This file is indexed.

/usr/include/dolfin/mesh/Cell.h is in libdolfin-dev 1.4.0+dfsg-4.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
// Copyright (C) 2006-2013 Anders Logg
//
// This file is part of DOLFIN.
//
// DOLFIN is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// DOLFIN is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with DOLFIN. If not, see <http://www.gnu.org/licenses/>.
//
// Modified by Johan Hoffman 2006.
// Modified by Andre Massing 2009.
// Modified by Garth N. Wells 2010.
// Modified by Jan Blechta 2013
//
// First added:  2006-06-01
// Last changed: 2014-02-16

#ifndef __CELL_H
#define __CELL_H

#include <memory>

#include <dolfin/geometry/Point.h>
#include "CellType.h"
#include "Mesh.h"
#include "MeshEntity.h"
#include "MeshEntityIteratorBase.h"
#include "MeshFunction.h"
#include <dolfin/geometry/CollisionDetection.h>
#include <dolfin/geometry/IntersectionTriangulation.h>

namespace dolfin
{

  /// A Cell is a _MeshEntity_ of topological codimension 0.

  class Cell : public MeshEntity
  {
  public:

    /// Create empty cell
    Cell() : MeshEntity() {}

    /// Create cell on given mesh with given index
    ///
    /// *Arguments*
    ///     mesh (_Mesh_)
    ///         The mesh.
    ///     index (std::size_t)
    ///         The index.
    Cell(const Mesh& mesh, std::size_t index)
      : MeshEntity(mesh, mesh.topology().dim(), index) {}

    /// Destructor
    ~Cell() {}

    /// Return type of cell
    CellType::Type type() const
    { return _mesh->type().cell_type(); }

    /// Compute orientation of cell
    ///
    /// *Returns*
    ///     std::size_t
    ///         Orientation of the cell (0 is 'up'/'right', 1 is 'down'/'left')
    std::size_t orientation() const
    { return _mesh->type().orientation(*this); }

    /// Compute orientation of cell relative to given 'up' direction
    ///
    /// *Arguments*
    ///     up (_Point_)
    ///         The direction defined as 'up'
    ///
    /// *Returns*
    ///     std::size_t
    ///         Orientation of the cell (0 is 'same', 1 is 'opposite')
    std::size_t orientation(const Point& up) const
    { return _mesh->type().orientation(*this, up); }

    /// Compute (generalized) volume of cell
    ///
    /// *Returns*
    ///     double
    ///         The volume of the cell.
    ///
    /// *Example*
    ///     .. code-block:: c++
    ///
    ///         UnitSquare mesh(1, 1);
    ///         Cell cell(mesh, 0);
    ///         info("%g", cell.volume());
    ///
    ///     output::
    ///
    ///         0.5
    double volume() const
    { return _mesh->type().volume(*this); }

    /// Compute diameter of cell
    ///
    /// *Returns*
    ///     double
    ///         The diameter of the cell.
    ///
    /// *Example*
    ///     .. code-block:: c++
    ///
    ///         UnitSquare mesh(1, 1);
    ///         Cell cell(mesh, 0);
    ///         info("%g", cell.diameter());
    ///
    ///     output::
    ///
    ///         1.41421
    double diameter() const
    { return _mesh->type().diameter(*this); }

    /// Compute inradius of cell
    ///
    /// *Returns*
    ///     double
    ///         Radius of the sphere inscribed in the cell.
    ///
    /// *Example*
    ///     .. code-block:: c++
    ///
    ///         UnitSquare mesh(1, 1);
    ///         Cell cell(mesh, 0);
    ///         info("%g", cell.inradius());
    ///
    ///     output::
    ///
    ///         0.29289
    double inradius() const
    {
      // We would need facet areas
      _mesh->init(_mesh->type().dim() - 1);

