This file is indexed.

/usr/include/dune/geometry/refinement/simplex.cc is in libdune-geometry-dev 2.3.1-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
// -*- tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 2 -*-
// vi: set et ts=4 sw=2 sts=2:
#ifndef DUNE_GRID_COMMON_REFINEMENT_SIMPLEX_CC
#define DUNE_GRID_COMMON_REFINEMENT_SIMPLEX_CC

// This file is part of DUNE, a Distributed and Unified Numerics Environment
// This file is copyright (C) 2005 Jorrit Fahlke <jorrit@jorrit.de>
// This file is licensed under version 2 of the GNU General Public License,
// with a special "runtime exception."  See COPYING at the top of the source
// tree for the full licence.

/*! @file

   @brief This file contains the @ref Refinement implementation for
         simplices (triangles, tetrahedrons...)

   See @ref SimplexRefinement.
   @verbatim
   $Id: simplex.cc 8754 2013-01-18 14:14:15Z sander $
   @endverbatim
 */

/*! @defgroup SimplexRefinement Refinement implementation for simplices
    @ingroup Refinement

   This is mainly based on Jürgen Beys
   <http://www.igpm.rwth-aachen.de/bey/> dissertation.  The relevant
   part is available from
   <http://www.igpm.rwth-aachen.de/Download/reports/bey/simplex.ps.gz>.

   @section Terminology
   <!--=============-->

   <dl>
   <dt>Kuhn simplex</dt>
   <dd>To triangulate hypercubes we use the Kuhn triangulation.  The
      members of this triangulation we call <em>Kuhn simplices</em>.
      The Kuhn simplices are indexed by their corresponding
      permutation.</dd>
   <dt>Kuhn0 simplex</dt>
   <dd>The Kuhn simplex corresponding to the permutation number 0.</dd>
   <dt>size of a Kuhn simplex</dt>
   <dd>The size of a kuhn simplex is equal to the size of the hypercube
      that it triangulates.</dd>
   <dt>width of a Kuhn simplex</dt>
   <dd> See <em>size of a Kuhn simplex</em>.</dd>
   </dl>

   @section KuhnSimplexIndexing Describing Kuhn simplices by their permutation
   <!--====================================================================-->

   A Kuhn simplex of dimension n can be described by its size s and a
   permutation of the vector \f$\vec{p}=(0,\ldots,n-1)\f$.  To get the
   coordinates of the corners \f$\vec{x}_0,\ldots,\vec{x}_n\f$ of the
   simplex, you do as follows:
   - Start at the origin \f$\vec{x}_0\f$.
   - For each dimension d from 0 to n-1:
    - \f$\vec{x}_{d+1}:=\vec{x}_d+s\cdot\vec{e}_{p_d}\f$
   (\f$\vec{e}_i\f$ is the unit vector in direction i.)

   @section Kuhn0VertexCounting Number of vertices in a Kuhn0 simplex
   <!--===========================================================-->

   Let N(n, x) be the number of gridpoints within an n-dimensional
   Kuhn0 simplex of x gridunits width.

   The number of points in a 0-dimensional simplex is 1, independent of
   its width.

   N(0, x) = 1

   The recursion formula is
   <!--
               x
              --
   N(n+1, x) = >  N(n, i)
              --
              i=0
   -->
   \f[N(n+1,x)=\sum^x_{i=0}N(n,i)\f]

   We slice the n+1 dimensional simplex orthogonal to one of the
   dimensions and sum the number of points in the n dimensional
   subsimplices.

   This formula is satisfied by the binomial coefficient
   <!--
            ( n+x )
   N(n, x) = (     )
            (  n  )
   -->
   \f[N(n,x)=\left({n+x}\atop x\right)\f]

   See Bronstein, Semendjajew, Musiol, Mühlig "Taschenbuch der
   Mathematik" (1999), Formula (1.35c)

   Observations:
   - N(n, 0) = 1
   - N(n, x) = N(x, n)

   @section Kuhn0VertexIndexing Index of a vertex within a Kuhn0 simplex
   <!--==============================================================-->

   @image html simplexvertexindex.png "The image shows the Kuhn0 tetrahedron of width 2 (wireframe).  It is partitioned into a tetrahedron (green), a triangle (red), a line (blue), and a vertex (black), each of width 1 and each a Kuhn0 simplex."

