This file is indexed.

/usr/include/dune/common/fvector.hh is in libdune-common-dev 2.3.1-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
// -*- tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 2 -*-
// vi: set et ts=4 sw=2 sts=2:
// $Id$
#ifndef DUNE_FVECTOR_HH
#define DUNE_FVECTOR_HH

#include <cmath>
#include <cstddef>
#include <cstdlib>
#include <complex>
#include <cstring>
#include <utility>

#include <dune/common/std/constexpr.hh>

#include "typetraits.hh"
#include "exceptions.hh"
#include "array.hh"
#include "densevector.hh"
#include "static_assert.hh"
#include "unused.hh"

namespace Dune {

  /** @addtogroup DenseMatVec
      @{
   */

  /*! \file
   * \brief Implements a vector constructed from a given type
     representing a field and a compile-time given size.
   */

  template< class K, int SIZE > class FieldVector;
  template< class K, int SIZE >
  struct DenseMatVecTraits< FieldVector<K,SIZE> >
  {
    typedef FieldVector<K,SIZE> derived_type;
    typedef Dune::array<K,SIZE> container_type;
    typedef K value_type;
    typedef typename container_type::size_type size_type;
  };

  template< class K, int SIZE >
  struct FieldTraits< FieldVector<K,SIZE> >
  {
    typedef typename FieldTraits<K>::field_type field_type;
    typedef typename FieldTraits<K>::real_type real_type;
  };

  /**
   * @brief TMP to check the size of a DenseVectors statically, if possible.
   *
   * If the implementation type of C is  a FieldVector, we statically check
   * whether its dimension is SIZE.
   * @tparam C The implementation of the other DenseVector
   * @tparam SIZE The size we need assume.
   */
  template<typename C, int SIZE>
  struct IsFieldVectorSizeCorrect
  {
    enum {
      /**
         *@param True if C is not of type FieldVector or its dimension
       * is not equal SIZE.
       */
      value = true
    };
  };

  template<typename T, int SIZE>
  struct IsFieldVectorSizeCorrect<FieldVector<T,SIZE>,SIZE>
  {
    enum {value = true};
  };

  template<typename T, int SIZE, int SIZE1>
  struct IsFieldVectorSizeCorrect<FieldVector<T,SIZE1>,SIZE>
  {
    enum {value = false};
  };


  /** \brief vector space out of a tensor product of fields.
   *
   * \tparam K    the field type (use float, double, complex, etc)
   * \tparam SIZE number of components.
   */
  template< class K, int SIZE >
  class FieldVector :
    public DenseVector< FieldVector<K,SIZE> >
  {
    Dune::array<K,SIZE> _data;
    typedef DenseVector< FieldVector<K,SIZE> > Base;
  public:
    //! export size
    enum {
      //! The size of this vector.
      dimension = SIZE
    };

    typedef typename Base::size_type size_type;
    typedef typename Base::value_type value_type;

    //! Constructor making default-initialized vector
    FieldVector()
    // Use C++11 unified initialization if available - tends to generate
    // fastest code
#if HAVE_INITIALIZER_LIST
      : _data{}
    {}
#else
    {
      // fall back to library approach - this gives faster code than array placement
      // new. Apart from that, placement new may create problems if K is a complex
      // type. In that case, the default constructor of the _data elements has already
      // been called and may have allocated memory.
      std::fill(_data.begin(),_data.end(),K());
    }
#endif

    //! Constructor making vector with identical coordinates
    explicit FieldVector (const K& t)
    {
      fill(t);
    }

    //! Constructor making vector with identical coordinates
    FieldVector (const FieldVector & x) : _data(x._data)
    {}

