/usr/include/dune/geometry/genericgeometry/geometry.hh is in libdune-geometry-dev 2.3.1-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 | // -*- tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 2 -*-
// vi: set et ts=4 sw=2 sts=2:
#ifndef DUNE_GENERICGEOMETRY_GEOMETRY_HH
#define DUNE_GENERICGEOMETRY_GEOMETRY_HH
#warning This header and the code it contains is deprecated. If you need functionality \
similar to BasicGeometry, please use the MultiLinearGeometry class.
#include <dune/common/typetraits.hh>
#include <dune/common/nullptr.hh>
#include <dune/geometry/genericgeometry/mappingprovider.hh>
#include <dune/geometry/genericgeometry/geometrytraits.hh>
namespace Dune
{
namespace GenericGeometry
{
/** \addtogroup GenericGeometry
*
* \section General
*
* Based on a recursive definition of the reference elements, a generic
* implementation of Dune::Geometry is provided. The class used for the
* implementation of the Dune::Geometry engine is
* GenericGeometry::BasicGeometry.
*
* The BasicGeometry class takes a template argument Traits specifying
* details of the reference mapping implementation and some performance
* settings. A default implementation for this class is
* GenericGeometry::DefaultGeometryTraits. The traits class must contain
* the same types as this default implementation.
*
* To conform with the Dune::Geometry engine, two further classes are
* provided: GenericGeometry::Geometry and GenericGeometry::LocalGeometry.
* To use these classes instead of GenericGeometry::BasicGeometry, the
* traits classes
* \code
* template< class Grid> GenericGeometry::GlobalGeometryTraits<Grid>
* template< class Grid> GenericGeometry::LocalGeometryTraits<Grid>
* \endcode
* have to be specialized. These classes are simply passed as Traits
* argument to GenericGeometry::BasicGeometry.
*
* The reference mapping for a given topology type is given by
* Mapping<Topology>::type in the traits class. Here, Topology is one of
* the generic topology classes GenericGeometry::Point,
* GenericGeometry::Prism, GenericGeometry::Pyramid.
* An interface for the mapping is provided by GenericGeometry::Mapping.
* The implementation of this interface must have constructors taking a
* single argument. The constructor of GenericGeometry::BasicGeometry
* looks as follows:
* \code
* template< class CoordVector >
* BasicGeometry ( const GeometryType &type, const CoordVector &coords );
* \endcode
* Its first argument, <em>type</em>, specifies the type of the reference
* element (as a Dune::GeometryType). The second argument, <em>coords</em>
* is passed directly to the constructor of the mapping implementation.
* The most prominent implementation of GenericGeometry::Mapping is
* GenericGeometry::CornerMapping. It provides a polynomial interpolation
* of the entity's corners with minimal degree. In this case,
* <em>coords</em> represents the entity's corners.
*
* \section Simple Usage
* To add first order Lagrange type geometries to a grid implementation
* the following steps suffice:
* - Overload the traits classes
* \code
template<>
struct GenericGeometry::GlobalGeometryTraits< MyGrid >
: public GenericGeometry::DefaultGeometryTraits
<MyGrid::ctype,MyGrid::dimension,MyGrid::dimworld>
{};
template<>
struct GenericGeometry::LocalGeometryTraits< MyGrid >
: public GenericGeometry::DefaultGeometryTraits
<MyGrid::ctype,MyGrid::dimension,MyGrid::dimworld>
{};
* \endcode
* Note that these classes are default implementations which should cover
* all cases but are in a specific situation far from the optimal choice.
* For example, an increase
* in efficiency can be achieved for grids with a fixed element type
* (set hybrid to false and set the topologyId variable)
* or for grids with only affine transformations - which in the case of
* the local geometries is often true - the last template
* argument (default false) can be used to switch to mappings which are
* assumed to always be affine (no checking done).
