This file is indexed.

/usr/include/getfem/bgeot_sparse_tensors.h is in libgetfem++-dev 4.2.1~beta1~svn4635~dfsg-3+b1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
/* -*- c++ -*- (enables emacs c++ mode) */
/*===========================================================================
 
 Copyright (C) 2000-2012 Julien Pommier
 
 This file is a part of GETFEM++
 
 Getfem++  is  free software;  you  can  redistribute  it  and/or modify it
 under  the  terms  of the  GNU  Lesser General Public License as published
 by  the  Free Software Foundation;  either version 3 of the License,  or
 (at your option) any later version along with the GCC Runtime Library
 Exception either version 3.1 or (at your option) any later version.
 This program  is  distributed  in  the  hope  that it will be useful,  but
 WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
 or  FITNESS  FOR  A PARTICULAR PURPOSE.  See the GNU Lesser General Public
 License and GCC Runtime Library Exception for more details.
 You  should  have received a copy of the GNU Lesser General Public License
 along  with  this program;  if not, write to the Free Software Foundation,
 Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301, USA.
 
 As a special exception, you  may use  this file  as it is a part of a free
 software  library  without  restriction.  Specifically,  if   other  files
 instantiate  templates  or  use macros or inline functions from this file,
 or  you compile this  file  and  link  it  with other files  to produce an
 executable, this file  does  not  by itself cause the resulting executable
 to be covered  by the GNU Lesser General Public License.  This   exception
 does not  however  invalidate  any  other  reasons why the executable file
 might be covered by the GNU Lesser General Public License.
 
===========================================================================*/

/**@file bgeot_sparse_tensors.h
   @author  Julien Pommier <Julien.Pommier@insa-toulouse.fr>
   @date January 2003.
   @brief Sparse tensors, used during the assembly.

   "sparse" tensors: these are not handled like sparse matrices
   
   As an example, let say that we have a tensor t(i,j,k,l) of
   dimensions 4x2x3x3, with t(i,j,k,l!=k) == 0. 
   
   Then the tensor shape will be represented by a set of 3 objects of type
     'tensor_mask':
   mask1: {i}, "1111"
   mask2: {j}, "11"
   mask3: {k,l}, "100"
                 "010"
                 "001"
   They contain a binary tensor indicating the non-null elements.
   
   The set of these three masks define the shape of the tensor
   (class tensor_shape)

   If we add information about the location of the non-null elements
   (by mean of strides), then we have an object of type 'tensor_ref'
   
   Iteration on the data of one or more tensor should be done via the
   'multi_tensor_iterator', which can iterate over common non-null
   elements of a set of tensors.


   maximum (virtual) number of elements in a tensor : 2^31
   maximum number of dimensions : 254

   "ought to be enough for anybody"
*/
#ifndef BGEOT_SPARSE_TENSORS
#define BGEOT_SPARSE_TENSORS

#include "gmm/gmm_except.h"
#include "bgeot_config.h"
#include "dal_bit_vector.h"
// #include "gmm/gmm_kernel.h" // for i/o on vectors it is convenient
#include <iostream>
#include <bitset>

namespace bgeot {
  typedef gmm::uint32_type index_type;
  typedef gmm::int32_type stride_type; /* signé! */

  //  typedef std::vector<index_type> tensor_ranges;
  class tensor_ranges : public std::vector<index_type> {
  public:
    tensor_ranges() : std::vector<index_type>() {}
    tensor_ranges(size_type n) : std::vector<index_type>(n) {}
    tensor_ranges(size_type n, index_type V) : std::vector<index_type>(n,V) {}
    bool is_zero_size() const
    {
      for (dim_type i=0; i < this->size(); ++i)
        if ((*this)[i] == 0)
          return true;
      return false;
    }
  };
  typedef std::vector<stride_type> tensor_strides;
  typedef std::vector<dim_type> index_set;

  typedef scalar_type * TDIter;

  std::ostream& operator<<(std::ostream& o, const tensor_ranges& r); 
  
