This file is indexed.

/usr/share/html/avcall.html is in libffcall1-dev 1.10+cvs20100619-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
<HEAD>
<TITLE> AVCALL manual page </TITLE>
</HEAD>
<BODY>
<H1>AVCALL manual page</H1>

<UL>
<LI> <A HREF="#Name">Name</A>
<LI> <A HREF="#Synopsis">Synopsis</A>
<LI> <A HREF="#Description">Description</A>
<LI> <A HREF="#Notes">Notes</A>
<LI> <A HREF="#See also">See also</A>
<LI> <A HREF="#Bugs">Bugs</A>
<LI> <A HREF="#Non-Bugs">Non-Bugs</A>
<LI> <A HREF="#Porting AVCALL">Porting AVCALL</A>
<LI> <A HREF="#Author">Author</A>
<LI> <A HREF="#Acknowledgements">Acknowledgements</A>
</UL>
<P>

<HR>

<A NAME="Name">
<H2>Name</H2>
</A>

avcall  -  build a C argument list incrementally and call a
C function on it.

<A NAME="Synopsis">
<H2>Synopsis</H2>
</A>

<PRE>
<CODE>#include &lt;avcall.h&gt;</CODE>
<CODE>av_alist <VAR>alist</VAR>;</CODE>
<CODE>av_start_<VAR>type</VAR> (<VAR>alist</VAR>, &amp;<VAR>func</VAR>, [[<VAR>return_type</VAR>,] &amp;<VAR>return_value</VAR>]);</CODE>
<CODE>av_<VAR>type</VAR> (<VAR>alist</VAR>, [<VAR>arg_type</VAR>,] <VAR>value</VAR>);</CODE>
<CODE>av_call(<VAR>alist</VAR>);</CODE>
</PRE>

<A NAME="Description">
<H2>Description</H2>
</A>

This  set  of macros builds an argument list for a C function
and  calls  the  function  on  it.  It  significantly
reduces  the  amount  of `glue' code required for parsers,
debuggers, imbedded interpreters, C extensions to application
programs  and  other situations where collections of
functions need  to  be  called  on  lists  of  externally-
supplied arguments.
<P>
Function  calling  conventions differ considerably on different
machines and <CODE>avcall</CODE> attempts to provide some degree
of isolation from such architecture dependencies.
<P>
The  interface  is  like <A HREF="stdarg(3)"><CODE><B>stdarg</B></CODE></A>(3) in reverse. All of the
macros return 0 for success, < 0 for failure (e.g.,  argument
list overflow or type-not-supported).
<P>
<OL>
<LI> <CODE>#include  &lt;avcall.h&gt;</CODE>  and  declare  the argument list
structure <CODE>av_alist <VAR>alist</VAR>;</CODE>
<P>
<LI> Set  any special flags. This is architecture and compiler
dependent.
Compiler  options that affect passing conventions may need
to be flagged by <CODE>#define</CODE>s before the <CODE>#include &lt;avcall.h&gt;</CODE>
statement. However, the <SAMP>configure</SAMP> script should have
determined which <CODE>#define</CODE>s are needed and put them
at the top of <SAMP>avcall.h</SAMP>.
<P>
<LI> Initialize the alist with  the  function  address  and
return  value  pointer (if any). There is a separate macro
for each simple return type  ([u]char,  [u]short,  [u]int,
[u]long,  [u]longlong, float,  double, where `u' indicates
`unsigned'). The macros for functions returning structures
or pointers require an explicit type argument.
<P>
E.g.,
<PRE>
<CODE>av_start_int (<VAR>alist</VAR>, &amp;<VAR>func</VAR>, &amp;<VAR>int_return</VAR>);</CODE>
<CODE>av_start_double (<VAR>alist</VAR>, &amp;<VAR>func</VAR>, &amp;<VAR>double_return</VAR>);</CODE>
<CODE>av_start_void (<VAR>alist</VAR>, &amp;<VAR>func</VAR>);</CODE>
<CODE>av_start_struct (<VAR>alist</VAR>, &amp;<VAR>func</VAR>, <VAR>struct_type</VAR>, <VAR>splittable</VAR>, &amp;<VAR>struct_return</VAR>);</CODE>
<CODE>av_start_ptr (<VAR>alist</VAR>, &amp;<VAR>func</VAR>, <VAR>pointer_type</VAR>, &amp;<VAR>pointer_return</VAR>);</CODE>
</PRE>
The  <VAR>splittable</VAR> flag specifies whether the <VAR>struct_type</VAR> can
be returned in registers such that every struct field fits
entirely  in a single register. This needs to be specified
for structs of size <SAMP>2*sizeof(long)</SAMP>. For structs of size
&lt;= <SAMP>sizeof(long)</SAMP>,  splittable  is ignored and assumed to be 1.
For  structs  of  size  &gt; <SAMP>2*sizeof(long)</SAMP>,  splittable  is
ignored  and  assumed to be 0. There are some handy macros
for this:
<PRE>
<CODE>av_word_splittable_1 (<VAR>type1</VAR>)</CODE>
<CODE>av_word_splittable_2 (<VAR>type1</VAR>, <VAR>type2</VAR>)</CODE>
<CODE>av_word_splittable_3 (<VAR>type1</VAR>, <VAR>type2</VAR>, <VAR>type3</VAR>)</CODE>
<CODE>av_word_splittable_4 (<VAR>type1</VAR>, <VAR>type2</VAR>, <VAR>type3</VAR>, <VAR>type4</VAR>)</CODE>
</PRE>
For a struct with three slots
<PRE>
<CODE>struct { <VAR>type1 id1</VAR>; <VAR>type2 id2</VAR>; <VAR>type3 id3</VAR>; }</CODE>
</PRE>
you can specify <VAR>splittable</VAR> as
<CODE>av_word_splittable_3 (<VAR>type1</VAR>, <VAR>type2</VAR>, <VAR>type3</VAR>)</CODE>.
<P>
<LI> Push  the  arguments  on  to the list in order. Again
there is a macro for each simple built-in  type,  and  the
macros  for  structure  and  pointer  arguments require an
extra type argument:
<PRE>
<CODE>av_int (<VAR>alist</VAR>, <VAR>int_value</VAR>);</CODE>
<CODE>av_double (<VAR>alist</VAR>, <VAR>double_value</VAR>);</CODE>
<CODE>av_struct (<VAR>alist</VAR>, <VAR>struct_or_union_type</VAR>, <VAR>struct_value</VAR>);</CODE>
<CODE>av_ptr (<VAR>alist</VAR>, <VAR>pointer_type</VAR>, <VAR>pointer_value</VAR>);</CODE>
</PRE>
<LI> Call the function, set the return value, and tidy up:
<CODE>av_call (<VAR>alist</VAR>);</CODE>
</OL>