* - Add to the GridFamily::Traits::Codim<codim> structure:
* \code
typedef Dune :: Geometry
< dimension-codim, dimensionworld, const MyGrid,
Dune :: GenericGeometry :: Geometry > Geometry;
typedef Dune :: Geometry
< dimension-codim, dimension, const MyGrid,
Dune :: GenericGeometry :: LocalGeometry > LocalGeometry;
* \endcode
* - Both geometries can be build by calling the constructor taking
* a DUNE grid type and an instance of an arbitrary class with a method
\code
const FieldVector< ctype, dimensionworld >& operator[](unsigned int i);
\endcode
* The references returned must remain valid during the whole life span
* of the geometry.
* - In MyGrid::Entity<0> the following methods can then be easily implemented:
* - geometry(): this requires the knowledge of the dune geometry type of the entity
* and the coordinates of the corner points.
* - geometryInFather(): The corner points for each child in the
* reference element of the father can be used to construct the local geometry -
* note that this geometry is mostly affine and these geometries can be
* precomputed and stored.
* .
* - For the Dune::Intersection class the geometries the following implementations for the geometries can be used:
* - intersectionGlobal(): can be implemented in the same way as the geometry of the
* entity using the coordinates of the corners of the intersection.
* Alternatively, in the case of a conform intersection,
* the class GenericGeometry::Geometry provides a possibility
* to construct traces of a given geometry, e.g., a reference mapping
* restricted to a codimension one subentities of the reference
* element. This is achieved by calling the constructor on the
* GenericGeometry::Geometry class (with the codim template equal to
* one) passing a codimension zero geometry implementation and the number of the
* codimension one subentity.
* \code
GenericGeometry::Geometry<myGridDim-1,myWorldDim,MyGrid>
(inside->geometry(),numberInSelf());
* \endcode
* - intersectionInSelf()/intersectionInNeighbor():
* A similar strategy as described above for the intersectionGlobal
* can also be used for the geometry mapping to the codimension zero
* reference element. Either the corners of the intersection in
* local coordinates can be used in the construction of the local
* geometries, or (for conform intersections) the traces can be used,
* passing an identity mapping as codimension zero geometry.
* The GenericGeometry::GenericReferenceElement provides these
* mappings directly via the template method
* GenericGeometry::GenericReferenceElement::mapping.
* The return value of this method can be directly used to construct
* a GenericGeometry::Geometry instance:
* \code
typedef GenericReferenceElementContainer<ctype,myGridDim> RefElementContType;
RefElementContType refElemCont;
const RefElementContType::value_type& refElem=refElemCont(insideGeometryType);
GenericGeometry::Geometry<myGridDim-1,myGridDim,MyGrid>(refElem.mapping(numberInSelf()));
* \endcode
* - integrationOuterNormal(): the generic geometry implementation provides a method
* to compute the integration outer normals, so that the following code
* fragment can be used:
\code
typedef typename Grid :: template Codim< 0 > :: Geometry Geometry;
const Geometry &geo = inside()->geometry();
FieldVector< ctype, dimension > x( intersectionSelfLocal().global( local ) );
return Grid :: getRealImplementation( geo ).normal( numberInSelf(), x );
\endcode
* .
* - To add geometries for subentitiies of codim>0
* given a entity en of codimension zero and the subentity number subNr :
* - geometry: the geometry can be constructed by the following line of code
\code
GenericGeometry::Geometry<myGridDim-codim,myWorldDim,MyGrid>
(en.geometry(),subNr);
\endcode
* .
* .
*
*/
// BasicGeometry
// -------------
/** \ingroup GenericGeometry
* \brief generic implementation of DUNE geometries
*
* This class is provides a generic implementation of a DUNE geometry.