  /* stupid && inefficient loop structure */
  struct tensor_ranges_loop {
    tensor_ranges sz;
    tensor_ranges cnt;
    bool finished_;
  public:
    tensor_ranges_loop(const tensor_ranges& t) : sz(t), cnt(t.size()), finished_(t.size() == 0) { 
      std::fill(cnt.begin(), cnt.end(), 0); 
    }
    index_type index(dim_type i) { return cnt[i]; }
    bool finished() const { return finished_; }
    bool next() { 
      index_type i = 0;
      while (++cnt[i] >= sz[i]) {
	cnt[i] = 0; i++; if (i >= sz.size()) { finished_ = true; break; }
      }
      return finished_;
    }
  };

  /* handle a binary mask over a given number of indices */
  class tensor_mask {
    tensor_ranges r;
    index_set idxs;
    std::vector<bool> m;
    tensor_strides s; /* strides in m */
    mutable index_type card_; /* finally i should have kept m as a dal::bit_vector ... */
    mutable bool card_uptodate;
  public:
    tensor_mask() { set_card(0); }
    explicit tensor_mask(const tensor_ranges& r_, const index_set& idxs_) {
      assign(r_,idxs_);
    }    
    /* constructeur par fusion */
    explicit tensor_mask(const tensor_mask& tm1, const tensor_mask& tm2, bool and_op);
    explicit tensor_mask(const std::vector<const tensor_mask*>& tm);    
    explicit tensor_mask(const std::vector<const tensor_mask*> tm1, 
			 const std::vector<const tensor_mask*> tm2, bool and_op);
    void swap(tensor_mask &tm) {
      r.swap(tm.r); idxs.swap(tm.idxs);
      m.swap(tm.m); s.swap(tm.s); 
      std::swap(card_, tm.card_);
      std::swap(card_uptodate, tm.card_uptodate);
    }
    void assign(const tensor_ranges& r_, const index_set& idxs_) {
      r = r_; idxs = idxs_; eval_strides(); m.assign(size(),false);
      set_card(0);
    }
    void assign(const tensor_mask& tm) { 
      r = tm.r; 
      idxs = tm.idxs; 
      m = tm.m; 
      s = tm.s;
      card_ = tm.card_; card_uptodate = tm.card_uptodate;
    }
    void assign(const std::vector<const tensor_mask* >& tm);
    void assign(const tensor_mask& tm1, const tensor_mask& tm2, bool and_op);
    
    void clear() { r.resize(0); idxs.resize(0); m.clear(); s.resize(0); set_card(0); }
    const tensor_ranges& ranges() const { return r; }
    const index_set& indexes() const { return idxs; }
    const tensor_strides& strides() const { return s; }
    index_set& indexes() { return idxs; }
    void eval_strides() {
      s.resize(r.size()+1); s[0]=1;
      for (index_type i=0; i < r.size(); ++i) {
	s[i+1]=s[i]*r[i];
      }
    }
    index_type ndim() const { return index_type(r.size()); }
    index_type size() const { return s[r.size()]; }
    void set_card(index_type c) const { card_ = c; card_uptodate = true; }
    void unset_card() const { card_uptodate = false; }
    index_type card(bool just_look=false) const {       
      if (!card_uptodate || just_look) {
	index_type c = index_type(std::count_if(m.begin(), m.end(), 
			          std::bind2nd(std::equal_to<bool>(),true)));
	if (just_look) return c;
	card_ = c;
      }
      return card_;
    }
    index_type pos(tensor_ranges& global_r) const {
      index_type p = 0;
      for (index_type i=0; i < r.size(); ++i) 
	p+= s[i]*global_r[idxs[i]];
      return p;
    }
    index_type lpos(tensor_ranges& local_r) const {
      index_type p = 0;
      for (index_type i=0; i < r.size(); ++i) 
	p+= s[i]*local_r[i];
      return p;
    }
    bool operator()(tensor_ranges& global_r) const {
      return m[pos(global_r)];
    }
    bool operator()(stride_type p) const { return m[p]; }
    void set_mask_val(stride_type p, bool v) { m[p]=v; card_uptodate = false; }
    struct Slice {
      dim_type dim;
      index_type i0;
      Slice(dim_type d, index_type i0_) : dim(d), i0(i0_) {}
    };

