/usr/include/dune/common/fvector.hh is in libdune-common-dev 2.3.1-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 | // -*- tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 2 -*-
// vi: set et ts=4 sw=2 sts=2:
// $Id$
#ifndef DUNE_FVECTOR_HH
#define DUNE_FVECTOR_HH
#include <cmath>
#include <cstddef>
#include <cstdlib>
#include <complex>
#include <cstring>
#include <utility>
#include <dune/common/std/constexpr.hh>
#include "typetraits.hh"
#include "exceptions.hh"
#include "array.hh"
#include "densevector.hh"
#include "static_assert.hh"
#include "unused.hh"
namespace Dune {
/** @addtogroup DenseMatVec
@{
*/
/*! \file
* \brief Implements a vector constructed from a given type
representing a field and a compile-time given size.
*/
template< class K, int SIZE > class FieldVector;
template< class K, int SIZE >
struct DenseMatVecTraits< FieldVector<K,SIZE> >
{
typedef FieldVector<K,SIZE> derived_type;
typedef Dune::array<K,SIZE> container_type;
typedef K value_type;
typedef typename container_type::size_type size_type;
};
template< class K, int SIZE >
struct FieldTraits< FieldVector<K,SIZE> >
{
typedef typename FieldTraits<K>::field_type field_type;
typedef typename FieldTraits<K>::real_type real_type;
};
/**
* @brief TMP to check the size of a DenseVectors statically, if possible.
*
* If the implementation type of C is a FieldVector, we statically check
* whether its dimension is SIZE.
* @tparam C The implementation of the other DenseVector
* @tparam SIZE The size we need assume.
*/
template<typename C, int SIZE>
struct IsFieldVectorSizeCorrect
{
enum {
/**
*@param True if C is not of type FieldVector or its dimension
* is not equal SIZE.
*/
value = true
};
};
template<typename T, int SIZE>
struct IsFieldVectorSizeCorrect<FieldVector<T,SIZE>,SIZE>
{
enum {value = true};
};
template<typename T, int SIZE, int SIZE1>
struct IsFieldVectorSizeCorrect<FieldVector<T,SIZE1>,SIZE>
{
enum {value = false};
};
/** \brief vector space out of a tensor product of fields.
*
* \tparam K the field type (use float, double, complex, etc)
* \tparam SIZE number of components.
*/
template< class K, int SIZE >
class FieldVector :
public DenseVector< FieldVector<K,SIZE> >
{
Dune::array<K,SIZE> _data;
typedef DenseVector< FieldVector<K,SIZE> > Base;
public:
//! export size
enum {
//! The size of this vector.
dimension = SIZE
};
typedef typename Base::size_type size_type;
typedef typename Base::value_type value_type;
//! Constructor making default-initialized vector
FieldVector()
// Use C++11 unified initialization if available - tends to generate
// fastest code
#if HAVE_INITIALIZER_LIST
: _data{}
{}
#else
{
// fall back to library approach - this gives faster code than array placement
// new. Apart from that, placement new may create problems if K is a complex
// type. In that case, the default constructor of the _data elements has already
// been called and may have allocated memory.
std::fill(_data.begin(),_data.end(),K());
}
#endif
//! Constructor making vector with identical coordinates
explicit FieldVector (const K& t)
{
fill(t);
}
//! Constructor making vector with identical coordinates
FieldVector (const FieldVector & x) : _data(x._data)
{}
/**
* \brief Copy constructor from a second vector of possibly different type
*
* If the DenseVector type of the this constructor's argument
* is implemented by a FieldVector, it is statically checked
* if it has the correct size. If this is not the case
* the constructor is removed from the overload set using SFINAE.
*
* \param[in] x A DenseVector with correct size.
* \param[in] dummy A void* dummy argument needed by SFINAE.
*/
template<class C>
FieldVector (const DenseVector<C> & x, typename Dune::enable_if<IsFieldVectorSizeCorrect<C,SIZE>::value>::type* dummy=0 )
{
DUNE_UNUSED_PARAMETER(dummy);
// do a run-time size check, for the case that x is not a FieldVector
assert(x.size() == SIZE);
for (size_type i = 0; i<SIZE; i++)
_data[i] = x[i];
}
//! Constructor making vector with identical coordinates
template<class K1, int SIZE1>
explicit FieldVector (const FieldVector<K1,SIZE1> & x)
{
dune_static_assert(SIZE1 == SIZE, "FieldVector in constructor has wrong size");
for (size_type i = 0; i<SIZE; i++)
_data[i] = x[i];
}
using Base::operator=;
DUNE_CONSTEXPR size_type size () const { return vec_size(); }
// make this thing a vector
DUNE_CONSTEXPR size_type vec_size () const { return SIZE; }
K & vec_access(size_type i) { return _data[i]; }
const K & vec_access(size_type i) const { return _data[i]; }
private:
void fill(const K& t)
{
for (int i=0; i<SIZE; i++) _data[i]=t;
}
};
/** \brief Read a FieldVector from an input stream
* \relates FieldVector
*
* \note This operator is STL compliant, i.e., the content of v is only
* changed if the read operation is successful.