<A NAME="Notes">
<H2>Notes</H2>
</A>

<OL>
<LI> Functions whose first declaration is  in  Kernighan  &amp;
Ritchie  style  (i.e., without a typed argument list) MUST
use default K&amp;R C expression promotions (<CODE>char</CODE> and <CODE>short</CODE> to
<CODE>int</CODE>,  <CODE>float</CODE>  to <CODE>double</CODE>) whether they are compiled by a K&amp;R
or an ANSI compiler, because the true argument  types  may
not  be  known at the call point. Such functions typically
back-convert their arguments  to  the  declared  types  on
function  entry.  (In  fact,  the  only way to pass a true
<CODE>char</CODE>, <CODE>short</CODE> or <CODE>float</CODE> in K&amp;R C  is  by  an  explicit  cast:
<CODE>func((char)c,(float)f)</CODE>  ).   Similarly, some K&amp;R compilers
(such as Sun <SAMP>cc</SAMP> on the sparc) actually return a <CODE>float</CODE> as a
<CODE>double</CODE>.
<P>
Hence,  for  arguments  of functions declared in K&amp;R style
you  should  use  <CODE>av_int()</CODE>  and  </CODE>av_double()</CODE>  rather  than
<CODE>av_char()</CODE>,  <CODE>av_short()</CODE>  or  <CODE>av_float()</CODE>.   If you use a K&amp;R
compiler, the avcall header files may be  able  to  detect
this  and  define <CODE>av_float()</CODE>, etc, appropriately, but with
an ANSI compiler there is no way <B>avcall</B> can  know  how  a
function was declared, so you have to correct the argument
types yourself.
<P>
<LI> The explicit type arguments  of  the  <CODE>av_struct()</CODE>  and
<CODE>av_ptr()</CODE>  macros  are  typically  used  to calculate size,
alignment, and passing conventions.  This may not be  sufficient  for  some  machines  with  unusual  structure and
pointer handling: in this case additional  <CODE>av_start_<VAR>type</VAR>()</CODE>
and <CODE>av_<VAR>type</VAR>()</CODE> macros may be defined.
<P>
<LI> The macros <CODE>av_start_longlong()</CODE>,
<CODE>av_start_ulonglong()</CODE>, <CODE>av_longlong()</CODE>  and
<CODE>av_ulonglong()</CODE> work only if the C compiler has a working
<CODE>long long</CODE> 64-bit integer type.
<P>
<LI> The struct types used in <CODE>av_start_struct()</CODE> and
<CODE>av_struct()</CODE> must only contain (signed or unsigned) int,
long, long long or pointer fields. Struct types containing
(signed or unsigned) char, short, float, double or other
structs are not supported.
<P>
</OL>