    /* cree un masque de tranche */
    void set_slice(index_type dim, index_type range, index_type islice) {
      r.resize(1); r[0] = range;
      idxs.resize(1); idxs[0] = dim_type(dim);
      m.clear(); m.assign(range,false); m[islice] = 1; set_card(1);
      eval_strides();
    }
    explicit tensor_mask(index_type range, Slice slice) {
      set_slice(slice.dim, range, slice.i0); 
    }

    struct Diagonal {
      dim_type i0, i1;
      Diagonal(dim_type i0_, dim_type i1_) : i0(i0_), i1(i1_) {}
    };

    /* cree un masque diagonal */
    void set_diagonal(index_type n, index_type i0, index_type i1) {
      assert(n);
      r.resize(2); r[0] = r[1] = n;
      idxs.resize(2); idxs[0] = dim_type(i0); idxs[1] = dim_type(i1);
      m.assign(n*n, false); 
      for (index_type i=0; i < n; ++i) m[n*i+i]=true;
      set_card(n);
      eval_strides();
    }
    explicit tensor_mask(index_type n, Diagonal diag) {
      set_diagonal(n, diag.i0, diag.i1);
    }
    void set_triangular(index_type n, index_type i0, index_type i1) {
      assert(n);
      r.resize(2); r[0] = r[1] = n;
      idxs.resize(2); idxs[0] = dim_type(i0); idxs[1] = dim_type(i1);
      m.assign(n*n,false); unset_card();
      for (index_type i=0; i < n; ++i)
	for (index_type j=i; j < n; ++j) m[i*n+j]=true;
      eval_strides();
    }
    void set_full(index_type dim, index_type range) {
      // assert(range); // not sure if permitting range==0 can have any side effects
      r.resize(1); r[0] = range;
      idxs.resize(1); idxs[0] = dim_type(dim);
      m.assign(range, true); set_card(range);
      eval_strides();
    }
    void set_empty(index_type dim, index_type range) {
      // assert(range); // not sure if permitting range==0 can have any side effects
      r.resize(1); r[0] = range;
      idxs.resize(1); idxs[0] = dim_type(dim);
      m.assign(range,false); set_card(0);
      eval_strides();
    }
    explicit tensor_mask(index_type dim, index_type range) {
      set_full(dim, range);
    }
    void set_zero() {
      m.assign(size(),false); set_card(0);
    }
    void shift_dim_num_ge(dim_type dim, int shift) {
      for (dim_type i=0; i < idxs.size(); ++i) {
	if (idxs[i] >= dim) idxs[i] = dim_type(idxs[i] + shift);
      }
      check_assertions();
    }
    void gen_mask_pos(tensor_strides& p) const {
      check_assertions();
      p.resize(card());
      index_type i = 0;
      for (tensor_ranges_loop l(r); !l.finished(); l.next()) {
	if (m[lpos(l.cnt)]) p[i++] = lpos(l.cnt);
      }
      assert(i==card());
    }
    void unpack_strides(const tensor_strides& packed, tensor_strides& unpacked) const;

    /* c'est mieux que celle ci renvoie un int ..
       ou alors un unsigned mais dim_type c'est dangereux */
    int max_dim() const {
      index_set::const_iterator it = std::max_element(idxs.begin(),idxs.end());
      return (it == idxs.end() ? -1 : *it);
    }
    void check_assertions() const;
    void print(std::ostream &o) const;
    void print_() const { print(cerr); }
  };



  typedef std::vector<tensor_mask> tensor_mask_container;

  struct tensor_index_to_mask {
    short_type mask_num;
    short_type mask_dim;
    tensor_index_to_mask() : mask_num(short_type(-1)), 
			     mask_dim(short_type(-1)) {}
    bool is_valid() { return mask_num != short_type(-1) && 
	mask_dim != short_type(-1); }
  };


  /* 
     defini une "forme" de tenseur creux 
     la fonction merge permet de faire des unions / intersections entre ces formes
  */
  class tensor_shape {
    mutable std::vector<tensor_index_to_mask> idx2mask;
    tensor_mask_container masks_;

