This file is indexed.

/usr/include/dolfin/swig/typemaps/numpy.i is in libdolfin-dev 1.4.0+dfsg-4.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
/* -*- C -*- */
// Copyright (C) 2007-2009 Ola Skavhaug
//
// This file is part of DOLFIN.
//
// DOLFIN is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// DOLFIN is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with DOLFIN. If not, see <http://www.gnu.org/licenses/>.
//
// Modified by Johan Hake, 2008-2009.
// Modified by Anders logg, 2009.
//
// First added:  2007-12-16
// Last changed: 2011-04-29

//-----------------------------------------------------------------------------
// Function to set the base of an NumPy array object
//-----------------------------------------------------------------------------
%inline%{
PyObject* _attach_base_to_numpy_array(PyObject* obj, PyObject* owner)
{
  if (owner == NULL)
  {
    PyErr_SetString(PyExc_TypeError, "Expected a Python object as owner argument");
    return NULL;
  }

  PyArrayObject* array = reinterpret_cast<PyArrayObject*>(obj);
  if (array == NULL)
  {
    PyErr_SetString(PyExc_TypeError, "NumPy conversion error");
    return NULL;
  }

  // Bump the references
  Py_XINCREF(owner);
  Py_XINCREF(Py_None);

  // Assign the base
#if NUMPY_VERSION_MINOR >= 7
  PyArray_SetBaseObject(array, owner);
#else
  PyArray_BASE(array) = owner;
#endif

  return Py_None;
}
%}

//-----------------------------------------------------------------------------
// Help defines for using the generated numpy array wrappers
//-----------------------------------------------------------------------------
#define %make_numpy_array(dim, type_name) make_ ## dim ## d_numpy_array_ ## type_name
#define make_numpy_array_frag(dim, type_name) "make_" %str(dim) "d_numpy_array_" %str(type_name)

//-----------------------------------------------------------------------------
// A fragment function which takes a PyArray as a PyObject, check conversion and
// set the writable flags
//-----------------------------------------------------------------------------
%fragment("return_py_array", "header") {
SWIGINTERNINLINE PyObject* return_py_array(PyObject* obj, bool writable)
{
  PyArrayObject* array = reinterpret_cast<PyArrayObject*>(obj);
  if ( obj == NULL )
  {
    PyErr_SetString(PyExc_TypeError, "NumPy conversion error");
    return NULL;
  }

  // Set writable flag on numpy array
  if ( !writable )
  {
    // Get flag
#if NUMPY_VERSION_MINOR >= 7
    PyArray_CLEARFLAGS(array, NPY_ARRAY_WRITEABLE);
#else
    array->flags &= ~NPY_WRITEABLE;
#endif
  }
  return reinterpret_cast<PyObject*>(array);
}
}

//-----------------------------------------------------------------------------
// Macro for generating fragments to constructing NumPys array from data ponters
// The macro generates two functions, one for 1D and one for 2D arrays
//
// TYPE       : The pointer type
// NUMPY_TYPE : The NumPy type that is going to be checked for
// TYPE_NAME  : The name of the pointer type, 'double' for 'double', 'uint' for
//              'dolfin::uint', size_t for std::size_t
//
// Note that each invocation of this macro two functions will be inlined in
// the SWIG layer:
//
//    1) make_1d_numpy_array_{TYPE_NAME}
//    2) make_2d_numpy_array_{TYPE_NAME}
//
// Here TYPE_NAME is used to name the generated C++ function.
//-----------------------------------------------------------------------------
%define NUMPY_ARRAY_FRAGMENTS(TYPE, NUMPY_TYPE, TYPE_NAME)
%fragment(make_numpy_array_frag(2, TYPE_NAME), "header",
	  fragment="return_py_array") {
SWIGINTERNINLINE PyObject* %make_numpy_array(2, TYPE_NAME)
  (int m, int n, const TYPE* dataptr, bool writable = true)
{
  npy_intp adims[2] = {m, n};
  return return_py_array(PyArray_SimpleNewFromData(2, adims, NUMPY_TYPE,
						   (char *)(dataptr)), writable);
}}

