl_my_value_ -= p2.dbstl_my_value_;
_DB_STL_put_new_value_to_db(p2);
return *this;
}
template <Typename T2>
const self& operator *=(const ElementHolder<T2> &p2)
{
dbstl_my_value_ *= p2.dbstl_my_value_;
_DB_STL_put_new_value_to_db(p2);
return *this;
}
template <Typename T2>
const self& operator /=(const ElementHolder<T2> &p2)
{
dbstl_my_value_ /= p2.dbstl_my_value_;
_DB_STL_put_new_value_to_db(p2);
return *this;
}
template <Typename T2>
const self& operator %=(const ElementHolder<T2> &p2)
{
dbstl_my_value_ %= p2.dbstl_my_value_;
_DB_STL_put_new_value_to_db(p2);
return *this;
}
template <Typename T2>
const self& operator &=(const ElementHolder<T2> &p2)
{
dbstl_my_value_ &= p2.dbstl_my_value_;
_DB_STL_put_new_value_to_db(p2);
return *this;
}
template <Typename T2>
const self& operator |=(const ElementHolder<T2> &p2)
{
dbstl_my_value_ |= p2.dbstl_my_value_;
_DB_STL_put_new_value_to_db(p2);
return *this;
}
template <Typename T2>
const self& operator ^=(const ElementHolder<T2> &p2)
{
dbstl_my_value_ ^= p2.dbstl_my_value_;
_DB_STL_put_new_value_to_db(p2);
return *this;
}
const self& operator >>=(size_t n)
{
dbstl_my_value_ >>= n;
_DB_STL_put_new_value_to_db();
return *this;
}
const self& operator <<=(size_t n)
{
dbstl_my_value_ <<= n;
_DB_STL_put_new_value_to_db();
return *this;
}
const self& operator ^=(const self &p2)
{
dbstl_my_value_ ^= p2.dbstl_my_value_;
_DB_STL_put_new_value_to_db();
return *this;
}
const self& operator &=(const self &p2)
{
dbstl_my_value_ &= p2.dbstl_my_value_;
_DB_STL_put_new_value_to_db();
return *this;
}
const self& operator |=(const self &p2)
{
dbstl_my_value_ |= p2.dbstl_my_value_;
_DB_STL_put_new_value_to_db();
return *this;
}
const self& operator %=(const self &p2)
{
dbstl_my_value_ %= p2.dbstl_my_value_;
_DB_STL_put_new_value_to_db();
return *this;
}
const self& operator +=(const self &p2)
{
dbstl_my_value_ += p2.dbstl_my_value_;
_DB_STL_put_new_value_to_db();
return *this;
}
const self& operator -=(const self &p2)
{
dbstl_my_value_ -= p2.dbstl_my_value_;
_DB_STL_put_new_value_to_db();
return *this;
}
const self& operator /=(const self &p2)
{
dbstl_my_value_ /= p2.dbstl_my_value_;
_DB_STL_put_new_value_to_db();
return *this;
}
const self& operator *=(const self &p2)
{
dbstl_my_value_ *= p2.dbstl_my_value_;
_DB_STL_put_new_value_to_db();
return *this;
}
self& operator++()
{
dbstl_my_value_++;
_DB_STL_put_new_value_to_db();
return *this;
}
self operator++(int)
{
self obj(*this);
dbstl_my_value_++;
_DB_STL_put_new_value_to_db();
return obj;
}
self& operator--()
{
dbstl_my_value_--;
_DB_STL_put_new_value_to_db();
return *this;
}
self operator--(int)
{
self obj(*this);
dbstl_my_value_--;
_DB_STL_put_new_value_to_db();
return obj;
}
inline const ptype& operator=(const ptype& dt2)
{
_DB_STL_CopyData_int(dt2);
_DB_STL_put_new_value_to_db();
return dt2;
}
inline const self& operator=(const self& dt2)
{
ASSIGNMENT_PREDCOND(dt2)
_DB_STL_CopyData(dt2);
_DB_STL_put_new_value_to_db(dt2);
return dt2;
}
//@}
/// Returns the data element this wrapper object wraps;
inline const ptype& _DB_STL_value() const
{
return dbstl_my_value_;
}
/// Returns the data element this wrapper object wraps;
inline ptype&_DB_STL_value()
{
return dbstl_my_value_;
}
/// Function to store the data element.
