This file is indexed.

/usr/include/fcl/narrowphase/gjk.h is in libfcl-dev 0.3.0-1+b1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
/*
 * Software License Agreement (BSD License)
 *
 *  Copyright (c) 2011, Willow Garage, Inc.
 *  All rights reserved.
 *
 *  Redistribution and use in source and binary forms, with or without
 *  modification, are permitted provided that the following conditions
 *  are met:
 *
 *   * Redistributions of source code must retain the above copyright
 *     notice, this list of conditions and the following disclaimer.
 *   * Redistributions in binary form must reproduce the above
 *     copyright notice, this list of conditions and the following
 *     disclaimer in the documentation and/or other materials provided
 *     with the distribution.
 *   * Neither the name of Willow Garage, Inc. nor the names of its
 *     contributors may be used to endorse or promote products derived
 *     from this software without specific prior written permission.
 *
 *  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 *  "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 *  LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
 *  FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
 *  COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
 *  INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
 *  BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 *  LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
 *  CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 *  LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
 *  ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 *  POSSIBILITY OF SUCH DAMAGE.
 */

/** \author Jia Pan */

#ifndef FCL_GJK_H
#define FCL_GJK_H

#include "fcl/shape/geometric_shapes.h"
#include "fcl/math/transform.h"

namespace fcl
{

namespace details
{

/// @brief the support function for shape
Vec3f getSupport(const ShapeBase* shape, const Vec3f& dir); 

/// @brief Minkowski difference class of two shapes
struct MinkowskiDiff
{
  /// @brief points to two shapes
  const ShapeBase* shapes[2];

  /// @brief rotation from shape0 to shape1
  Matrix3f toshape1;

  /// @brief transform from shape1 to shape0 
  Transform3f toshape0;

  MinkowskiDiff() { }

  /// @brief support function for shape0
  inline Vec3f support0(const Vec3f& d) const
  {
    return getSupport(shapes[0], d);
  }
  
  /// @brief support function for shape1
  inline Vec3f support1(const Vec3f& d) const
  {
    return toshape0.transform(getSupport(shapes[1], toshape1 * d));
  }

  /// @brief support function for the pair of shapes
  inline Vec3f support(const Vec3f& d) const
  {
    return support0(d) - support1(-d);
  }

  /// @brief support function for the d-th shape (d = 0 or 1)
  inline Vec3f support(const Vec3f& d, size_t index) const
  {
    if(index)
      return support1(d);
    else
      return support0(d);
  }

  /// @brief support function for translating shape0, which is translating at velocity v
  inline Vec3f support0(const Vec3f& d, const Vec3f& v) const
  {
    if(d.dot(v) <= 0)
      return getSupport(shapes[0], d);
    else
      return getSupport(shapes[0], d) + v;
  }

  /// @brief support function for the pair of shapes, where shape0 is translating at velocity v
  inline Vec3f support(const Vec3f& d, const Vec3f& v) const
  {
    return support0(d, v) - support1(-d);
  }

  /// @brief support function for the d-th shape (d = 0 or 1), where shape0 is translating at velocity v
  inline Vec3f support(const Vec3f& d, const Vec3f& v, size_t index) const
  {
    if(index)
      return support1(d);
    else
      return support0(d, v);
  }
};


/// @brief class for GJK algorithm
struct GJK
{
  struct SimplexV
  {
    /// @brief support direction
    Vec3f d; 
    /// @brieg support vector (i.e., the furthest point on the shape along the support direction)
    Vec3f w;
  };

  struct Simplex
  {
    /// @brief simplex vertex
    SimplexV* c[4];
    /// @brief weight 
    FCL_REAL p[4];
    /// @brief size of simplex (number of vertices)
    size_t rank;

    Simplex() : rank(0) {}
  };

  enum Status {Valid, Inside, Failed};

  MinkowskiDiff shape;
  Vec3f ray;
  FCL_REAL distance;
  Simplex simplices[2];


  GJK(unsigned int max_iterations_, FCL_REAL tolerance_)  : max_iterations(max_iterations_),
                                                            tolerance(tolerance_)
  {
    initialize(); 
  }
  
  void initialize();

  /// @brief GJK algorithm, given the initial value guess
  Status evaluate(const MinkowskiDiff& shape_, const Vec3f& guess);

  /// @brief apply the support function along a direction, the result is return in sv
  void getSupport(const Vec3f& d, SimplexV& sv) const;