    /**
     * \brief Copy constructor from a second vector of possibly different type
     *
     * If the DenseVector type of the this constructor's argument
     * is implemented by a FieldVector, it is statically checked
     * if it has the correct size. If this is not the case
     * the constructor is removed from the overload set using SFINAE.
     *
     * \param[in]  x  A DenseVector with correct size.
     * \param[in]  dummy  A void* dummy argument needed by SFINAE.
     */
    template<class C>
    FieldVector (const DenseVector<C> & x, typename Dune::enable_if<IsFieldVectorSizeCorrect<C,SIZE>::value>::type* dummy=0 )
    {
      DUNE_UNUSED_PARAMETER(dummy);
      // do a run-time size check, for the case that x is not a FieldVector
      assert(x.size() == SIZE);
      for (size_type i = 0; i<SIZE; i++)
        _data[i] = x[i];
    }

    //! Constructor making vector with identical coordinates
    template<class K1, int SIZE1>
    explicit FieldVector (const FieldVector<K1,SIZE1> & x)
    {
      dune_static_assert(SIZE1 == SIZE, "FieldVector in constructor has wrong size");
      for (size_type i = 0; i<SIZE; i++)
        _data[i] = x[i];
    }
    using Base::operator=;

    DUNE_CONSTEXPR size_type size () const { return vec_size(); }

    // make this thing a vector
    DUNE_CONSTEXPR size_type vec_size () const { return SIZE; }
    K & vec_access(size_type i) { return _data[i]; }
    const K & vec_access(size_type i) const { return _data[i]; }
  private:
    void fill(const K& t)
    {
      for (int i=0; i<SIZE; i++) _data[i]=t;
    }
  };

  /** \brief Read a FieldVector from an input stream
   *  \relates FieldVector
   *
   *  \note This operator is STL compliant, i.e., the content of v is only
   *        changed if the read operation is successful.
   *
   *  \param[in]  in  std :: istream to read from
   *  \param[out] v   FieldVector to be read
   *
   *  \returns the input stream (in)
   */
  template<class K, int SIZE>
  inline std::istream &operator>> ( std::istream &in,
                                    FieldVector<K, SIZE> &v )
  {
    FieldVector<K, SIZE> w;
    for( typename FieldVector<K, SIZE>::size_type i = 0; i < SIZE; ++i )
      in >> w[ i ];
    if(in)
      v = w;
    return in;
  }

#ifndef DOXYGEN
  template< class K >
  struct DenseMatVecTraits< FieldVector<K,1> >
  {
    typedef FieldVector<K,1> derived_type;
    typedef K container_type;
    typedef K value_type;
    typedef size_t size_type;
  };

  /** \brief Vectors containing only one component
   */
  template<class K>
  class FieldVector<K, 1> :
    public DenseVector< FieldVector<K,1> >
  {
    K _data;
    typedef DenseVector< FieldVector<K,1> > Base;
  public:
    //! export size
    enum {
      //! The size of this vector.
      dimension = 1
    };

    typedef typename Base::size_type size_type;

    //===== construction

    /** \brief Default constructor */
    FieldVector ()
      : _data()
    {}

    /** \brief Constructor with a given scalar */
    FieldVector (const K& k) : _data(k) {}

    //! Constructor making vector with identical coordinates
    template<class C>
    FieldVector (const DenseVector<C> & x)
    {
      dune_static_assert(((bool)IsFieldVectorSizeCorrect<C,1>::value), "FieldVectors do not match in dimension!");
      assert(x.size() == 1);
      _data = x[0];
    }

    //! copy constructor
    FieldVector ( const FieldVector &other )
      : _data( other._data )
    {}

    //! Assignment operator for scalar
    inline FieldVector& operator= (const K& k)
    {
      _data = k;
      return *this;
    }

    DUNE_CONSTEXPR size_type size () const { return vec_size(); }

    //===== forward methods to container
    DUNE_CONSTEXPR size_type vec_size () const { return 1; }
    K & vec_access(size_type i)
    {
      assert(i == 0);
      return _data;
    }
    const K & vec_access(size_type i) const
    {
      assert(i == 0);
      return _data;
    }

    //===== conversion operator

    /** \brief Conversion operator */
    operator K () { return _data; }

    /** \brief Const conversion operator */
    operator K () const { return _data; }
  };

  /* ----- FV / FV ----- */
  /* not necessary as these operations are already covered via the cast operator */