*
* Parameters shared by all codimensions are summarized in one class
* parameter called Traits. As a default traits class, the class
* DefaultGeometryTraits can be used. Alternatively, the user can
* provide hand-written traits classes (which may, if that helps,
* derive from DefaultGeometryTraits). Such classes have to provide
* the following fields:
* \code
* template< My_Template_Parameters >
* struct MyGeometryTraits
* {
* // ctype is the type used for coordinate coefficients
* typedef DuneCoordTraits< ctype > CoordTraits;
*
* // Dimension of the space the geometry maps into
* static const int dimWorld = ...;
*
* // hybrid [ true if reference element type is a run-time parameter ]
* static const bool hybrid = ...;
*
* // topologyId [ reference element type, only needed if it is not a run-time parameter ]
* // In this example: a dim-dimensional simplex
* // static const unsigned int topologyId = SimplexTopology< dim >::type::id;
*
* // explained below
* template< class Topology >
* struct Mapping
* {
* typedef CornerMapping< CoordTraits, Topology, dimWorld > type;
* };
*
* // Caching behavior
* struct Caching
* {
* static const EvaluationType evaluateJacobianTransposed = ComputeOnDemand;
* static const EvaluationType evaluateJacobianInverseTransposed = ComputeOnDemand;
* static const EvaluationType evaluateIntegrationElement = ComputeOnDemand;
* };
* };
* \endcode
*
* The structure specifying the reference mapping is
* Traits::Mapping::type. An example implementation
* is the GenericGeometry::CornerMapping which defines
* the simple mapping taking corners of the reference
* elements to corner of the entity in space.
*
* The central reference mapping specified by Traits::Mapping::type
* requires a constructor taking a single argument.
* The GenericGeometry::BasicGeometry has a constructor with one template
* argument which is passed on to the constructor of the reference mapping.
* The interface for the this class is GenericGeometry::Mapping.
*
* To increase the efficiency of the geometry
* implementation, different strategies for
* the caching of parts of the geometry data
* is provided. The specifics are given
* by the structure Traits::Caching. Possible
* values are:
* - ComputeOnDemand: use caching if method called using barycenter
* - PreCompute: use caching in constructor using barycenter
* .
*
* \note This class cannot be used directly as an implementation of
* Dune::Geometry. Its template parameter list differs from what
* is expected there from the engine.
* One of the following derived classes
* can be used instead:
* - Dune::GenericGeometry::Geometry
* - Dune::GenericGeometry::LocalGeometry
* .
*/
template< int mydim, class Traits >
class BasicGeometry
{
typedef typename Traits :: CoordTraits CoordTraits;
/** \brief Be friend with other instantiations of the same class */
template< int, class > friend class BasicGeometry;
public:
/** \brief The dimension of the parameter space of this geometry */
static const int mydimension = mydim;
/** \brief The dimension of the world space of this geometry */
static const int coorddimension = Traits :: dimWorld;
/** \brief Type used for coordinate components */
typedef typename CoordTraits :: ctype ctype;
/** \brief Type used for parameter coordinates */
typedef FieldVector< ctype, mydimension > LocalCoordinate;
/** \brief Type used for world coordinates */
typedef FieldVector< ctype, coorddimension > GlobalCoordinate;
private:
dune_static_assert( (0 <= mydimension), "Geometry dimension must be nonnegative." );
template< bool >
struct Hybrid
{
typedef VirtualMappingFactory< mydimension, Traits > MappingFactory;
};
template< bool >
struct NonHybrid
{
static const int topologyId = Traits::template hasSingleGeometryType< mydimension >::topologyId;
typedef typename GenericGeometry::Topology< topologyId, mydimension >::type Topology;
typedef GenericGeometry::NonHybridMappingFactory< Topology, Traits > MappingFactory;
};
static const bool hybrid = !Traits::template hasSingleGeometryType< mydimension >::v;
protected:
typedef typename conditional< hybrid, Hybrid< true >, NonHybrid< false > >::type::MappingFactory MappingFactory;
typedef typename MappingFactory::Mapping Mapping;
public:
/** \brief Type used for Jacobian matrices
*
* \note This is not a FieldMatrix but a proxy type that can be assigned
* to a FieldMatrix.