    /* verifie si un masque est completement vide,
       si c'est le cas alors tous les autres masques sont vidés
       (le tenseur est identiquement nul) */
    void check_empty_mask() {
      if (card() == 0) {
	for (dim_type i=0; i < masks_.size(); ++i) {
	  masks_[i].set_zero();
	}
      }
    }

    static void find_linked_masks(dim_type mnum, const tensor_shape &ts1, const tensor_shape &ts2, 
				dal::bit_vector& treated1, dal::bit_vector& treated2, 
				std::vector<const tensor_mask*>& lstA,
				std::vector<const tensor_mask*>& lstB) {
      // gare aux boucles infinies si aucun des indices n'est valide
      assert(mnum < ts1.masks().size());
      assert(!treated1[mnum]);
      treated1.add(mnum);
      lstA.push_back(&ts1.mask(mnum));
      for (dim_type i=0; i < ts1.mask(mnum).indexes().size(); ++i) {
	dim_type ii = ts1.mask(mnum).indexes()[i];
	if (ts2.index_is_valid(ii) && !treated2[ts2.index_to_mask_num(ii)])
	  find_linked_masks(ts2.index_to_mask_num(ii),ts2,ts1,treated2,treated1,lstB,lstA);
      }
    }

  protected:
    dim_type index_to_mask_num(dim_type ii) const { 
      if (index_is_valid(ii))
	return dim_type(idx2mask[ii].mask_num); else return dim_type(-1); 
    }
  public:
    void clear() { masks_.resize(0); idx2mask.resize(0); }
    void swap(tensor_shape& ts) {
      idx2mask.swap(ts.idx2mask);
      masks_.swap(ts.masks_);
    }
    dim_type ndim() const { return dim_type(idx2mask.size()); }
    bool index_is_valid(dim_type ii) const {  
      assert(ii < idx2mask.size()); return idx2mask[ii].is_valid(); 
    }
    const tensor_mask& index_to_mask(dim_type ii) const { 
      assert(index_is_valid(ii)); return masks_[idx2mask[ii].mask_num]; 
    }
    dim_type index_to_mask_dim(dim_type ii) const { 
      assert(index_is_valid(ii)); return dim_type(idx2mask[ii].mask_dim); 
    }
    index_type dim(dim_type ii) const 
    { assert(index_is_valid(ii)); return index_to_mask(ii).ranges()[index_to_mask_dim(ii)]; 
    }
    tensor_mask_container& masks() { return masks_; }
    const tensor_mask_container& masks() const { return masks_; }
    const tensor_mask& mask(dim_type i) const { assert(i<masks_.size()); return masks_[i]; }
    stride_type card(bool just_look=false) const { 
      stride_type n = 1; 
      for (dim_type i=0; i < masks().size(); ++i) 
	n *= masks()[i].card(just_look); 
      return n; 
    }    
    void push_mask(const tensor_mask& m) { masks_.push_back(m); update_idx2mask(); }
    void remove_mask(dim_type mdim) { /* be careful with this function.. remove
					 only useless mask ! */
      masks_.erase(masks_.begin()+mdim);
      update_idx2mask();
    }
    void remove_unused_dimensions() {
      dim_type nd = 0;
      for (dim_type i=0; i < ndim(); ++i) {
	if (index_is_valid(i)) {
	  masks_[idx2mask[i].mask_num].indexes()[idx2mask[i].mask_dim] = nd++;
	}
      }
      set_ndim_noclean(nd);
      update_idx2mask();
    }

    void update_idx2mask() const {
      /*
	dim_type N=0;
	for (dim_type i=0; i < masks_.size(); ++i) {
	N = std::max(N, std::max_element(masks_.indexes().begin(), masks_.indexes.end()));
	}
	idx2mask.resize(N); 
      */

      std::fill(idx2mask.begin(), idx2mask.end(), tensor_index_to_mask());
      for (dim_type i=0; i < masks_.size(); ++i) {
	for (dim_type j=0; j < masks_[i].indexes().size(); ++j) {
	  dim_type k = masks_[i].indexes()[j];
	  GMM_ASSERT3(k < idx2mask.size() && !idx2mask[k].is_valid(), "");
	  idx2mask[k].mask_num = i; idx2mask[k].mask_dim = j;
	}
      }
    }
    void assign_shape(const tensor_shape& other) { 
      masks_ = other.masks_;
      idx2mask = other.idx2mask;
      //      update_idx2mask(); 
    }
    void set_ndim(dim_type n) {
      clear();
      idx2mask.resize(n); update_idx2mask();
    }
    void set_ndim_noclean(dim_type n) {idx2mask.resize(n);}