/// The user needs to call this method after modifying the underlying
/// object, so that the version stored in the container can be updated.
///
/// When db_base_iterator's directdb_get_ member is true, this function
/// must be called after modifying the data member and before any
/// subsequent container iterator dereference operations. If this step
/// is not carried out any changes will be lost.
///
/// If the data element is changed via ElementHolder<>::operator=(),
/// you don't need to call this function.
inline void _DB_STL_StoreElement()
{
assert(_DB_STL_itr_ != NULL);
_DB_STL_itr_->replace_current(dbstl_my_value_);
}
#ifndef DOXYGEN_CANNOT_SEE_THIS
////////////////////////////////////////////////////////////////////
//
// The following methods are not part of the official public API,
// but can't be declared as protected, since it is not possible
// to declare template-specialised classes as friends.
//
inline void _DB_STL_CopyData(const self&dt2)
{
_DB_STL_CopyData_int(dt2.dbstl_my_value_);
}
template<Typename T>
inline void _DB_STL_CopyData_int(const T&src)
{
dbstl_my_value_ = src;
}
// Try to catch all types of pointers.
template<Typename T>
inline void _DB_STL_CopyData_int(T* const &src)
{
DbstlSeqWriter<T>::copy_to_holder((ElementHolder<T *> *)this,
(T *)src);
}
template<Typename T>
inline void _DB_STL_CopyData_int(const T* const &src)
{
DbstlSeqWriter<T>::copy_to_holder((ElementHolder<T *> *)this,
(T *)src);
}
template<Typename T>
inline void _DB_STL_CopyData_int(T* &src)
{
DbstlSeqWriter<T>::copy_to_holder((ElementHolder<T *> *)this,
(T *)src);
}
template<Typename T>
inline void _DB_STL_CopyData_int(const T*&src)
{
DbstlSeqWriter<T>::copy_to_holder((ElementHolder<T *> *)this,
(T *)src);
}
inline iterator_type* _DB_STL_GetIterator() const
{
return _DB_STL_itr_;
}
inline int _DB_STL_GetData(ptype& d) const
{
d = dbstl_my_value_;
return 0;
}
inline void _DB_STL_SetIterator(iterator_type*pitr)
{
_DB_STL_itr_ = pitr;
}
inline void _DB_STL_SetData(const ptype&d)
{
_DB_STL_CopyData_int(d);
}
inline void _DB_STL_SetDelItr()
{
_DB_STL_delete_itr_ = true;
}
// The two member has to be public for DbstlSeqWriter to access,
// but can't be accessed by user.
size_t dbstl_str_buf_len_;
void *dbstl_str_buf_; // Stores a sequence, used when ptype is T*
iterator_type *_DB_STL_itr_;
ptype dbstl_my_value_;
mutable bool _DB_STL_delete_itr_;
};
#else
};
#endif // DOXYGEN_CANNOT_SEE_THIS
//@} // Element_wrappers
//@} //dbstl_helper_classes
// These operators help reading from and writing to iostreams, if the wrapped
// data type has iostream operators.
