/usr/include/fplll/util.h is in libfplll-dev 4.0.4-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 | /* Copyright (C) 2005-2008 Damien Stehle.
Copyright (C) 2007 David Cade.
Copyright (C) 2011 Xavier Pujol.
This file is part of fplll. fplll is free software: you
can redistribute it and/or modify it under the terms of the GNU Lesser
General Public License as published by the Free Software Foundation,
either version 2.1 of the License, or (at your option) any later version.
fplll is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public License
along with fplll. If not, see <http://www.gnu.org/licenses/>. */
/** \file util.h
Miscellaneous. */
#ifndef FPLLL_UTIL_H
#define FPLLL_UTIL_H
#include "matrix.h"
FPLLL_BEGIN_NAMESPACE
static inline int cputime() {
#ifdef FPLLL_WITH_GETRUSAGE
struct rusage rus;
getrusage(RUSAGE_SELF, &rus);
return rus.ru_utime.tv_sec * 1000 + rus.ru_utime.tv_usec / 1000;
#else
return time(NULL) * 1000;
#endif
}
/* Computes result = x * m (it is not required that result is initialized,
x.size() must be equal to m.GetNumRows()) */
template<class ZT>
void vectMatrixProduct(vector<ZT>& result, const vector<ZT>& x, const Matrix<ZT>& m) {
int nRows = m.getRows(), nCols = m.getCols();
genZeroVect(result, nCols);
for (int i = 0; i < nRows; i++)
for (int j = 0; j < nCols; j++)
result[j].addmul(x[i], m(i, j));
}
/* Computes result = x * m (it is not required that result is initialized,
x.size() must be equal to m.GetNumRows()) */
template<class ZT>
void vectMatrixProduct(NumVect<ZT>& result, const NumVect<ZT>& x, const Matrix<ZT>& m) {
int nRows = m.getRows(), nCols = m.getCols();
result.gen_zero(nCols);
for (int i = 0; i < nRows; i++)
for (int j = 0; j < nCols; j++)
result[j].addmul(x[i], m(i, j));
}
template<class T>
void scalarProduct(T& result, const MatrixRow<T>& v1, const MatrixRow<T>& v2, int n) {
FPLLL_DEBUG_CHECK(n <= static_cast<int>(v1.size())
&& n <= static_cast<int>(v2.size()));
T tmp;
result.mul(v1[0], v2[0]);
for (int i = 1; i < n; i++) {
tmp.mul(v1[i], v2[i]);
result.add(result, tmp);
}
}
template<class T>
inline void sqrNorm(T& result, const MatrixRow<T>& v, int n) {
scalarProduct(result, v, v, n);
}
/** Prints x on stream os. */
template<class T>
ostream& operator<<(ostream& os, const Z_NR<T>& x) {
return os << x.getData();
}
template<>
ostream& operator<<(ostream& os, const Z_NR<mpz_t>& x);
/** Prints x on stream os. */
template<class T>
ostream& operator<<(ostream& os, const FP_NR<T>& x) {
return os << x.getData();
}
#ifdef FPLLL_WITH_DPE
template<>
ostream& operator<<(ostream& os, const FP_NR<dpe_t>& x);
#endif
template<>
ostream& operator<<(ostream& os, const FP_NR<mpfr_t>& x);
/** Reads x from stream is. */
template<class T>
istream& operator>>(istream& is, Z_NR<T>& x) {
return is >> x.getData();
}
template<>
istream& operator>>(istream& is, Z_NR<mpz_t>& x);
const double DEF_GSO_PREC_EPSILON = 0.03;
/**
* Returns the minimum precision required to ensure that error bounds on the
* GSO are valid. Computes rho such that for all 0 <= i < d and 0 <= j <= i:
*
* |r~_i - r_i| / r_i <= d * rho ^ (i + 1) * 2 ^ (2 - prec)
*
* |mu~_(i,j) - mu_(i,j)| <= d * rho ^ (i + 1) * 2 ^ (4 - prec)
*/
int gsoMinPrec(double& rho, int d, double delta, double eta,
double epsilon = DEF_GSO_PREC_EPSILON);
/**
* Returns the minimum precision for the proved version of LLL.
*/
int l2MinPrec(int d, double delta, double eta, double epsilon);
/**
* Computes the volume of a d-dimensional hypersphere of radius 1.
*/
void sphereVolume(Float& volume, int d);
/**
* Estimates the cost of the enumeration for SVP.
*/
void costEstimate(Float& cost, const Float& bound,
const Matrix<Float>& r, int dimMax);
#ifdef FPLLL_V3_COMPAT
void gramSchmidt(const IntMatrix& b, Matrix<Float>& mu, FloatVect& rdiag);
template<class ZT>
inline void ScalarProduct(Z_NR<ZT>& s, const Z_NR<ZT>* vec1,
const Z_NR<ZT>* vec2, int n) {
Z_NR<ZT> tmp;
s.mul(vec1[0],vec2[0]);
for (int i=1;i<n;i++)
{
tmp.mul(vec1[i],vec2[i]);
s.add(s,tmp);
}
}
inline double fpScalarProduct(double* vec1, double* vec2, int n) {
int i;
double sum;
sum = vec1[0] * vec2[0];
for (i=1; i<n; i++)
sum += vec1[i] * vec2[i];
return sum;
}
template<class FT>
inline void fpScalarProduct(FP_NR<FT>& result, const FP_NR<FT>* v1,
const FP_NR<FT>* v2, int n) {
result.mul(v1[0], v2[0]);
for (int i = 1; i < n; i++)
result.addmul(v1[i], v2[i]);
}
inline double fpNorm(double* vec, int n) {
int i;
double sum;
sum = vec[0] * vec[0];
for (i = 1 ; i < n ; i++)
sum += vec[i]*vec[i];
return sum;
}
template<class FT> inline void fpNorm (FP_NR<FT>& s, FP_NR<FT> *vec, int n)
{
int i;
FP_NR<FT> tmp;
s.mul(vec[0], vec[0]);
for (i=1; i<n; i++)
{
tmp.mul(vec[i], vec[i]);
s.add(s, tmp);
}
}
// Provided for compatibility, do not use
class Lexer {
public:
Lexer() : is(&cin), fromFile(false) {};
Lexer(const char* fileName) {
is = new ifstream(fileName);
}
~Lexer() {
if (fromFile) delete is;
}
template<class T>
Lexer& operator>>(T& x) {
*is >> x;
return *this;
}
private:
istream* is;
bool fromFile;
};
#endif
FPLLL_END_NAMESPACE
#endif
|