      return _mesh->type().inradius(*this);
    }

    /// Compute ratio of inradius to circumradius times dim for cell.
    /// Useful as cell quality measure. Returns 1. for equilateral
    /// and 0. for degenerate cell.
    /// See Jonathan Richard Shewchuk: What Is a Good Linear Finite Element?,
    /// online: http://www.cs.berkeley.edu/~jrs/papers/elemj.pdf
    ///
    /// *Returns*
    ///     double
    ///         cell_dimension * inradius / circumradius
    ///
    /// *Example*
    ///     .. code-block:: c++
    ///
    ///         UnitSquare mesh(1, 1);
    ///         Cell cell(mesh, 0);
    ///         info("%g", cell.radius_ratio());
    ///
    ///     output::
    ///
    ///         0.828427
    double radius_ratio() const
    {
      // We would need facet areas
      _mesh->init(_mesh->type().dim() - 1);

      return _mesh->type().radius_ratio(*this);
    }

    /// Compute squared distance to given point.
    ///
    /// *Arguments*
    ///     point (_Point_)
    ///         The point.
    /// *Returns*
    ///     double
    ///         The squared distance to the point.
    double squared_distance(const Point& point) const
    { return _mesh->type().squared_distance(*this, point); }

    /// Compute distance to given point.
    ///
    /// *Arguments*
    ///     point (_Point_)
    ///         The point.
    /// *Returns*
    ///     double
    ///         The distance to the point.
    double distance(const Point& point) const
    {
      return sqrt(squared_distance(point));
    }

    /// Compute component i of normal of given facet with respect to the cell
    ///
    /// *Arguments*
    ///     facet (std::size_t)
    ///         Index of facet.
    ///     i (std::size_t)
    ///         Component.
    ///
    /// *Returns*
    ///     double
    ///         Component i of the normal of the facet.
    double normal(std::size_t facet, std::size_t i) const
    { return _mesh->type().normal(*this, facet, i); }

    /// Compute normal of given facet with respect to the cell
    ///
    /// *Arguments*
    ///     facet (std::size_t)
    ///         Index of facet.
    ///
    /// *Returns*
    ///     _Point_
    ///         Normal of the facet.
    Point normal(std::size_t facet) const
    { return _mesh->type().normal(*this, facet); }

    /// Compute normal to cell itself (viewed as embedded in 3D)
    ///
    /// *Returns*
    ///     _Point_
    ///         Normal of the cell
    Point cell_normal() const
    { return _mesh->type().cell_normal(*this); }

    /// Compute the area/length of given facet with respect to the cell
    ///
    /// *Arguments*
    ///     facet (std::size_t)
    ///         Index of the facet.
    ///
    /// *Returns*
    ///     double
    ///         Area/length of the facet.
    double facet_area(std::size_t facet) const
    { return _mesh->type().facet_area(*this, facet); }

    /// Order entities locally
    ///
    /// *Arguments*
    ///     global_vertex_indices (_std::vector<std::size_t>_)
    ///         The global vertex indices.
    void order(const std::vector<std::size_t>& local_to_global_vertex_indices)
    { _mesh->type().order(*this, local_to_global_vertex_indices); }

    /// Check if entities are ordered
    ///
    /// *Arguments*
    ///     global_vertex_indices (_std::vector<std::size_t>)
    ///         The global vertex indices.
    ///
    /// *Returns*
    ///     bool
    ///         True iff ordered.
    bool ordered(const std::vector<std::size_t>& local_to_global_vertex_indices) const
    { return _mesh->type().ordered(*this, local_to_global_vertex_indices); }

    /// Check whether given point is contained in cell. This function is
    /// identical to the function collides(point).
    ///
    /// *Arguments*
    ///     point (_Point_)
    ///         The point to be checked.
    ///
    /// *Returns*
    ///     bool
    ///         True iff point is contained in cell.
    bool contains(const Point& point) const
    { return CollisionDetection::collides(*this, point); }

    /// Check whether given point collides with cell
    ///
    /// *Arguments*
    ///     point (_Point_)
    ///         The point to be checked.
    ///
    /// *Returns*
    ///     bool
    ///         True iff point collides with cell.
    bool collides(const Point& point) const
    { return CollisionDetection::collides(*this, point); }