    tensor_shape() {}
    
    /* create an "empty" shape of dimensions nd */
    explicit tensor_shape(dim_type nd) : idx2mask(nd,tensor_index_to_mask()) {
      masks_.reserve(16);
    }
    explicit tensor_shape(const tensor_ranges& r) {
      masks_.reserve(16);
      set_full(r);
    }
    void set_full(const tensor_ranges& r) {
      idx2mask.resize(r.size());
      masks_.resize(r.size());
      for (dim_type i=0; i < r.size(); ++i) masks_[i].set_full(i,r[i]);
      update_idx2mask();
    }

    void set_empty(const tensor_ranges& r) { 
      idx2mask.resize(r.size());
      masks_.resize(r.size());
      for (dim_type i=0; i < r.size(); ++i) masks_[i].set_empty(i,r[i]);
      update_idx2mask();
    }


    /* fusion d'une autre forme */
    void merge(const tensor_shape &ts2, bool and_op = true) {
      /* quelques verifs de base */
      GMM_ASSERT3(ts2.ndim() == ndim(), "");
      if (ts2.ndim()==0) return; /* c'est un scalaire */
      for (dim_type i = 0; i < ndim(); ++i) 
	if (index_is_valid(i) && ts2.index_is_valid(i))
	  GMM_ASSERT3(ts2.dim(i) == dim(i), "");

      tensor_mask_container new_mask;
      dal::bit_vector mask_treated1; mask_treated1.sup(0,masks().size());
      dal::bit_vector mask_treated2; mask_treated2.sup(0,ts2.masks().size());
      std::vector<const tensor_mask*> lstA, lstB; lstA.reserve(10); lstB.reserve(10);
      for (dim_type i = 0; i < ndim(); ++i) {
	dim_type i1 = dim_type(index_to_mask_num(i));
	dim_type i2 = dim_type(ts2.index_to_mask_num(i));
	lstA.clear(); lstB.clear();
	if (index_is_valid(i) && !mask_treated1[i1])
	  find_linked_masks(i1, *this, ts2, mask_treated1, mask_treated2,
			    lstA, lstB);
	else if (ts2.index_is_valid(i) && !mask_treated2[i2])
	  find_linked_masks(i2, ts2, *this, mask_treated2, mask_treated1,
			    lstB, lstA);
	else continue;
	GMM_ASSERT3(lstA.size() || lstB.size(), "");
	new_mask.push_back(tensor_mask(lstA,lstB,and_op));
      }
      masks_ = new_mask;
      update_idx2mask();
      check_empty_mask();
    }

    void shift_dim_num_ge(dim_type dim_num, int shift) {
      for (dim_type m = 0; m < masks().size(); ++m) {
	masks()[m].shift_dim_num_ge(dim_num,shift);
      }
    }
    /* the permutation vector might be greater than the current ndim,
       in which case some indexes will be unused (when p[i] == dim_type(-1))
    */
    void permute(const std::vector<dim_type> p, bool revert=false) {
      std::vector<dim_type> invp(ndim()); std::fill(invp.begin(), invp.end(), dim_type(-1));

      /* build the inverse permutation and check that this IS really a permuation */
      for (dim_type i=0; i < p.size(); ++i) {
	if (p[i] != dim_type(-1)) { assert(invp[p[i]] == dim_type(-1)); invp[p[i]] = i; }
      }
      for (dim_type i=0; i < invp.size(); ++i) assert(invp[i] != dim_type(-1));
      
      /* do the permutation (quite simple!) */
      for (dim_type m=0; m < masks().size(); ++m) {
	for (dim_type i=0; i < masks()[m].indexes().size(); ++i) {
	  if (!revert) {
	    masks()[m].indexes()[i] = invp[masks()[m].indexes()[i]];
	  } else {
	    masks()[m].indexes()[i] = p[masks()[m].indexes()[i]];
	  }
	}
      }
      set_ndim_noclean(dim_type(p.size()));
      update_idx2mask();
    }