*/
typedef typename Mapping::JacobianTransposed JacobianTransposed;
/** \brief Type used for Jacobian matrices
*
* \note This is not a FieldMatrix but a proxy type that can be assigned
* to a FieldMatrix.
*/
typedef typename Mapping::JacobianInverseTransposed Jacobian;
// for cenvencience, Jacobian is the name of the type in the geometry interface
typedef Jacobian JacobianInverseTransposed;
public:
/** \brief Default constructor
*/
BasicGeometry ()
: mapping_( nullptr )
{}
/** \brief Constructor using a GeometryType and a list of corner coordinates */
template< class CoordVector >
BasicGeometry ( const GeometryType &type, const CoordVector &coords )
{
assert(type.dim() == mydim);
mapping_ = MappingFactory::construct( type.id(), coords, mappingStorage_ );
}
/** \brief Constructor using a vector of corner coordinates and the dimension
* \note the geometry type is guessed from the number of vertices, thus this will only work up to dim 3
*/
template< class CoordVector >
BasicGeometry ( const CoordVector &coords )
{
GeometryType type;
type.makeFromVertices( mydim, coords.size() );
mapping_ = MappingFactory::construct( type.id(), coords, mappingStorage_ );
}
/** \brief obtain a geometry for a subentity
*
* Assume that we have a geometry for some entity d-dimensional E.
* This method can provide a geometry for the i-th subentity of E
* (of codimension d - mydimension).
*
* \note This method can be more efficient than just building up the
* geometry for the subentity. For example, the subgeometry
* automatically inherits affinity.
*
* \param[in] father geometry of entity \em E
* \param[in] i number of the subentity (in generic numbering)
*/
template< int fatherdim >
BasicGeometry ( const BasicGeometry< fatherdim, Traits > &father, int i )
{
const unsigned int codim = fatherdim - mydim;
mapping_ = father.mapping_->template trace< codim >( i, mappingStorage_ );
}
/** \brief Copy constructor */
BasicGeometry ( const BasicGeometry &other )
: mapping_( other.mapping_ ? other.mapping_->clone( mappingStorage_ ) : nullptr )
{}
/** \brief Destructor */
~BasicGeometry ()
{
if( mapping_ )
mapping_->~Mapping();
}
/** \brief Assignment from other BasicGeometry */
const BasicGeometry &operator= ( const BasicGeometry &other )
{
if( mapping_ )
mapping_->~Mapping();
mapping_ = (other.mapping_) ? other.mapping_->clone( mappingStorage_ ) : nullptr;
return *this;
}
/** \brief bool cast
*
* Like a pointer, a BasicGeometry casts to <b>true</b> if and only if
* it is properly initialized.
* If a geometry casts to <b>false</b>, none of the interface methods
* may be called.