  /* ----- FV / scalar ----- */

  //! Binary addition, when using FieldVector<K,1> like K
  template<class K>
  inline FieldVector<K,1> operator+ (const FieldVector<K,1>& a, const K b)
  {
    return a[0]+b;
  }

  //! Binary subtraction, when using FieldVector<K,1> like K
  template<class K>
  inline FieldVector<K,1> operator- (const FieldVector<K,1>& a, const K b)
  {
    return a[0]-b;
  }

  //! Binary multiplication, when using FieldVector<K,1> like K
  template<class K>
  inline FieldVector<K,1> operator* (const FieldVector<K,1>& a, const K b)
  {
    return a[0]*b;
  }

  //! Binary division, when using FieldVector<K,1> like K
  template<class K>
  inline FieldVector<K,1> operator/ (const FieldVector<K,1>& a, const K b)
  {
    return a[0]/b;
  }

  //! Binary compare, when using FieldVector<K,1> like K
  template<class K>
  inline bool operator> (const FieldVector<K,1>& a, const K b)
  {
    return a[0]>b;
  }

  //! Binary compare, when using FieldVector<K,1> like K
  template<class K>
  inline bool operator>= (const FieldVector<K,1>& a, const K b)
  {
    return a[0]>=b;
  }

  //! Binary compare, when using FieldVector<K,1> like K
  template<class K>
  inline bool operator< (const FieldVector<K,1>& a, const K b)
  {
    return a[0]<b;
  }

  //! Binary compare, when using FieldVector<K,1> like K
  template<class K>
  inline bool operator<= (const FieldVector<K,1>& a, const K b)
  {
    return a[0]<=b;
  }

  //! Binary compare, when using FieldVector<K,1> like K
  template<class K>
  inline bool operator== (const FieldVector<K,1>& a, const K b)
  {
    return a[0]==b;
  }

  //! Binary compare, when using FieldVector<K,1> like K
  template<class K>
  inline bool operator!= (const FieldVector<K,1>& a, const K b)
  {
    return a[0]!=b;
  }

  /* ----- scalar / FV ------ */

  //! Binary addition, when using FieldVector<K,1> like K
  template<class K>
  inline FieldVector<K,1> operator+ (const K a, const FieldVector<K,1>& b)
  {
    return a+b[0];
  }

  //! Binary subtraction, when using FieldVector<K,1> like K
  template<class K>
  inline FieldVector<K,1> operator- (const K a, const FieldVector<K,1>& b)
  {
    return a-b[0];
  }

  //! Binary multiplication, when using FieldVector<K,1> like K
  template<class K>
  inline FieldVector<K,1> operator* (const K a, const FieldVector<K,1>& b)
  {
    return a*b[0];
  }

  //! Binary division, when using FieldVector<K,1> like K
  template<class K>
  inline FieldVector<K,1> operator/ (const K a, const FieldVector<K,1>& b)
  {
    return a/b[0];
  }

  //! Binary compare, when using FieldVector<K,1> like K
  template<class K>
  inline bool operator> (const K a, const FieldVector<K,1>& b)
  {
    return a>b[0];
  }

  //! Binary compare, when using FieldVector<K,1> like K
  template<class K>
  inline bool operator>= (const K a, const FieldVector<K,1>& b)
  {
    return a>=b[0];
  }

  //! Binary compare, when using FieldVector<K,1> like K
  template<class K>
  inline bool operator< (const K a, const FieldVector<K,1>& b)
  {
    return a<b[0];
  }

  //! Binary compare, when using FieldVector<K,1> like K
  template<class K>
  inline bool operator<= (const K a, const FieldVector<K,1>& b)
  {
    return a<=b[0];
  }

  //! Binary compare, when using FieldVector<K,1> like K
  template<class K>
  inline bool operator== (const K a, const FieldVector<K,1>& b)
  {
    return a==b[0];
  }

  //! Binary compare, when using FieldVector<K,1> like K
  template<class K>
  inline bool operator!= (const K a, const FieldVector<K,1>& b)
  {
    return a!=b[0];
  }
#endif

  /** @} end documentation */

} // end namespace

#endif