   Let us calculate the index of vertex 9, which has the coordinates
   \f$(x_0,x_1,x_2)=(2,2,2)\f$.
   - First we count the number of vertices in the green tetrahedron of
    width \f$x_0-1=1\f$ (4).  Then we take the green tetrahedron away.
    Whats left is a triangle, which extends into the (1,2)-plane.
   - Now we count the number of vertices in the red triangle of width
    \f$x_1-1=1\f$ (3).  Again we take the counted points away and are
    left with a line which extends into direction 2.
   - We take the blue line of width \f$x_2-1=1\f$, count the number of
    vertices (2), and throw away the counted stuff.  The only thing
    remaining is a point, so we're done.
   - We add the counted stuff together and get indeed 9.

   On to a more complicated example: vertex 6 with coordinates
   \f$(x_0,x_1,x_2)=(2,1,1)\f$.
   - First count the vertices in the green tetrahedron again (width
    \f$x_0-1=1\f$). The result is 4.
   - Count the vertices in the triangle of width \f$x_1-1=0\f$ (vertex
    4), which is just a point.  The result is 1.
   - Count the vertices in the line of width \f$x_2-1=0\f$ (vertex 5),
    which is also just a point.  The result is 1.
   - Add everything together and get 6.

   The general algorithm for n dimensions and a vertex with coordinates
   \f$\vec{x}=(x_0,\ldots,x_{n-1})\f$ is as follows:
   - For each dimension d from 0 to n-1
    - Count the vertices in the n-d dimensional simplex of width
      \f$x_d-1\f$,
   - Add all counts together to get the index of the vertex

   In formulas it looks like this:

   <!--[ This is the more readable text version of the stuff below ]

   Let I(n, X) be the index of point X in the n-dimensional Kuhn0
   simplex.  X is a vector X=(x[0], ..., x[n-1]).  It measures the
   position of the point in gridunits and thus is integer.

            n-1                 n-1
            --                  --  ( n-i+x[i]-1 )
   I(n, X) = >  N(n-i, x[i]-1) = >   (            )
            --                  --  (    n-i     )
            i=0                 i=0

   Since the dimensions within the Kuhn0 Simplex have a defined order
   (x[0] >= x[1] >= ... >= x[n-1]) they cannot simply be swapped so the
   sum is somewhat ugly.
   -->

   Let \f$I(n,\vec{x})\f$ be the index of point \f$\vec{x}\f$ in the
   n-dimensional Kuhn0 simplex.  The coordinates measure the position
   of the point in gridunits and thus are integer.

   \f[I(n,\vec{x})=\sum_{i=0}^{n-1}N(n-i,x_i-1)=\sum_{i=0}^{n-1}\left({n-i+x_i-1}\atop{n-i}\right)\f]

   Since the coordinates of a vertex within the Kuhn0 obey the relation
   \f$x_0\geq x_1\geq\ldots\geq x_{n-1}\f$, they cannot simply be
   swapped so the sum is somewhat ugly.

   @section Kuhn0SubelementIndexing Index of a subelement within a Kuhn0 simplex
   <!--======================================================================-->

   We don't know of a way to simply map a subelement of a Kuhn0 simplex
   to an index number.  Luckily, the iterator interface only requires
   that we be able to calculate the next subelement.

   Each subelement is a Kuhn (sub)simplex which triangulates a
   hypercube.  We need to remember the vertex which is the origin of
   that hypercube and the index of the permutation of that identifies
   the Kuhn subsimplex.  Now to get to the next subelement, we simply
   need to increment the permutation index, and if the overflows we
   reset it and increment the origin to the next vertex (we already
   know how to do that).