*/
operator bool () const
{
return bool( mapping_ );
}
/** \brief Return the topological type of this geometry */
GeometryType type () const
{
return mapping_->type();
}
/** \brief Return the number of corners */
int corners () const
{
return mapping_->numCorners();
}
/** \brief Return the world coordinates of the i-th corner */
GlobalCoordinate corner ( const int i ) const
{
return mapping_->corner( i );
}
/** \brief Map local to global coordinates */
GlobalCoordinate global ( const LocalCoordinate &local ) const
{
return mapping_->global( local );
}
/** \brief Map global to local coordinates */
LocalCoordinate local ( const GlobalCoordinate &global ) const
{
return mapping_->local( global );
}
/** \brief return center of element */
GlobalCoordinate center () const
{
return mapping_->center();
}
/** \brief Return true if this is an affine geometry */
bool affine () const
{
return mapping_->affine();
}
/** \brief Return the factor \$|det F|\$ that appears in the integral transformation formula */
ctype integrationElement ( const LocalCoordinate &local ) const
{
return mapping_->integrationElement( local );
}
/** \brief Return the volume of the element */
ctype volume () const
{
return mapping_->volume();
}
/** \brief Compute the transpose of the Jacobian matrix of the
* transformation from the reference element into the world
* space
*/
const JacobianTransposed &jacobianTransposed ( const LocalCoordinate &local ) const
{
return mapping_->jacobianTransposed( local );
}
/** \brief Compute the transpose of the inverse Jacobian matrix of the transformation
from the reference element into the world space */
const JacobianInverseTransposed &jacobianInverseTransposed ( const LocalCoordinate &local ) const
{
return mapping_->jacobianInverseTransposed( local );
}
private:
/** \brief Always points to mappingStorage_, but has the correct type */
Mapping* mapping_;
/** \brief A chunk of raw memory storing the actual object
*
* We don't know its type, but we don't want to do classical
* dynamic polymorphism, because heap allocation is expensive.
*/
char mappingStorage_[ MappingFactory::maxMappingSize ] __attribute__((aligned(sizeof(double))));
};
// Geometry
// --------
/** \class Geometry
* \ingroup GenericGeometry
* \brief generic implementation of a DUNE (global) geometry
*
* Geometry inherits all its features from BasicGeometry. It only adds
* GlobalGeometryTraits< Grid > as Traits parameter to the template
* parameter list.
*
* \tparam mydim Dimension of the entity
* \tparam cdim Dimension of the coordinate space
* \tparam Grid The grid this geometry will be used in
*/
template< int mydim, int cdim, class Grid >
class Geometry
: public BasicGeometry< mydim, GlobalGeometryTraits< Grid > >
{
typedef BasicGeometry< mydim, GlobalGeometryTraits< Grid > > Base;
protected:
typedef typename Base::Mapping Mapping;
public:
Geometry ()
{}
/** \brief Copy constructor from another geometry */
template< class Geo >
explicit Geometry ( const Geo &geo )
: Base( geo.type(), geo, geo.affine() )
{}
/** \brief Constructor with a GeometryType and a set of coordinates */
template< class CoordVector >
Geometry ( const GeometryType &type, const CoordVector &coords )
: Base( type, coords )
{}
/** \todo Please doc me! */
template< int fatherdim >
Geometry ( const Geometry< fatherdim, cdim, Grid > &father, int i )
: Base( father, i )
{}
};
// LocalGeometry
// -------------
/** \class LocalGeometry
* \ingroup GenericGeometry
* \brief generic implementation of a DUNE (local) geometry
*
* LocalGeometry inherits all its features from BasicGeometry. It only adds
* LocalGeometryTraits< Grid > as Traits parameter to the template
* parameter list.
*
* \tparam mydim Dimension of the entity
* \tparam cdim Dimension of the coordinate space
* \tparam Grid The grid this geometry will be used in
*/
template< int mydim, int cdim, class Grid >
class LocalGeometry
: public BasicGeometry< mydim, LocalGeometryTraits< Grid > >
{
typedef BasicGeometry< mydim, LocalGeometryTraits< Grid > > Base;
protected:
typedef typename Base::Mapping Mapping;
public:
/** \brief Copy constructor from another geometry */
template< class Geo >
explicit LocalGeometry ( const Geo &geo )
: Base( geo.type(), geo, geo.affine() )
{}
/** \brief Constructor with a GeometryType and a set of coordinates */
template< class CoordVector >
LocalGeometry ( const GeometryType &type, const CoordVector &coords )
: Base( type, coords )
{}
/** \todo Please doc me! */
template< int fatherdim >
LocalGeometry ( const Geometry< fatherdim, cdim, Grid > &father, int i )
: Base( father, i )
{}
};
}
}
#endif // #ifndef DUNE_GENERICGEOMETRY_GEOMETRY_HH
|