%fragment(make_numpy_array_frag(1, TYPE_NAME), "header",
	  fragment="return_py_array") {
SWIGINTERNINLINE PyObject* %make_numpy_array(1, TYPE_NAME)
  (int m, const TYPE* dataptr, bool writable = true)
{
  npy_intp adims[1] = {m};
  return return_py_array(PyArray_SimpleNewFromData(1, adims, NUMPY_TYPE,
						   (char *)(dataptr)), writable);
}}

// Force the fragments to be instantiated
%fragment(make_numpy_array_frag(1, TYPE_NAME));
%fragment(make_numpy_array_frag(2, TYPE_NAME));

%enddef

// The below fragments are created manually to dynamically handle the type of
// dolfin::la_index, which can be a 32 bit or a 64 bit integer.
%fragment(make_numpy_array_frag(2, dolfin_index), "header",
	  fragment="return_py_array") {
SWIGINTERNINLINE PyObject* %make_numpy_array(2, dolfin_index)
  (int m, int n, const dolfin::la_index* dataptr, bool writable = true)
{
  npy_intp adims[2] = {m, n};
  if (sizeof(dolfin::la_index) == 4)
  {
    return return_py_array(PyArray_SimpleNewFromData(2, adims, NPY_INT32,
                                                     (char *)(dataptr)), writable);
  }
  else if (sizeof(dolfin::la_index) == 8)
  {
    return return_py_array(PyArray_SimpleNewFromData(2, adims, NPY_INT64,
                                                     (char *)(dataptr)), writable);
  }
  else
    throw std::runtime_error("sizeof(dolfin::la_index) incompatible NumPy types");
}}

%fragment(make_numpy_array_frag(1, dolfin_index), "header",
	  fragment="return_py_array") {
SWIGINTERNINLINE PyObject* %make_numpy_array(1, dolfin_index)
  (int m, const dolfin::la_index* dataptr, bool writable = true)
{
  npy_intp adims[1] = {m};
  if (sizeof(dolfin::la_index) == 4)
  {
    return return_py_array(PyArray_SimpleNewFromData(1, adims, NPY_INT32,
                                                     (char *)(dataptr)), writable);
  }
  else if (sizeof(dolfin::la_index) == 8)
  {
    return return_py_array(PyArray_SimpleNewFromData(1, adims, NPY_INT64,
                                                     (char *)(dataptr)), writable);
  }
  else
    throw std::runtime_error("sizeof(dolfin::la_index) incompatible NumPy types");
}}

// Force the fragments to be instantiated
%fragment(make_numpy_array_frag(1, dolfin_index));
%fragment(make_numpy_array_frag(2, dolfin_index));

//-----------------------------------------------------------------------------
// Macro for defining an unsafe in-typemap for NumPy arrays -> c arrays
//
// The typmaps defined by this macro just passes the pointer to the C array,
// contained in the NumPy array to the function. The knowledge of the length
// of the incomming array is not used.
//
// TYPE       : The pointer type
// TYPE_UPPER : The SWIG specific name of the type used in the array type checks values
//              SWIG use: INT32 for integer, DOUBLE for double aso.
// NUMPY_TYPE : The NumPy type that is going to be checked for
// TYPE_NAME  : The name of the pointer type, 'double' for 'double', 'uint' for
//              'dolfin::uint'
// DESCR      : The char descriptor of the NumPy type
//-----------------------------------------------------------------------------

#define convert_numpy_to_array_no_check(Type) "convert_numpy_to_array_no_check_" {Type}

%define UNSAFE_NUMPY_TYPEMAPS(TYPE,TYPE_UPPER,NUMPY_TYPE,TYPE_NAME,DESCR)