   Some subelements generated this way are outside the refined Kuhn0
   simplex, so we have to check for that, and skip them.

   @section PermutationIndexing Index of a permutation
   <!--============================================-->

   [NOTE: There may be some interesting stuff in
   http://en.wikipedia.org/wiki/Factoradic .  I was not aware of it
   while writing this code, however.]

   We need to index the n! permutations of the integers from 0 to n-1
   and a way to calculate the permutation if given the index.

   I'll discuss the permutation P, which operates on a vector
   \f$\vec{x}=(x_0,\ldots,x_{n-1})\f$.

   P can be made up of n transpositions, \f$P=T_0\cdots T_{n-1}\f$.
   Each transposition \f$T_i\f$ exchanges some arbitrary element
   \f$x_{t_i}\f$ with the element \f$x_i\f$, where \f$t_i\leq i\f$.  So
   we can totally describe \f$T_i\f$ by the integer \f$t_i\f$.  Thus we
   can describe P by the integer vector
   \f$\vec{t}=(t_0,\cdots,t_{n-1})\f$, where \f$0\leq t_i\leq i\f$.

   Now we need to encode the vector \f$\vec{t}\f$ into a single number.
   To do that we view \f$t_i\f$ as digit i of a number p written in a
   <em>base faculty notation</em>:

   \f[p=\sum_{i=1}^{n-1}i!t_i\f]

   This number p is unique for each possible permutation P so we could
   use this as index.  There is a problem though: we would like the
   identity permutation \f$\vec{x}=P\vec{x}\f$ to have index 0.  So we
   define the index I of the permutation slightly differently:

   \f[I=\sum_{i=1}^{n-1}i!(i-t_i)\f]

   I can easily calculate the \f$t_i\f$ from I:

   \f[i-t_i=(I/i!)\%(i+1)\f]
   ('/' is integer division and '%' calculates the remainder).

   @section KuhnToReference Mapping between some Kuhn and the reference simplex
   <!--=====================================================================-->

   @image html referencetokuhn0.png "Step 1 moves each point by its x2 value into x1 direction.  Step 2 moves each point by its new x1 value into x0 direction."

   The algorithm to transform a point
   \f$\vec{x}=(x_0,\ldots,x_{n-1})\f$ from the reference simplex of
   dimension n to the Kuhn0 simplex (as illustrated in the image) is as
   follows:
   - For each dimension d from n-2 down to 0:
    - \f$x_d:=x_d+x_{d+1}\f$.

   The reverse (from Kuhn0 to reference) is simple as well:
   - For each dimension d from 0 up to n-2:
    - \f$x_d:=x_d-x_{d+1}\f$.

   @par Arbitrary Kuhn simplices
   <!-------------------------->

   For arbitrary Kuhn simplices we have to take the permutation of that
   simplex into account.  So to map from the reference simplex of n
   dimensions to the Kuhn simplex with the permutation P (which is
   described by the vector \f$\vec{p}=P(0,\ldots,n-1)\f$) we do:
   - For each dimension d from n-2 down to 0:
    - \f$x_{p_d}:=x_{p_d}+x_{p_{d+1}}\f$.

   And or the reverse:
   - For each dimension d from 0 up to n-2:
    - \f$x_{p_d}:=x_{p_d}-x_{p_{d+1}}\f$.
 */

#include <dune/common/fvector.hh>

#include <dune/geometry/multilineargeometry.hh>
#include <dune/geometry/genericgeometry/topologytypes.hh>
#include <dune/geometry/referenceelements.hh>

#include "base.cc"

namespace Dune {

  namespace RefinementImp {

    /*! @brief This namespace contains the @ref Refinement
               implementation for simplices (triangles,
               tetrahedrons...)

       See @ref SimplexRefinement.
     */
    namespace Simplex {

      // //////////////////
      //
      //! @name Utilities
      //

      //@{

      /*! @brief Calculate n!