template<Typename _CharT, Typename _Traits, Typename ddt>
basic_istream<_CharT,_Traits>&
operator>>( basic_istream<_CharT,_Traits> & in, ElementRef<ddt>&p)
{
in>>(ddt)p;
return in;
}
template<Typename _CharT, Typename _Traits, Typename ddt>
basic_ostream<_CharT,_Traits>&
operator<<( basic_ostream<_CharT,_Traits> & out,
const ElementRef<ddt>&p)
{
out<<(ddt)p;
return out;
}
template<Typename _CharT, Typename _Traits, Typename ddt>
basic_istream<_CharT,_Traits>&
operator>>( basic_istream<_CharT,_Traits> & in, ElementHolder<ddt>&p)
{
in>>p._DB_STL_value();
return in;
}
template<Typename _CharT, Typename _Traits, Typename ddt>
basic_ostream<_CharT,_Traits>&
operator<<( basic_ostream<_CharT,_Traits> & out,
const ElementHolder<ddt>&p)
{
out<<p._DB_STL_value();
return out;
}
template<typename T>
class _exported DbstlSeqWriter
{
public:
typedef ElementHolder<T *> HolderType;
static void copy_to_holder(HolderType *holder, T *src)
{
size_t i, slen, sql;
if (src == NULL) {
free(holder->dbstl_str_buf_);
holder->dbstl_str_buf_ = NULL;
holder->dbstl_my_value_ = NULL;
return;
}
if (holder->dbstl_str_buf_len_ > DBSTL_MAX_DATA_BUF_LEN) {
free(holder->dbstl_str_buf_);
holder->dbstl_str_buf_ = NULL;
}
typedef DbstlElemTraits<T> DM;
typename DM::SequenceCopyFunct seqcpy =
DM::instance()->get_sequence_copy_function();
typename DM::SequenceLenFunct seqlen =
DM::instance()->get_sequence_len_function();
typename DM::ElemSizeFunct elemszf =
DM::instance()->get_size_function();
assert(seqcpy != NULL && seqlen != NULL);
sql = seqlen(src);
if (elemszf == NULL)
slen = sizeof(T) * (sql + 1);
else
// We don't add the terminating object if it has one.
// So the registered functions should take care of it.
for (slen = 0, i = 0; i < sql; i++)
slen += elemszf(src[i]);
if (slen > holder->dbstl_str_buf_len_)
holder->dbstl_str_buf_ = DbstlReAlloc(
holder->dbstl_str_buf_,
holder->dbstl_str_buf_len_ = slen);
seqcpy((T*)holder->dbstl_str_buf_, src, sql);
holder->dbstl_my_value_ = (T*)holder->dbstl_str_buf_;
}
};
template<>
class _exported DbstlSeqWriter<char>
{
public:
typedef ElementHolder<char *> HolderType;
static void copy_to_holder(HolderType *holder, char *src)
{
size_t slen;
if (src == NULL) {
free(holder->dbstl_str_buf_);
holder->dbstl_str_buf_ = NULL;
holder->dbstl_my_value_ = NULL;
return;
}
if (holder->dbstl_str_buf_len_ > DBSTL_MAX_DATA_BUF_LEN) {
free(holder->dbstl_str_buf_);
holder->dbstl_str_buf_ = NULL;
}
slen = sizeof(char) * (strlen(src) + 1);
if (slen > holder->dbstl_str_buf_len_)
holder->dbstl_str_buf_ = DbstlReAlloc(
holder->dbstl_str_buf_,
(u_int32_t)(holder->dbstl_str_buf_len_ = slen));
strcpy((char*)holder->dbstl_str_buf_, src);
holder->dbstl_my_value_ = (char*)holder->dbstl_str_buf_;
}
};
template<>
class _exported DbstlSeqWriter<wchar_t>
{
public:
typedef ElementHolder<wchar_t *> HolderType;
static void copy_to_holder(HolderType *holder, wchar_t *src)
{
size_t slen;
if (src == NULL) {
free(holder->dbstl_str_buf_);
holder->dbstl_str_buf_ = NULL;
holder->dbstl_my_value_ = NULL;
return;
}
if (holder->dbstl_str_buf_len_ > DBSTL_MAX_DATA_BUF_LEN) {
free(holder->dbstl_str_buf_);
holder->dbstl_str_buf_ = NULL;
}
slen = sizeof(wchar_t) * (wcslen(src) + 1);
if (slen > holder->dbstl_str_buf_len_)
holder->dbstl_str_buf_ = DbstlReAlloc(
holder->dbstl_str_buf_,
holder->dbstl_str_buf_len_ = slen);
wcscpy((wchar_t*)holder->dbstl_str_buf_, src);
holder->dbstl_my_value_ = (wchar_t*)holder->dbstl_str_buf_;
}
};
END_NS
#endif// !_DB_STL_KDPAIR_H
|