%fragment(convert_numpy_to_array_no_check(TYPE_NAME), "header") {
//-----------------------------------------------------------------------------
// Typemap function (Reducing wrapper code size)
//-----------------------------------------------------------------------------
SWIGINTERN bool convert_numpy_to_array_no_check_ ## TYPE_NAME(PyObject* input, TYPE*& ret)
{
  if (PyArray_Check(input))
  {
    PyArrayObject *xa = reinterpret_cast<PyArrayObject*>(input);
    if (PyArray_ISCONTIGUOUS(xa) && PyArray_TYPE(xa) == NUMPY_TYPE)
    {
      ret  = static_cast<TYPE*>(PyArray_DATA(xa));
      return true;
    }
  }
  PyErr_SetString(PyExc_TypeError,"contiguous numpy array of 'TYPE_NAME' expected. Make sure that the numpy array is contiguous, and uses dtype=DESCR.");
  return false;
}
}

//-----------------------------------------------------------------------------
// The typecheck
//-----------------------------------------------------------------------------
%typecheck(SWIG_TYPECHECK_ ## TYPE_UPPER ## _ARRAY) TYPE *
{
    $1 = PyArray_Check($input) ? 1 : 0;
}

//-----------------------------------------------------------------------------
// The typemap
//-----------------------------------------------------------------------------
%typemap(in, fragment=convert_numpy_to_array_no_check(TYPE_NAME)) TYPE *
{
if (!convert_numpy_to_array_no_check_ ## TYPE_NAME($input,$1))
    return NULL;
}

//-----------------------------------------------------------------------------
// Apply the typemap on the TYPE* _array argument
//-----------------------------------------------------------------------------
%apply TYPE* {TYPE* _array}

%enddef

//-----------------------------------------------------------------------------
// Macro for defining an safe in-typemap for NumPy arrays -> c arrays
//
// Type       : The pointer type
// TYPE_UPPER : The SWIG specific name of the type used in the array type checks values
//              SWIG use: INT32 for integer, DOUBLE for double aso.
// NUMPY_TYPE : The NumPy type that is going to be checked for
// TYPE_NAME  : The name of the pointer type, 'double' for 'double', 'size_t' for
//              'std::size_t'
// DESCR      : The char descriptor of the NumPy type
//-----------------------------------------------------------------------------
#define convert_numpy_to_array_with_check(Type) "convert_numpy_to_array_with_check_" {Type}
%define SAFE_NUMPY_TYPEMAPS(TYPE,TYPE_UPPER,NUMPY_TYPE,TYPE_NAME,DESCR)

%fragment(convert_numpy_to_array_with_check(TYPE_NAME), "header") {
//-----------------------------------------------------------------------------
// Typemap function (Reducing wrapper code size)
//-----------------------------------------------------------------------------
SWIGINTERN bool convert_numpy_to_array_with_check_ ## TYPE_NAME(PyObject* input, std::size_t& _array_dim, TYPE*& _array)
{
  if (PyArray_Check(input))
  {
    PyArrayObject *xa = reinterpret_cast<PyArrayObject*>(input);
    if (PyArray_ISCONTIGUOUS(xa) && (PyArray_TYPE(xa) == NUMPY_TYPE) &&
          (PyArray_NDIM(xa)==1))
    {
      _array  = static_cast<TYPE*>(PyArray_DATA(xa));
      _array_dim = static_cast<unsigned int>(PyArray_DIM(xa,0));
      return true;
    }
  }
  PyErr_SetString(PyExc_TypeError,"contiguous numpy array of 'TYPE_NAME' expected. Make sure that the numpy array is contiguous, with 1 dimension, and uses dtype=DESCR.");
  return false;
}
}

//-----------------------------------------------------------------------------
// The typecheck
//-----------------------------------------------------------------------------
%typecheck(SWIG_TYPECHECK_ ## TYPE_UPPER ## _ARRAY) (std::size_t _array_dim, TYPE* _array)
{
  $1 = PyArray_Check($input) ? 1 : 0;
}

//-----------------------------------------------------------------------------
// The typemap
//-----------------------------------------------------------------------------
%typemap(in, fragment=convert_numpy_to_array_with_check(TYPE_NAME)) \
  (std::size_t _array_dim, TYPE* _array)
{
  if (!convert_numpy_to_array_with_check_ ## TYPE_NAME($input,$1,$2))
    return NULL;
}
%enddef