    /* forme d'une tranche (c'est la forme qu'on applique à un tenseur pour
       en extraire la tranche) */
    tensor_shape slice_shape(tensor_mask::Slice slice) const {
      assert(slice.dim < ndim() && slice.i0 < dim(slice.dim));
      tensor_shape ts(ndim());
      ts.push_mask(tensor_mask(dim(slice.dim), slice));
      ts.merge(*this); /* le masque peut se retrouver brutalement vidé si on a tranché au mauvais endroit! */
      return ts;
    }

    tensor_shape diag_shape(tensor_mask::Diagonal diag) const {
      assert(diag.i1 != diag.i0 && diag.i0 < ndim() && diag.i1 < ndim());
      assert(dim(diag.i0) == dim(diag.i1));
      tensor_shape ts(ndim());
      ts.push_mask(tensor_mask(dim(diag.i0), diag));
      ts.merge(*this);
      return ts;
    }

    /*
      void diag(index_type i0, index_type i1) {
      assert(i0 < idx.size() && i1 < idx.size());
      assert(idx[i0].n == idx[i1].n);
      tensor_shape ts2 = *this;
      ts2.masks.resize(1);
      ts2.masks[0].set_diagonal(idx[i0].n, i0, i1);
      ts2.idx[i0].mask_num = ts2.idx[i1].mask_num = 0;
      ts2.idx[i0].mask_dim = 0; ts2.idx[i1].mask_dim = 1;      
      }
    */
    void print(std::ostream& o) const;
    void print_() const { print(cerr); }
  };


  /* reference to a tensor: 
     - a shape
     - a data pointer
     - a set of strides
  */
  class tensor_ref : public tensor_shape {
    std::vector< tensor_strides > strides_;
    TDIter *pbase_; /* pointeur sur un pointeur qui designe les données
		       ça permet de changer la base pour toute une serie
		       de tensor_ref en un coup */

    stride_type base_shift_;

    void remove_mask(dim_type mdim) {
      tensor_shape::remove_mask(mdim);
      assert(strides_[mdim].size() == 0 ||
	     (strides_[mdim].size() == 1 && strides_[mdim][0] == 0)); /* sanity check.. */
      strides_.erase(strides_.begin()+mdim);
    }
  public:
    void swap(tensor_ref& tr) {
      tensor_shape::swap(tr);
      strides_.swap(tr.strides_);
      std::swap(pbase_, tr.pbase_);
      std::swap(base_shift_, tr.base_shift_);
    }
    const std::vector< tensor_strides >& strides() const { return strides_; }
    std::vector< tensor_strides >& strides() { return strides_; }
    TDIter base() const { return (pbase_ ? (*pbase_) : 0); }
    TDIter *pbase() const { return pbase_; }
    stride_type base_shift() const { return base_shift_; }
    void set_base(TDIter &new_base) { pbase_ = &new_base; base_shift_ = 0; }

    void clear() { strides_.resize(0); pbase_ = 0; base_shift_ = 0; tensor_shape::clear(); }

    

    /* s'assure que le stride du premier indice est toujours bien égal à zéro */
    void  ensure_0_stride() {
      for (index_type i=0; i < strides_.size(); ++i) {
	if (strides_[i].size() >= 1 && strides_[i][0] != 0) {
	  stride_type s = strides_[i][0];
	  base_shift_ += s;
	  for (index_type j=0; j < strides_[i].size(); ++j) strides_[i][j] -= s;
	}
      }
    }

    /* constructeur à partir d'une forme : ATTENTION ce constructeur n'alloue pas la
       mémoire nécessaire pour les données !! */
    explicit tensor_ref(const tensor_shape& ts) : tensor_shape(ts), pbase_(0), base_shift_(0) {
      strides_.reserve(16);
      init_strides();
    }
    explicit tensor_ref(const tensor_ranges& r, TDIter *pbase__=0) 
      : tensor_shape(r), pbase_(pbase__), base_shift_(0) {
      strides_.reserve(16);
      init_strides();
    }
    void init_strides() {
      strides_.resize(masks().size());
      stride_type s = 1;
      for (dim_type i = 0; i < strides_.size(); ++i) {
	index_type n = mask(i).card();
	strides_[i].resize(n);
	for (index_type j=0;j<n;++j) strides_[i][j] = j*s;
	s *= n;
      }
    }
    tensor_ref() : pbase_(0), base_shift_(0) { strides_.reserve(16); }

    void set_sub_tensor(const tensor_ref& tr, const tensor_shape& sub);

    /* constructeur à partir d'un sous-tenseur à partir d'un tenseur et d'une forme 
       hypothese: la forme 'sub' doit être un sous-ensemble de la forme du tenseur
    */
    explicit tensor_ref(const tensor_ref& tr, const tensor_shape& sub) {
      set_sub_tensor(tr,sub);
    }