*
* \param[in] in std :: istream to read from
* \param[out] v FieldVector to be read
*
* \returns the input stream (in)
*/
template<class K, int SIZE>
inline std::istream &operator>> ( std::istream &in,
FieldVector<K, SIZE> &v )
{
FieldVector<K, SIZE> w;
for( typename FieldVector<K, SIZE>::size_type i = 0; i < SIZE; ++i )
in >> w[ i ];
if(in)
v = w;
return in;
}
#ifndef DOXYGEN
template< class K >
struct DenseMatVecTraits< FieldVector<K,1> >
{
typedef FieldVector<K,1> derived_type;
typedef K container_type;
typedef K value_type;
typedef size_t size_type;
};
/** \brief Vectors containing only one component
*/
template<class K>
class FieldVector<K, 1> :
public DenseVector< FieldVector<K,1> >
{
K _data;
typedef DenseVector< FieldVector<K,1> > Base;
public:
//! export size
enum {
//! The size of this vector.
dimension = 1
};
typedef typename Base::size_type size_type;
//===== construction
/** \brief Default constructor */
FieldVector ()
: _data()
{}
/** \brief Constructor with a given scalar */
FieldVector (const K& k) : _data(k) {}
//! Constructor making vector with identical coordinates
template<class C>
FieldVector (const DenseVector<C> & x)
{
dune_static_assert(((bool)IsFieldVectorSizeCorrect<C,1>::value), "FieldVectors do not match in dimension!");
assert(x.size() == 1);
_data = x[0];
}
//! copy constructor
FieldVector ( const FieldVector &other )
: _data( other._data )
{}
//! Assignment operator for scalar
inline FieldVector& operator= (const K& k)
{
_data = k;
return *this;
}
DUNE_CONSTEXPR size_type size () const { return vec_size(); }
//===== forward methods to container
DUNE_CONSTEXPR size_type vec_size () const { return 1; }
K & vec_access(size_type i)
{
assert(i == 0);
return _data;
}
const K & vec_access(size_type i) const
{
assert(i == 0);
return _data;
}
//===== conversion operator
/** \brief Conversion operator */
operator K () { return _data; }
/** \brief Const conversion operator */
operator K () const { return _data; }
};
/* ----- FV / FV ----- */
/* not necessary as these operations are already covered via the cast operator */
/* ----- FV / scalar ----- */
//! Binary addition, when using FieldVector<K,1> like K
template<class K>
inline FieldVector<K,1> operator+ (const FieldVector<K,1>& a, const K b)
{
return a[0]+b;
}
//! Binary subtraction, when using FieldVector<K,1> like K
template<class K>
inline FieldVector<K,1> operator- (const FieldVector<K,1>& a, const K b)
{
return a[0]-b;
}
//! Binary multiplication, when using FieldVector<K,1> like K
template<class K>
inline FieldVector<K,1> operator* (const FieldVector<K,1>& a, const K b)
{
return a[0]*b;
}
//! Binary division, when using FieldVector<K,1> like K
template<class K>
inline FieldVector<K,1> operator/ (const FieldVector<K,1>& a, const K b)
{
return a[0]/b;
}
//! Binary compare, when using FieldVector<K,1> like K
template<class K>
inline bool operator> (const FieldVector<K,1>& a, const K b)
{
return a[0]>b;
}
//! Binary compare, when using FieldVector<K,1> like K
template<class K>
inline bool operator>= (const FieldVector<K,1>& a, const K b)
{
return a[0]>=b;
}
//! Binary compare, when using FieldVector<K,1> like K
template<class K>
inline bool operator< (const FieldVector<K,1>& a, const K b)
{
return a[0]<b;
}
//! Binary compare, when using FieldVector<K,1> like K
template<class K>
inline bool operator<= (const FieldVector<K,1>& a, const K b)
{
return a[0]<=b;
}
//! Binary compare, when using FieldVector<K,1> like K
template<class K>
inline bool operator== (const FieldVector<K,1>& a, const K b)
{
return a[0]==b;
}
//! Binary compare, when using FieldVector<K,1> like K
template<class K>
inline bool operator!= (const FieldVector<K,1>& a, const K b)
{
return a[0]!=b;
}
/* ----- scalar / FV ------ */
//! Binary addition, when using FieldVector<K,1> like K
template<class K>
inline FieldVector<K,1> operator+ (const K a, const FieldVector<K,1>& b)
{
return a+b[0];
}
//! Binary subtraction, when using FieldVector<K,1> like K
template<class K>
inline FieldVector<K,1> operator- (const K a, const FieldVector<K,1>& b)
{
return a-b[0];
}
//! Binary multiplication, when using FieldVector<K,1> like K
template<class K>
inline FieldVector<K,1> operator* (const K a, const FieldVector<K,1>& b)
{
return a*b[0];
}
//! Binary division, when using FieldVector<K,1> like K
template<class K>
inline FieldVector<K,1> operator/ (const K a, const FieldVector<K,1>& b)
{
return a/b[0];
}
//! Binary compare, when using FieldVector<K,1> like K
template<class K>
inline bool operator> (const K a, const FieldVector<K,1>& b)
{
return a>b[0];
}
//! Binary compare, when using FieldVector<K,1> like K
template<class K>
inline bool operator>= (const K a, const FieldVector<K,1>& b)
{
return a>=b[0];
}
//! Binary compare, when using FieldVector<K,1> like K
template<class K>
inline bool operator< (const K a, const FieldVector<K,1>& b)
{
return a<b[0];
}
//! Binary compare, when using FieldVector<K,1> like K
template<class K>
inline bool operator<= (const K a, const FieldVector<K,1>& b)
{
return a<=b[0];
}
//! Binary compare, when using FieldVector<K,1> like K
template<class K>
inline bool operator== (const K a, const FieldVector<K,1>& b)
{
return a==b[0];
}
//! Binary compare, when using FieldVector<K,1> like K
template<class K>
inline bool operator!= (const K a, const FieldVector<K,1>& b)
{
return a!=b[0];
}
#endif
/** @} end documentation */
} // end namespace
#endif
|