<A NAME="See also">
<H2>See also</H2>
</A>
<A HREF="stdarg(3)"><CODE><B>stdarg</B></CODE></A>(3), <A HREF="varargs(3)"><CODE><B>varargs</B></CODE></A>(3).

<A NAME="Bugs">
<H2>Bugs</H2>
</A>

<UL>
<LI>
The  current  implementations have been tested on a selection
of common cases but there  are  probably  still  many
bugs.
<LI>
There  are  typically  built-in  limits on the size of the
argument-list, which may also  include  the  size  of  any
structure arguments.
<LI>
The decision whether a struct is to be returned in registers or in memory
considers only the struct's size and alignment. This is inaccurate: for
example, gcc on m68k-next returns
<CODE>struct { char a,b,c; }</CODE>
in registers and
<CODE>struct { char a[3]; }</CODE>
in memory, although both types have the same size and the same alignment.
</UL>

<A NAME="Non-Bugs">
<H2>Non-Bugs</H2>
</A>

All  information is passed in CPU registers and the stack.
The <CODE><B>avcall</B></CODE> package is therefore multithread-safe.

<A NAME="Porting AVCALL">
<H2>Porting AVCALL</H2>
</A>

Ports,  bug-fixes,  and  suggestions are most welcome. The
macros required for argument pushing  are  pretty  grungy,
but  it does seem to be possible to port avcall to a range
of machines. Ports to non-standard or non-32-bit  machines
are  especially  welcome  so we can sort the interface out
before it's too late.
<P>
Knowledge about argument passing conventions can be  found
in  the  gcc source, file <SAMP>gcc-2.6.3/config/<VAR>cpu</VAR>/<VAR>cpu</VAR>.h</SAMP>, section
<SAMP>"Stack layout; function entry, exit and calling."</SAMP>
<P>
Some of the grunge is usually handled by a C  or  assembly
level  glue  routine  that  actually pushes the arguments,
calls the function and unpacks  any  return  value. This is
called <CODE>__builtin_avcall()</CODE>. A precompiled assembler version for
people without gcc is also made available. The routine should ideally
have flags for the passing conventions of other compilers.
<P>
Many  of  the  current routines waste a lot of stack space
and generally do hairy things to stack frames - a bit more
assembly code would probably help things along quite a bit
here.
<P>

<A NAME="Author">
<H2>Author</H2>
</A>

Bill Triggs &lt;Bill.Triggs@inrialpes.fr&gt;, &lt;Bill.Triggs@imag.fr&gt;.

<A NAME="Acknowledgements">
<H2>Acknowledgements</H2>
</A>

Some initial ideas were stolen from the C interface to the
Zelk extensions to Oliver Laumann's Elk scheme interpreter
by J.P.Lewis, NEC  C&amp;C  Research,  &lt;zilla@ccrl.nj.nec.com&gt;
(for    Sun4    &amp;    SGI),    and    Roy    Featherstone's
&lt;roy@robots.oxford.ac.uk&gt; personal C interface library for
Sun3, Sun4  &amp;  SGI.   I  also looked at the machine-dependent
parts of the GCC and GDB distributions, and  put  the  gcc
<CODE>asm()</CODE> extensions to good use. Thanks guys!
<P>
This work was partly supported by EC-ESPRIT Basic Research
Action SECOND.
<P>

<HR>

<ADDRESS>AVCALL manual page<BR>
Bruno Haible &lt;bruno@clisp.org&gt;
</ADDRESS>
<P>
Last modified: 14 January 2001.

</BODY>