    /* slices a tensor_ref, at dimension 'dim', position 'islice'
       ... not straightforward for sparse tensors !
    */
    explicit tensor_ref(const tensor_ref& tr, tensor_mask::Slice slice);

    /* create a diagonal of another tensor */
    explicit tensor_ref(const tensor_ref& tr, tensor_mask::Diagonal diag) {
      set_sub_tensor(tr, tr.diag_shape(diag));
      ensure_0_stride();
    }

    void print(std::ostream& o) const;

    void print_() const { print(cerr); }
  };
    
    std::ostream& operator<<(std::ostream& o, const tensor_mask& m);
    std::ostream& operator<<(std::ostream& o, const tensor_shape& ts);
    std::ostream& operator<<(std::ostream& o, const tensor_ref& tr);

  /* minimalistic data for iterations */
  struct packed_range {
    const stride_type *pinc;
    const stride_type *begin, *end;
    index_type n;
    /*    index_type cnt;*/
  };
  /* additionnal data */
  struct packed_range_info {
    index_type range;
    dim_type original_masknum;
    dim_type n;
    std::vector<stride_type> mask_pos; /* pour l'iteration avec maj de la valeur des indices */
    bool operator<(const packed_range_info& pi) const {
      if (n < pi.n) return true;
      else return false;
    }
    stride_type mean_increm; /* valeur moyenne de l'increment (utilisé pour le tri) */
    tensor_strides inc; /* not strides but increments to the next index value,
				     with inc[range-1] == -sum(inc[0..range-2]) (automatic rewinding!) 
				     of course, stride_type MUST be signed
				  */
    std::bitset<32> have_regular_strides;
  };

  /* the big one */
  class multi_tensor_iterator {
    index_type N; /* number of simultaneous tensors */
    std::vector<packed_range> pr;
    std::vector<packed_range_info> pri;

    std::vector<index_type> bloc_rank;
    std::vector<index_type> bloc_nelt;