//-----------------------------------------------------------------------------
// Run the different macros and instantiate the typemaps
// NOTE: If a typemap is not used an error will be issued as the generated
//       typemap function will not be used
//-----------------------------------------------------------------------------

#if (DOLFIN_SIZE_T==4)
UNSAFE_NUMPY_TYPEMAPS(std::size_t, INT32, NPY_UINTP, size_t, uintp)
#else
UNSAFE_NUMPY_TYPEMAPS(std::size_t, INT64, NPY_UINTP, size_t, uintp)
#endif
UNSAFE_NUMPY_TYPEMAPS(double,DOUBLE,NPY_DOUBLE,double,float_)
UNSAFE_NUMPY_TYPEMAPS(dolfin::la_index,INT32,NPY_UINT,dolfin_index,intc)
//UNSAFE_NUMPY_TYPEMAPS(int,INT,NPY_INT,int,cint)

#if (DOLFIN_SIZE_T==4)
SAFE_NUMPY_TYPEMAPS(std::size_t,INT32,NPY_UINTP,size_t,uintp)
#else
SAFE_NUMPY_TYPEMAPS(std::size_t,INT64,NPY_UINTP,size_t,uintp)
#endif
SAFE_NUMPY_TYPEMAPS(dolfin::la_index,INT32,NPY_INT,dolfin_index,intc)
SAFE_NUMPY_TYPEMAPS(double,DOUBLE,NPY_DOUBLE,double,float_)
SAFE_NUMPY_TYPEMAPS(int,INT32,NPY_INT,int,cint)

// Instantiate the code used by the make_numpy_array macro.
// The first argument name the C++ type, the second the corresponding
// NumPy type and the third argument a shorthand name for the C++ type
// to identify the correct function
NUMPY_ARRAY_FRAGMENTS(unsigned int, NPY_UINT, uint)
NUMPY_ARRAY_FRAGMENTS(double, NPY_DOUBLE, double)
NUMPY_ARRAY_FRAGMENTS(int, NPY_INT, int)
NUMPY_ARRAY_FRAGMENTS(bool, NPY_BOOL, bool)
NUMPY_ARRAY_FRAGMENTS(std::size_t, NPY_UINTP, size_t)

 //NUMPY_ARRAY_FRAGMENTS(dolfin::la_index, NPY_INT, dolfin_index)
 //NUMPY_ARRAY_FRAGMENTS(dolfin::la_index, NPY_INT64, dolfin_index)

//-----------------------------------------------------------------------------
// Typecheck for function expecting two-dimensional NumPy arrays of double
//-----------------------------------------------------------------------------
%typecheck(SWIG_TYPECHECK_DOUBLE_ARRAY) (int _array_dim_0, int _array_dim_1, double* _array)
{
    $1 = PyArray_Check($input) ? 1 : 0;
}

//-----------------------------------------------------------------------------
// Generic typemap to expand a two-dimensional NumPy arrays into three
// C++ arguments: _array_dim_0, _array_dim_1, _array
//-----------------------------------------------------------------------------
%typemap(in) (int _array_dim_0, int _array_dim_1, double* _array)
{
  if (PyArray_Check($input))
  {
    PyArrayObject *xa = reinterpret_cast<PyArrayObject*>($input);
    if ( PyArray_TYPE(xa) == NPY_DOUBLE )
    {
      if ( PyArray_NDIM(xa) == 2 )
      {
        $1 = PyArray_DIM(xa,0);
        $2 = PyArray_DIM(xa,1);
        $3  = static_cast<double*>(PyArray_DATA(xa));
      }
      else
      {
        SWIG_exception(SWIG_ValueError, "2d Array expected");
      }
    }
    else
    {
      SWIG_exception(SWIG_TypeError, "Array of doubles expected");
    }
  }
  else
  {
    SWIG_exception(SWIG_TypeError, "Array expected");
  }
}

//-----------------------------------------------------------------------------
// Typecheck for function expecting two-dimensional NumPy arrays of int
//-----------------------------------------------------------------------------
%typecheck(SWIG_TYPECHECK_DOUBLE_ARRAY) (int _array_dim_0, int _array_dim_1, int* _array)
{
    $1 = PyArray_Check($input) ? 1 : 0;
}