  /// @brief apply the support function along a direction, the result is return is sv, here shape0 is translating at velocity v
  void getSupport(const Vec3f& d, const Vec3f& v, SimplexV& sv) const;

  /// @brief discard one vertex from the simplex
  void removeVertex(Simplex& simplex);

  /// @brief append one vertex to the simplex
  void appendVertex(Simplex& simplex, const Vec3f& v);

  /// @brief whether the simplex enclose the origin
  bool encloseOrigin();

  /// @brief get the underlying simplex using in GJK, can be used for cache in next iteration
  inline Simplex* getSimplex() const
  {
    return simplex;
  }

  /// @brief get the guess from current simplex
  Vec3f getGuessFromSimplex() const;

private:
  SimplexV store_v[4];
  SimplexV* free_v[4];
  size_t nfree;
  size_t current;
  Simplex* simplex;
  Status status;

  unsigned int max_iterations;
  FCL_REAL tolerance;

};


static const size_t EPA_MAX_FACES = 128;
static const size_t EPA_MAX_VERTICES = 64;
static const FCL_REAL EPA_EPS = 0.000001;
static const size_t EPA_MAX_ITERATIONS = 255;

/// @brief class for EPA algorithm
struct EPA
{
private:
  typedef GJK::SimplexV SimplexV;
  struct SimplexF
  {
    Vec3f n;
    FCL_REAL d;
    SimplexV* c[3]; // a face has three vertices
    SimplexF* f[3]; // a face has three adjacent faces
    SimplexF* l[2]; // the pre and post faces in the list
    size_t e[3];
    size_t pass;
  };

  struct SimplexList
  {
    SimplexF* root;
    size_t count;
    SimplexList() : root(NULL), count(0) {}
    void append(SimplexF* face)
    {
      face->l[0] = NULL;
      face->l[1] = root;
      if(root) root->l[0] = face;
      root = face;
      ++count;
    }

    void remove(SimplexF* face)
    {
      if(face->l[1]) face->l[1]->l[0] = face->l[0];
      if(face->l[0]) face->l[0]->l[1] = face->l[1];
      if(face == root) root = face->l[1];
      --count;
    }
  };

  static inline void bind(SimplexF* fa, size_t ea, SimplexF* fb, size_t eb)
  {
    fa->e[ea] = eb; fa->f[ea] = fb;
    fb->e[eb] = ea; fb->f[eb] = fa;
  }

  struct SimplexHorizon
  {
    SimplexF* cf; // current face in the horizon
    SimplexF* ff; // first face in the horizon
    size_t nf; // number of faces in the horizon
    SimplexHorizon() : cf(NULL), ff(NULL), nf(0) {}
  };

private:
  unsigned int max_face_num;
  unsigned int max_vertex_num;
  unsigned int max_iterations;
  FCL_REAL tolerance;

public:

  enum Status {Valid, Touching, Degenerated, NonConvex, InvalidHull, OutOfFaces, OutOfVertices, AccuracyReached, FallBack, Failed};
  
  Status status;
  GJK::Simplex result;
  Vec3f normal;
  FCL_REAL depth;
  SimplexV* sv_store;
  SimplexF* fc_store;
  size_t nextsv;
  SimplexList hull, stock;

  EPA(unsigned int max_face_num_, unsigned int max_vertex_num_, unsigned int max_iterations_, FCL_REAL tolerance_) : max_face_num(max_face_num_),
                                                                                                                     max_vertex_num(max_vertex_num_),
                                                                                                                     max_iterations(max_iterations_),
                                                                                                                     tolerance(tolerance_)
  {
    initialize();
  }

  ~EPA()
  {
    delete [] sv_store;
    delete [] fc_store;
  }

  void initialize();

  bool getEdgeDist(SimplexF* face, SimplexV* a, SimplexV* b, FCL_REAL& dist);

  SimplexF* newFace(SimplexV* a, SimplexV* b, SimplexV* c, bool forced);

  /// @brief Find the best polytope face to split
  SimplexF* findBest();

  Status evaluate(GJK& gjk, const Vec3f& guess);

  /// @brief the goal is to add a face connecting vertex w and face edge f[e] 
  bool expand(size_t pass, SimplexV* w, SimplexF* f, size_t e, SimplexHorizon& horizon);  
};


} // details



}


#endif