         Runtime is of order O(n).
       */
      inline int factorial(int n)
      {
        int prod = 1;
        for(int i = 1; i <= n; ++i)
          prod *= i;
        return prod;
      }

      /*! @brief calculate \f$\left({upper}\atop{lower}\right)\f$

         Runtime is of order O(min {lower, upper-lower})
       */
      inline int binomial(int upper, int lower)
      {
        if(lower > upper - lower)
          lower = upper - lower;
        if(lower < 0)
          return 0;
        int prod = 1;
        for(int i = upper - lower + 1; i <= upper; ++i)
          prod *= i;
        return prod / factorial(lower);
      }

      /*! @brief calculate the index of a given gridpoint within a
                 Kuhn0 simplex

         Runtime is of order O(dimension^2) (or better for dimension >
         the coordinates of the point)
       */
      template<int dimension>
      int pointIndex(const FieldVector<int, dimension> &point)
      {
        int index = 0;
        for(int i = 0; i < dimension; ++i)
          index += binomial(dimension-i + point[i]-1, dimension-i);
        return index;
      }

      /*! @brief Calculate permutation from it's index

         Runtime is of order O(n).
       */
      template<int n>
      FieldVector<int, n> getPermutation(int m)
      {
        FieldVector<int, n> perm;
        for(int i = 0; i < n; ++i)
          perm[i] = i;

        int base = 1;
        for(int i = 1; i <= n; ++i)
          base *= i;

        for(int i = n; i > 0; --i) {
          base /= i;
          int d = m / base;
          m %= base;
          int t = perm[i-1]; perm[i-1] = perm[i-1-d]; perm[i-1-d] = t;
        }
        return perm;
      }

#if 0
      Has to be checked
      // calculate the index of a permutation
      template<int n>
      int getPermIndex(const FieldVector<int, n>& test) // O(n^2)
      {
        int m = 0;
        FieldVector<int, n> perm;
        for(int i = 0; i < n; ++i)
          perm[i] = i;

        int base = 1;
        for(int i = 1; i <= n; ++i)
          base *= i;

        for(int i = n; i > 0; --i) {
          base /= i;
          int d;
          for(d = 0; d < i; ++d)
            if(test[i-1] == perm[i-1-d])
              break;
          m += d * base;
          int d = m / base;
          m %= base;
          perm[i-1-d] = perm[i-1];
        }
      }
#endif

      // map between the reference simplex and some arbitrary kuhn simplex (denoted by it's permutation)
      /*! @brief Map from the reference simplex to some Kuhn simplex

         @tparam dimension Dimension of the simplices
         @tparam CoordType    The C++ type of the coordinates

         Runtime is of order O(dimension)
       */
      template<int dimension, class CoordType>
      FieldVector<CoordType, dimension>
      referenceToKuhn( //! Point to map
        FieldVector<CoordType, dimension> point,
        //! Permutation of the Kuhn simplex to map to
        const FieldVector<int, dimension> &kuhn)
      {
        for(int i = dimension - 1; i > 0; --i)
          point[kuhn[i-1]] += point[kuhn[i]];
        return point;
      }

      /*! @brief Map from some Kuhn simplex to the reference simplex

         @tparam dimension Dimension of the simplices
         @tparam CoordType    The C++ type of the coordinates

         Runtime is of order O(dimension)
       */
      template<int dimension, class CoordType>
      FieldVector<CoordType, dimension>
      kuhnToReference( //! Point to map
        FieldVector<CoordType, dimension> point,
        //! Permutation of the Kuhn simplex to map from
        const FieldVector<int, dimension> &kuhn)
      {
        for(int i = 0; i < dimension - 1; ++i)
          point[kuhn[i]] -= point[kuhn[i+1]];
        return point;
      }


      //@} <!-- Group utilities -->

      // /////////////////////////////////////////
      //
      // refinement implementation for simplices
      //

      template<int dimension_, class CoordType>
      class RefinementImp
      {
      public:
        enum { dimension = dimension_ };
        typedef CoordType ctype;
        enum { dimensionworld = dimension };

        template<int codimension>
        struct Codim;
        typedef typename Codim<dimension>::SubEntityIterator VertexIterator;
        typedef FieldVector<CoordType, dimension> CoordVector;
        typedef typename Codim<0>::SubEntityIterator ElementIterator;
        typedef FieldVector<int, dimension+1> IndexVector;

        static int nVertices(int level);
        static VertexIterator vBegin(int level);
        static VertexIterator vEnd(int level);

        static int nElements(int level);
        static ElementIterator eBegin(int level);
        static ElementIterator eEnd(int level);
      };

      template<int dimension, class CoordType>
      template<int codimension>
      struct RefinementImp<dimension, CoordType>::Codim
      {
        class SubEntityIterator;
        // We don't need the caching, but the uncached MultiLinearGeometry has bug FS#1209
        typedef Dune::CachedMultiLinearGeometry<CoordType,dimension-codimension,dimension> Geometry;
      };

      template<int dimension, class CoordType>
      int
      RefinementImp<dimension, CoordType>::
      nVertices(int level)
      {
        return binomial(dimension + (1 << level), dimension);
      }

      template<int dimension, class CoordType>
      typename RefinementImp<dimension, CoordType>::VertexIterator
      RefinementImp<dimension, CoordType>::
      vBegin(int level)
      {
        return VertexIterator(level);
      }

      template<int dimension, class CoordType>
      typename RefinementImp<dimension, CoordType>::VertexIterator
      RefinementImp<dimension, CoordType>::
      vEnd(int level)
      {
        return VertexIterator(level, true);
      }

      template<int dimension, class CoordType>
      int
      RefinementImp<dimension, CoordType>::
      nElements(int level)
      {
        return 1 << (level * dimension);
      }

      template<int dimension, class CoordType>
      typename RefinementImp<dimension, CoordType>::ElementIterator
      RefinementImp<dimension, CoordType>::
      eBegin(int level)
      {
        return ElementIterator(level);
      }

      template<int dimension, class CoordType>
      typename RefinementImp<dimension, CoordType>::ElementIterator
      RefinementImp<dimension, CoordType>::
      eEnd(int level)
      {
        return ElementIterator(level, true);
      }

      // //////////////
      //
      // The iterator
      //

      template<int dimension, class CoordType, int codimension>
      class RefinementIteratorSpecial;

      // vertices

      template<int dimension, class CoordType>
      class RefinementIteratorSpecial<dimension, CoordType, dimension>
      {
      public:
        typedef RefinementImp<dimension, CoordType> Refinement;
        typedef typename Refinement::CoordVector CoordVector;
        typedef typename Refinement::template Codim<dimension>::Geometry Geometry;
        typedef RefinementIteratorSpecial<dimension, CoordType, dimension> This;

        RefinementIteratorSpecial(int level, bool end = false);

        void increment();
        bool equals(const This &other) const;

        CoordVector coords() const;
        Geometry geometry () const;

        int index() const;
      protected:
        typedef FieldVector<int, dimension> Vertex;

        int size;
        Vertex vertex;
      };

      template<int dimension, class CoordType>
      RefinementIteratorSpecial<dimension, CoordType, dimension>::
      RefinementIteratorSpecial(int level, bool end)
        : size(1<<level)
      {
        vertex[0] = (end) ? size + 1 : 0;
        for(int i = 1; i < dimension; ++ i)
          vertex[i] = 0;
      }

      template<int dimension, class CoordType>
      void
      RefinementIteratorSpecial<dimension, CoordType, dimension>::
      increment()
      {
        assert(vertex[0] <= size);
        for(int i = dimension - 1; i >= 0; --i) {
          ++vertex[i];
          if(i == 0 || vertex[i] <= vertex[i-1])
            break;
          else
            vertex[i] = 0;
        }
      }

      template<int dimension, class CoordType>
      bool
      RefinementIteratorSpecial<dimension, CoordType, dimension>::
      equals(const This &other) const
      {
        return size == other.size && vertex == other.vertex;
      }

      template<int dimension, class CoordType>
      typename RefinementIteratorSpecial<dimension, CoordType, dimension>::CoordVector
      RefinementIteratorSpecial<dimension, CoordType, dimension>::
      coords() const
      {
        Vertex ref = kuhnToReference(vertex, getPermutation<dimension>(0));

        CoordVector coords;
        for(int i = 0; i < dimension; ++i)
          coords[i] = CoordType(ref[i]) / size;
        return coords;
      }

      template<int dimension, class CoordType>
      typename RefinementIteratorSpecial<dimension, CoordType, dimension>::Geometry
      RefinementIteratorSpecial<dimension, CoordType, dimension>::geometry () const
      {
        std::vector<CoordVector> corners(1);
        corners[0] = (CoordVector)vertex;
        return Geometry(GeometryType(0), corners);
      }

      template<int dimension, class CoordType>
      int
      RefinementIteratorSpecial<dimension, CoordType, dimension>::
      index() const
      {
        return pointIndex(vertex);
      }

      // elements

      template<int dimension, class CoordType>
      class RefinementIteratorSpecial<dimension, CoordType, 0>
      {
      public:
        typedef RefinementImp<dimension, CoordType> Refinement;
        typedef typename Refinement::IndexVector IndexVector;
        typedef typename Refinement::CoordVector CoordVector;
        typedef typename Refinement::template Codim<0>::Geometry Geometry;
        typedef RefinementIteratorSpecial<dimension, CoordType, 0> This;

        RefinementIteratorSpecial(int level, bool end = false);

        void increment();
        bool equals(const This &other) const;

        IndexVector vertexIndices() const;
        int index() const;
        CoordVector coords() const;

        Geometry geometry () const;

      private:
        CoordVector global(const CoordVector &local) const;

      protected:
        typedef FieldVector<int, dimension> Vertex;
        enum { nKuhnSimplices = Factorial<dimension>::factorial };

        Vertex origin;
        int kuhnIndex;
        int size;
        int index_;
      };

      template<int dimension, class CoordType>
      RefinementIteratorSpecial<dimension, CoordType, 0>::
      RefinementIteratorSpecial(int level, bool end)
        : kuhnIndex(0), size(1<<level), index_(0)
      {
        for(int i = 0; i < dimension; ++i)
          origin[i] = 0;
        if(end) {
          index_ = Refinement::nElements(level);
          origin[0] = size;
        }
      }

      template<int dimension, class CoordType>
      void
      RefinementIteratorSpecial<dimension, CoordType, 0>::
      increment()
      {
        assert(origin[0] < size);

        ++index_;

        while(1) {
          ++kuhnIndex;
          if(kuhnIndex == nKuhnSimplices) {
            kuhnIndex = 0;
            // increment origin
            for(int i = dimension - 1; i >= 0; --i) {
              ++origin[i];
              if(i == 0 || origin[i] <= origin[i-1])
                break;
              else
                origin[i] = 0;
            }
          }

          // test whether the current simplex has any corner outside the kuhn0 simplex
          FieldVector<int, dimension> perm = getPermutation<dimension>(kuhnIndex);
          Vertex corner = origin;
          bool outside = false;
          for(int i = 0; i < dimension; ++i) {
            // next corner
            ++corner[perm[i]];
            if(perm[i] > 0)
              if(corner[perm[i]] > corner[perm[i]-1]) {
                outside = true;
                break;
              }
          }
          if(!outside)
            return;
        }
      }

      template<int dimension, class CoordType>
      bool
      RefinementIteratorSpecial<dimension, CoordType, 0>::
      equals(const This &other) const
      {
        return size == other.size && index_ == other.index_;
      }

      template<int dimension, class CoordType>
      typename RefinementIteratorSpecial<dimension, CoordType, 0>::IndexVector
      RefinementIteratorSpecial<dimension, CoordType, 0>::
      vertexIndices() const
      {
        IndexVector indices;
        FieldVector<int, dimension> perm = getPermutation<dimension>(kuhnIndex);
        Vertex vertex = origin;
        indices[0] = pointIndex(vertex);
        for(int i = 0; i < dimension; ++i) {
          ++vertex[perm[i]];
          indices[i+1] = pointIndex(vertex);
        }
        if (kuhnIndex%2 == 1)
          for(int i = 0; i < (dimension+1)/2; ++i) {
            int t = indices[i];
            indices[i] = indices[dimension-i];
            indices[dimension-i] = t;
          }
        return indices;
      }

      template<int dimension, class CoordType>
      int
      RefinementIteratorSpecial<dimension, CoordType, 0>::
      index() const
      {
        return index_;
      }

      template<int dimension, class CoordType>
      typename RefinementIteratorSpecial<dimension, CoordType, 0>::CoordVector
      RefinementIteratorSpecial<dimension, CoordType, 0>::
      coords() const
      {
        return global(ReferenceElements<CoordType, dimension>
                      ::simplex().position(0,0));
      }

      template<int dimension, class CoordType>
      typename RefinementIteratorSpecial<dimension, CoordType, 0>::Geometry
      RefinementIteratorSpecial<dimension, CoordType, 0>::geometry () const
      {
        std::vector<CoordVector> corners(dimension+1);
        CoordVector v;
        const ReferenceElement<CoordType, dimension> &refelem =
          ReferenceElements<CoordType, dimension>::simplex();
        for(int i = 0; i <= dimension; ++i)
          corners[i] = global(refelem.position(i, dimension));
        return Geometry(refelem.type(), corners);
      }

      template<int dimension, class CoordType>
      typename RefinementIteratorSpecial<dimension, CoordType, 0>::CoordVector
      RefinementIteratorSpecial<dimension, CoordType, 0>::
      global(const CoordVector &local) const {
        CoordVector v =
          referenceToKuhn(local, getPermutation<dimension>(kuhnIndex));
        v += origin;
        v /= size;
        return kuhnToReference(v, getPermutation<dimension>(0));
      }

      // common

      template<int dimension, class CoordType>
      template<int codimension>
      class RefinementImp<dimension, CoordType>::Codim<codimension>::SubEntityIterator
        : public ForwardIteratorFacade<typename RefinementImp<dimension, CoordType>::template Codim<codimension>::SubEntityIterator, int>,
          public RefinementIteratorSpecial<dimension, CoordType, codimension>
      {
      public:
        typedef RefinementImp<dimension, CoordType> Refinement;

        SubEntityIterator(int level, bool end = false);
      };

#ifndef DOXYGEN

      template<int dimension, class CoordType>
      template<int codimension>
      RefinementImp<dimension, CoordType>::Codim<codimension>::SubEntityIterator::
      SubEntityIterator(int level, bool end)
        : RefinementIteratorSpecial<dimension, CoordType, codimension>(level, end)
      {}

#endif

    } // namespace Simplex

  } // namespace RefinementImp


  namespace RefinementImp {

    // ///////////////////////
    //
    // The refinement traits
    //

#ifndef DOXYGEN
    template<unsigned topologyId, class CoordType, unsigned coerceToId,
        int dim>
    struct Traits<
        topologyId, CoordType, coerceToId, dim,
        typename enable_if<
            ((GenericGeometry::SimplexTopology<dim>::type::id >> 1) ==
             (topologyId >> 1) &&
             (GenericGeometry::SimplexTopology<dim>::type::id >> 1) ==
             (coerceToId >> 1)
            )>::type
        >
    {
      typedef Simplex::RefinementImp<dim, CoordType> Imp;
    };
#endif


  } // namespace RefinementImp

} // namespace Dune

#endif //DUNE_GRID_COMMON_REFINEMENT_SIMPLEX_CC