    /// Check whether given entity collides with cell
    ///
    /// *Arguments*
    ///     entity (_MeshEntity_)
    ///         The cell to be checked.
    ///
    /// *Returns*
    ///     bool
    ///         True iff entity collides with cell.
    bool collides(const MeshEntity& entity) const
    { return CollisionDetection::collides(*this, entity); }

    /// Compute triangulation of intersection with given entity
    ///
    /// *Arguments*
    ///     entity (_MeshEntity_)
    ///         The entity with which to intersect.
    ///
    /// *Returns*
    ///     std::vector<double>
    ///         A flattened array of simplices of dimension
    ///         num_simplices x num_vertices x gdim =
    ///         num_simplices x (tdim + 1) x gdim
    std::vector<double>
    triangulate_intersection(const MeshEntity& entity) const
    { return IntersectionTriangulation::triangulate_intersection(*this, entity); }

    // FIXME: This function is part of a UFC transition
    /// Get cell vertex coordinates
    void get_vertex_coordinates(std::vector<double>& coordinates) const
    {
      const std::size_t gdim = _mesh->geometry().dim();
      const std::size_t num_vertices = this->num_entities(0);
      const unsigned int* vertices = this->entities(0);
      coordinates.resize(num_vertices*gdim);
      for (std::size_t i = 0; i < num_vertices; i++)
        for (std::size_t j = 0; j < gdim; j++)
          coordinates[i*gdim + j] = _mesh->geometry().x(vertices[i])[j];
    }

    // FIXME: This function is part of a UFC transition
    /// Fill UFC cell with miscellaneous data
    void get_cell_data(ufc::cell& ufc_cell, int local_facet=-1) const
    {
      ufc_cell.geometric_dimension = _mesh->geometry().dim();;
      ufc_cell.local_facet = local_facet;
      ufc_cell.orientation = _mesh->cell_orientations()[index()];
      ufc_cell.mesh_identifier = mesh_id();
      ufc_cell.index = index();
    }

    // FIXME: This function is part of a UFC transition
    /// Fill UFC cell with topology data
    void get_cell_topology(ufc::cell& ufc_cell) const
    {
      const MeshTopology& topology = _mesh->topology();

      const std::size_t tdim = topology.dim();
      ufc_cell.topological_dimension = tdim;
      ufc_cell.orientation = _mesh->cell_orientations()[index()];

      ufc_cell.entity_indices.resize(tdim + 1);
      for (std::size_t d = 0; d < tdim; d++)
      {
        ufc_cell.entity_indices[d].resize(num_entities(d));
        if (topology.have_global_indices(d))
        {
          const std::vector<std::size_t>& global_indices
            = topology.global_indices(d);
          for (std::size_t i = 0; i < num_entities(d); ++i)
            ufc_cell.entity_indices[d][i] = global_indices[entities(d)[i]];
        }
        else
        {
          for (std::size_t i = 0; i < num_entities(d); ++i)
            ufc_cell.entity_indices[d][i] = entities(d)[i];
        }
      }
      ufc_cell.entity_indices[tdim].resize(1);

      ufc_cell.entity_indices[tdim][0] = index();

      // FIXME: Using the local cell index is inconsistent with UFC, but
      //        necessary to make DOLFIN run
      // Local cell index
      ufc_cell.index = ufc_cell.entity_indices[tdim][0];
    }

  };

  /// A CellIterator is a MeshEntityIterator of topological codimension 0.
  typedef MeshEntityIteratorBase<Cell> CellIterator;

  /// A CellFunction is a MeshFunction of topological codimension 0.
  template <typename T> class CellFunction : public MeshFunction<T>
  {
  public:

    CellFunction(const Mesh& mesh)
      : MeshFunction<T>(mesh, mesh.topology().dim()) {}

    CellFunction(std::shared_ptr<const Mesh> mesh)
      : MeshFunction<T>(mesh, mesh->topology().dim()) {}

    CellFunction(const Mesh& mesh, const T& value)
      : MeshFunction<T>(mesh, mesh.topology().dim(), value) {}

    CellFunction(std::shared_ptr<const Mesh> mesh, const T& value)
      : MeshFunction<T>(mesh, mesh->topology().dim(), value) {}
  };

}

#endif