//-----------------------------------------------------------------------------
// Generic typemap to expand a two-dimensional NumPy arrays into three
// C++ arguments: _array_dim_0, _array_dim_1, _array
//-----------------------------------------------------------------------------
%typemap(in) (int _array_dim_0, int _array_dim_1, int* _array)
{
    if PyArray_Check($input) {
        PyArrayObject *xa = reinterpret_cast<PyArrayObject*>($input);
        if ( PyArray_TYPE(xa) == NPY_INT ) {
            if ( PyArray_NDIM(xa) == 2 ) {
                $1 = PyArray_DIM(xa,0);
                $2 = PyArray_DIM(xa,1);
                $3  = static_cast<int*>(PyArray_DATA(xa));
            } else {
                SWIG_exception(SWIG_ValueError, "2d Array expected");
            }
        } else {
            SWIG_exception(SWIG_TypeError, "Array of integers expected");
        }
    } else {
        SWIG_exception(SWIG_TypeError, "Array expected");
    }
}

//-----------------------------------------------------------------------------
// Cleaner of temporary data when passing 2D NumPy arrays to C++ functions
// expecting double **
//-----------------------------------------------------------------------------
%{
namespace __private {
  class DppDeleter {
  public:
    double** amat;
    DppDeleter () {amat = 0;}
    ~DppDeleter ()
    {
      delete[] amat;
      //free(amat);
      amat = 0;
    }
  };
}
%}

//-----------------------------------------------------------------------------
// Typemap for 2D NumPy arrays to C++ functions expecting double **
//-----------------------------------------------------------------------------
%typemap(in) double**
{
    if PyArray_Check($input) {
        PyArrayObject *xa = reinterpret_cast<PyArrayObject*>($input);
        if ( PyArray_TYPE(xa) == NPY_DOUBLE ) {
            if ( PyArray_NDIM(xa) == 2 ) {
	        const int m = PyArray_DIM(xa,0);
	        const int n = PyArray_DIM(xa,1);
                $1 = new double*[m];
                double *data = reinterpret_cast<double*>((*xa).data);
                for (int i=0;i<m;++i)
                    $1[i] = &data[i*n];
            } else {
                SWIG_exception(SWIG_ValueError, "2d Array expected");
            }
        } else {
            SWIG_exception(SWIG_TypeError, "Array of doubles expected");
        }
    } else {
        SWIG_exception(SWIG_TypeError, "Array expected");
    }
}

//-----------------------------------------------------------------------------
// Delete temporary data
//-----------------------------------------------------------------------------
%typemap(freearg) double**
{
  delete[] $1;
}

//-----------------------------------------------------------------------------
// Typemap for 2D NumPy arrays to C++ functions expecting double **
//-----------------------------------------------------------------------------
%typemap(in) (int _matrix_dim_0, int _matrix_dim_1, double** _matrix) (__private::DppDeleter tmp)
{
  if PyArray_Check($input)
  {
    PyArrayObject *xa = reinterpret_cast<PyArrayObject *>($input);
    if ( PyArray_TYPE(xa) == NPY_DOUBLE )
    {
      if ( PyArray_NDIM(xa) == 2 )
      {
        int n = PyArray_DIM(xa,0);
        int m = PyArray_DIM(xa,1);
        $1 = n;
        $2 = m;
        double **amat = static_cast<double **>(malloc(n*sizeof*amat));
        double *data = reinterpret_cast<double *>(PyArray_DATA(xa));
        for (int i=0;i<n;++i)
            amat[i] = data + i*n;
        $3 = amat;
        tmp.amat = amat;
      }
      else
      {
        SWIG_exception(SWIG_ValueError, "2d Array expected");
      }
    }
    else
    {
      SWIG_exception(SWIG_TypeError, "Array of doubles expected");
    }
  }
  else
  {
    SWIG_exception(SWIG_TypeError, "Array expected");
  }
}

// vim:ft=cpp: