/usr/include/dune/pdelab/constraints/hangingnode.hh is in libdune-pdelab-dev 2.0.0-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 | // -*- tab-width: 4; indent-tabs-mode: nil -*-
#ifndef DUNE_PDELAB_HANGINGNODECONSTRAINTS_HH
#define DUNE_PDELAB_HANGINGNODECONSTRAINTS_HH
#include <cstddef>
#include<dune/common/exceptions.hh>
#include<dune/geometry/referenceelements.hh>
#include<dune/geometry/type.hh>
#include<dune/pdelab/common/geometrywrapper.hh>
#include"conforming.hh"
#include"hangingnodemanager.hh"
namespace Dune {
namespace PDELab {
//! \addtogroup Constraints
//! \ingroup FiniteElementMap
//! \{
class HangingNodesConstraintsAssemblers
{
public:
class CubeGridQ1Assembler
{
public:
template<typename IG, typename LFS, typename T, typename FlagVector>
static void assembleConstraints(const FlagVector & nodeState_e, const FlagVector & nodeState_f,
const bool & e_has_hangingnodes, const bool & f_has_hangingnodes,
const LFS & lfs_e, const LFS & lfs_f,
T& trafo_e, T& trafo_f,
const IG& ig)
{
typedef IG Intersection;
typedef typename Intersection::EntityPointer CellEntityPointer;
typedef typename Intersection::Entity Cell;
typedef typename Intersection::Geometry FaceGeometry;
typedef typename FaceGeometry::ctype DT;
typedef typename LFS::Traits::SizeType SizeType;
typedef typename LFS::Traits::GridFunctionSpace::Traits::GridView::IndexSet IndexSet;
const CellEntityPointer e = ig.inside();
const CellEntityPointer f = ! ig.boundary() ? ig.outside() : ig.inside();
const std::size_t dimension = Intersection::dimension;
typedef Dune::ReferenceElement<DT,dimension> GRE;
const GRE& refelement_e = Dune::ReferenceElements<DT,dimension>::general(e->type());
const GRE& refelement_f = Dune::ReferenceElements<DT,dimension>::general(f->type());
// If both entities have hangingnodes, then the face is
// conforming and no constraints have to be applied.
if(e_has_hangingnodes && f_has_hangingnodes)
return;
// Choose local function space etc for element with hanging nodes
const LFS & lfs = e_has_hangingnodes ? lfs_e : lfs_f;
const IndexSet& indexSet = lfs.gridFunctionSpace().gridView().indexSet();
const Cell& cell = *(e_has_hangingnodes ? e : f);
const int faceindex = e_has_hangingnodes ? ig.indexInInside() : ig.indexInOutside();
const GRE & refelement = e_has_hangingnodes ? refelement_e : refelement_f;
const FlagVector & nodeState = e_has_hangingnodes ? nodeState_e : nodeState_f;
T & trafo = e_has_hangingnodes ? trafo_e : trafo_f;
// A map mapping the local indices from the face to local
// indices of the cell
std::vector<int> m(refelement.size(faceindex,1,dimension));
for (int j=0; j<refelement.size(faceindex,1,dimension); j++)
m[j] = refelement.subEntity(faceindex,1,j,dimension);
// A map mapping the local indices from the face to global gridview indices
std::vector<std::size_t> global_vertex_idx(refelement.size(faceindex,1,dimension));
for (int j=0; j<refelement.size(faceindex,1,dimension); ++j)
global_vertex_idx[j] = indexSet.subIndex(cell,refelement.subEntity(faceindex,1,j,dimension),dimension);
// Create a DOFIndex that we will use to manually craft the correct dof indices for the constraints trafo
// We copy one of the indices from the LocalFunctionSpace; that way, we automatically get the correct
// TreeIndex into the DOFIndex and only have to fiddle with the EntityIndex.
typename LFS::Traits::DOFIndex dof_index(lfs.dofIndex(0));
typedef typename LFS::Traits::GridFunctionSpace::Ordering::Traits::DOFIndexAccessor::GeometryIndex GeometryIndexAccessor;
const GeometryType vertex_gt(0);
// Find the corresponding entity in the reference element
for (int j=0; j<refelement.size(faceindex,1,dimension); j++){
// The contribution factors of the base function bound to entity j
typename T::RowType contribution;
if(dimension == 3){
assert(nodeState.size() == 8);
const SizeType i = 4*j;
// Neigbor relations in local indices on a quadrilateral face:
// {Node, Direct Neighbor, Direct Neighbor, Diagonal Neighbor, Node, ...}
const unsigned int fi[16] = {0,1,2,3, 1,0,3,2, 2,0,3,1, 3,1,2,0};
// Only hanging nodes have contribution to other nodes
if(nodeState[m[j]].isHanging()){
// If both neighbors are hanging nodes, then this node
// is diagonal to the target of the contribution
if(nodeState[m[fi[i+1]]].isHanging() && nodeState[m[fi[i+2]]].isHanging())
{
GeometryIndexAccessor::store(dof_index.entityIndex(),
vertex_gt,
global_vertex_idx[fi[i+3]]);
contribution[dof_index] = 0.25;
GeometryIndexAccessor::store(dof_index.entityIndex(),
vertex_gt,
global_vertex_idx[j]);
trafo[dof_index] = contribution;
}
// Direct neigbor
else if(!nodeState[m[fi[i+1]]].isHanging())
{
GeometryIndexAccessor::store(dof_index.entityIndex(),
vertex_gt,
global_vertex_idx[fi[i+1]]);
contribution[dof_index] = 0.5;
GeometryIndexAccessor::store(dof_index.entityIndex(),
vertex_gt,
global_vertex_idx[j]);
trafo[dof_index] = contribution;
}
// Direct neigbor
else if(!nodeState[m[fi[i+2]]].isHanging())
{
GeometryIndexAccessor::store(dof_index.entityIndex(),
vertex_gt,
global_vertex_idx[fi[i+2]]);
contribution[dof_index] = 0.5;
GeometryIndexAccessor::store(dof_index.entityIndex(),
vertex_gt,
global_vertex_idx[j]);
trafo[dof_index] = contribution;
}
}
} else if(dimension == 2){
assert(nodeState.size() == 4);
// Only hanging nodes have contribution to other nodes
if(nodeState[m[j]].isHanging()){
const SizeType n_j = 1-j;
assert( !nodeState[m[n_j]].isHanging() );
GeometryIndexAccessor::store(dof_index.entityIndex(),
vertex_gt,
global_vertex_idx[n_j]);
contribution[dof_index] = 0.5;
GeometryIndexAccessor::store(dof_index.entityIndex(),
vertex_gt,
global_vertex_idx[j]);
trafo[dof_index] = contribution;
}
} // end if(dimension==3)
} // j
} // end of static void assembleConstraints
}; // end of class CubeGridQ1Assembler
class SimplexGridP1Assembler
{
public:
template<typename IG,
typename LFS,
typename T,
typename FlagVector>
static void assembleConstraints( const FlagVector & nodeState_e,
const FlagVector & nodeState_f,
const bool & e_has_hangingnodes,
const bool & f_has_hangingnodes,
const LFS & lfs_e, const LFS & lfs_f,
T& trafo_e, T& trafo_f,
const IG& ig)
{
typedef IG Intersection;
typedef typename Intersection::EntityPointer CellEntityPointer;
typedef typename Intersection::Entity Cell;
typedef typename Intersection::Geometry FaceGeometry;
typedef typename FaceGeometry::ctype DT;
typedef typename LFS::Traits::SizeType SizeType;
typedef typename LFS::Traits::GridFunctionSpace::Traits::GridView::IndexSet IndexSet;
const CellEntityPointer e = ig.inside();
const CellEntityPointer f = ! ig.boundary() ? ig.outside() : ig.inside();
const std::size_t dimension = Intersection::dimension;
typedef Dune::ReferenceElement<DT,dimension> GRE;
const GRE& refelement_e = Dune::ReferenceElements<DT,dimension>::general(e->type());
const GRE& refelement_f = Dune::ReferenceElements<DT,dimension>::general(f->type());
// If both entities have hangingnodes, then the face is
// conforming and no constraints have to be applied.
if(e_has_hangingnodes && f_has_hangingnodes)
return;
// Choose local function space etc for element with hanging nodes
const LFS & lfs = e_has_hangingnodes ? lfs_e : lfs_f;
const IndexSet& indexSet = lfs.gridFunctionSpace().gridView().indexSet();
const Cell& cell = *(e_has_hangingnodes ? e : f);
const int faceindex = e_has_hangingnodes ? ig.indexInInside() : ig.indexInOutside();
const GRE & refelement = e_has_hangingnodes ? refelement_e : refelement_f;
const FlagVector & nodeState = e_has_hangingnodes ? nodeState_e : nodeState_f;
T & trafo = e_has_hangingnodes ? trafo_e : trafo_f;
// A map mapping the local indices from the face to local
// indices of the cell
std::vector<int> m(refelement.size(faceindex,1,dimension));
for (int j=0; j<refelement.size(faceindex,1,dimension); j++)
m[j] = refelement.subEntity(faceindex,1,j,dimension);
// A map mapping the local indices from the face to global gridview indices
std::vector<std::size_t> global_vertex_idx(refelement.size(faceindex,1,dimension));
for (int j=0; j<refelement.size(faceindex,1,dimension); ++j)
global_vertex_idx[j] = indexSet.subIndex(cell,refelement.subEntity(faceindex,1,j,dimension),dimension);
// Create a DOFIndex that we will use to manually craft the correct dof indices for the constraints trafo
// We copy one of the indices from the LocalFunctionSpace; that way, we automatically get the correct
// TreeIndex into the DOFIndex and only have to fiddle with the EntityIndex.
typename LFS::Traits::DOFIndex dof_index(lfs.dofIndex(0));
typedef typename LFS::Traits::GridFunctionSpace::Ordering::Traits::DOFIndexAccessor::GeometryIndex GeometryIndexAccessor;
const GeometryType vertex_gt(0);
// Find the corresponding entity in the reference element
for (int j=0; j<refelement.size(faceindex,1,dimension); j++){
// The contribution factors of the base function bound to entity j
typename T::RowType contribution;
if(dimension == 3){
assert(nodeState.size() == 4);
// Only hanging nodes have contribution to other nodes
if(nodeState[m[j]].isHanging()){
for( int k=1; k<=2; ++k ){
const SizeType n_j = (j+k)%3;
if( !nodeState[m[n_j]].isHanging() )
{
GeometryIndexAccessor::store(dof_index.entityIndex(),
vertex_gt,
global_vertex_idx[n_j]);
contribution[dof_index] = 0.5;
GeometryIndexAccessor::store(dof_index.entityIndex(),
vertex_gt,
global_vertex_idx[j]);
trafo[dof_index] = contribution;
}
}
}
} else if(dimension == 2){
assert(nodeState.size() == 3);
// Only hanging nodes have contribution to other nodes
if(nodeState[m[j]].isHanging()){
const SizeType n_j = 1-j;
assert( !nodeState[m[n_j]].isHanging() );
// If both neighbors are hanging nodes, then this node
// is diagonal to the target of the contribution
GeometryIndexAccessor::store(dof_index.entityIndex(),
vertex_gt,
global_vertex_idx[n_j]);
contribution[dof_index] = 0.5;
GeometryIndexAccessor::store(dof_index.entityIndex(),
vertex_gt,
global_vertex_idx[j]);
trafo[dof_index] = contribution;
}
} // end if(dimension==3)
} // j
} // end of static void assembleConstraints
}; // end of class SimplexGridP1Assembler
}; // end of class HangingNodesConstraintsAssemblers
//! Hanging Node constraints construction
// works in any dimension and on all element types
template <class Grid, class HangingNodesConstraintsAssemblerType, class BoundaryFunction>
class HangingNodesDirichletConstraints : public ConformingDirichletConstraints
{
private:
typedef Dune::PDELab::HangingNodeManager<Grid,BoundaryFunction> HangingNodeManager;
HangingNodeManager manager;
public:
enum { doBoundary = true };
enum { doSkeleton = true };
enum { doVolume = false };
enum { dimension = Grid::dimension };
HangingNodesDirichletConstraints( Grid & grid,
bool adaptToIsolatedHangingNodes,
const BoundaryFunction & _boundaryFunction )
: manager(grid, _boundaryFunction)
{
if(adaptToIsolatedHangingNodes)
manager.adaptToIsolatedHangingNodes();
}
void update( Grid & grid ){
manager.analyzeView();
manager.adaptToIsolatedHangingNodes();
}
//! skeleton constraints
/**
* \tparam I intersection geometry
* \tparam LFS local function space
* \tparam T TransformationType
*/
template<typename IG, typename LFS, typename T>
void skeleton (const IG& ig,
const LFS& lfs_e, const LFS& lfs_f,
T& trafo_e, T& trafo_f) const
{
typedef IG Intersection;
typedef typename Intersection::EntityPointer CellEntityPointer;
typedef typename Intersection::Geometry FaceGeometry;
typedef typename FaceGeometry::ctype DT;
const CellEntityPointer e = ig.inside();
const CellEntityPointer f = ig.outside();
const Dune::ReferenceElement<DT,dimension>& refelem_e
= Dune::ReferenceElements<DT,dimension>::general(e->type());
const Dune::ReferenceElement<DT,dimension>& refelem_f
= Dune::ReferenceElements<DT,dimension>::general(f->type());
// the return values of the hanging node manager
typedef typename std::vector<typename HangingNodeManager::NodeState> FlagVector;
const FlagVector isHangingNode_e(manager.hangingNodes(*e));
const FlagVector isHangingNode_f(manager.hangingNodes(*f));
// just to make sure that the hanging node manager is doing
// what is expected of him
assert(std::size_t(refelem_e.size(dimension))
== isHangingNode_e.size());
assert(std::size_t(refelem_f.size(dimension))
== isHangingNode_f.size());
// the LOCAL indices of the faces in the reference element
const int faceindex_e = ig.indexInInside();
const int faceindex_f = ig.indexInOutside();
bool e_has_hangingnodes = false;
{
for (int j=0; j<refelem_e.size(faceindex_e,1,dimension); j++){
const int index = refelem_e.subEntity(faceindex_e,1,j,dimension);
if(isHangingNode_e[index].isHanging())
{
e_has_hangingnodes = true;
break;
}
}
}
bool f_has_hangingnodes = false;
{
for (int j=0; j<refelem_f.size(faceindex_f,1,dimension); j++){
const int index = refelem_f.subEntity(faceindex_f,1,j,dimension);
if(isHangingNode_f[index].isHanging())
{
f_has_hangingnodes = true;
break;
}
}
}
if(! e_has_hangingnodes && ! f_has_hangingnodes)
return;
HangingNodesConstraintsAssemblerType::
assembleConstraints(isHangingNode_e, isHangingNode_f,
e_has_hangingnodes, f_has_hangingnodes,
lfs_e,lfs_f,
trafo_e, trafo_f,
ig);
} // skeleton
}; // end of class HangingNodesDirichletConstraints
//! \}
}
}
#endif
|