    std::vector<TDIter> it;
    std::vector<TDIter*> pit0;
    tensor_strides itbase;
    struct  index_value_data {
      dim_type cnt_num;
      const stride_type **ppinc; /* pointe vers pr[cnt_num].pinc, initialisé par rewind()
				  et pas avant (à cause de pbs lors de la copie de multi_tensor_iterator sinon) 
				  permet de déduire la valeur du compteur: (*ppinc - pincbase) (à diviser par nn=(pri[cnt_num].n-N))
			       */
      const stride_type *pincbase;
      const stride_type *pposbase; /* pointe dans pri[cnt_num].mask_pos, retrouve la position dans le masque en fonction
				  du compteur déduit ci-dessus et des champs div et mod ci-dessous */
      index_type div, mod, nn;
      stride_type pos_; /* stores the position when the indexe is not part of the pri array
			  (hence the index only has 1 value, and ppos == &pos_, and pcnt = &zero */
    };
    std::vector<index_value_data> idxval;
    std::vector<stride_type> vectorized_strides_; /* if the tensor have regular strides, the mti might be vectorizable */
    index_type vectorized_size_;                 /* the size of each vectorizable chunk */
    index_type vectorized_pr_dim;                /* all pr[i], i >= vectorized_pr_dim, can be accessed via vectorized_strides */
  public:
    void clear() { 
      N = 0; pr.clear(); pri.clear(); bloc_rank.clear(); bloc_nelt.clear(); 
      it.clear(); pit0.clear(); itbase.clear(); idxval.clear(); 
    }
    void swap(multi_tensor_iterator& m) {
      std::swap(N,m.N);  pr.swap(m.pr);  pri.swap(m.pri);
      bloc_rank.swap(m.bloc_rank); bloc_nelt.swap(m.bloc_nelt);
      it.swap(m.it); pit0.swap(m.pit0); itbase.swap(m.itbase);
      idxval.swap(m.idxval);
    }
    void rewind() { 
      for (dim_type i=0; i < pr.size(); ++i) { 
	pr[i].pinc = pr[i].begin = &pri[i].inc[0]; pr[i].end = pr[i].begin+pri[i].inc.size(); 
      }
      for (dim_type n=0; n < N; ++n) it[n] = *(pit0[n]) + itbase[n];
      for (dim_type i=0; i < idxval.size(); ++i) {
	if (idxval[i].cnt_num != dim_type(-1)) {
	  idxval[i].ppinc = &pr[idxval[i].cnt_num].pinc;
	  idxval[i].pincbase = &pri[idxval[i].cnt_num].inc[0];
	  idxval[i].pposbase = &pri[idxval[i].cnt_num].mask_pos[0];
	  idxval[i].nn = (N-pri[idxval[i].cnt_num].n);
	} else {
	  static const stride_type *null=0;
	  idxval[i].ppinc = &null;
	  idxval[i].pincbase = 0;
	  idxval[i].pposbase = &idxval[i].pos_;
	  idxval[i].nn = 1;
	}
      }
    }
    dim_type ndim() const { return dim_type(idxval.size()); }
    /* get back the value of an index from then current iterator position */
    index_type index(dim_type ii) {
      index_value_data& iv = idxval[ii];
      index_type cnt = index_type((*iv.ppinc - iv.pincbase)/iv.nn);
      return ((iv.pposbase[cnt]) % iv.mod)/ iv.div;
    }
    index_type vectorized_size() const { return vectorized_size_; }
    const std::vector<stride_type>& vectorized_strides() const { return vectorized_strides_; }
    bool next(unsigned i_stop = unsigned(-1), unsigned i0_ = unsigned(-2)) {//=pr.size()-1) {
      unsigned i0 = unsigned(i0_ == unsigned(-2) ? pr.size()-1 : i0_);
      while (i0 != i_stop) {
	for (unsigned n = pr[i0].n; n < N; ++n) {
	  //	  index_type pos = pr[i0].cnt * (N-pri[i0].n) + (n - pri[i0].n);
	  it[n] += *pr[i0].pinc; pr[i0].pinc++; 
	}
	if (pr[i0].pinc != pr[i0].end) {
	  return true;
	} else {
	  pr[i0].pinc = pr[i0].begin; i0--;
	}
      }
      return false;
    }
    bool vnext() { return next(unsigned(-1), vectorized_pr_dim); }
    bool bnext(dim_type b) { return next(bloc_rank[b]-1, bloc_rank[b+1]-1); }
    bool bnext_useful(dim_type b) { return bloc_rank[b] != bloc_rank[b+1]; }
    /* version speciale pour itérer sur des tenseurs de même dimensions
       (doit être un poil plus rapide) */    
    bool qnext1() {
      if (pr.size() == 0) return false;
      std::vector<packed_range>::reverse_iterator p_ = pr.rbegin();
     while (p_!=pr.rend()) {
	it[0] += *(p_->pinc++);
	if (p_->pinc != p_->end) {
	  return true;
	} else {
	  p_->pinc = p_->begin; p_++;
	}
      }
      return false;
    }

    bool qnext2() { 
      if (pr.size() == 0) return false;
      std::vector<packed_range>::reverse_iterator p_ = pr.rbegin();
      while (p_!=pr.rend()) {
	it[0] += *(p_->pinc++);
	it[1] += *(p_->pinc++);
	if (p_->pinc != p_->end) {
	  return true;
	} else {
	  p_->pinc = p_->begin; p_++;
	}
      }
      return false;
    }

    scalar_type& p(dim_type n) { return *it[n]; }

    multi_tensor_iterator() {}
    multi_tensor_iterator(std::vector<tensor_ref> trtab, bool with_index_values) {
      init(trtab, with_index_values);
    }
    void assign(std::vector<tensor_ref> trtab, bool with_index_values) {
      multi_tensor_iterator m(trtab, with_index_values);
      swap(m);
    }
    multi_tensor_iterator(const tensor_ref& tr0, bool with_index_values) {
      std::vector<tensor_ref> trtab(1); trtab[0] = tr0;
      init(trtab, with_index_values);
    }
    void assign(const tensor_ref& tr0, bool with_index_values) {
      multi_tensor_iterator m(tr0, with_index_values);
      swap(m);
    }
    multi_tensor_iterator(const tensor_ref& tr0, 
			  const tensor_ref& tr1,  bool with_index_values) {
      std::vector<tensor_ref> trtab(2); trtab[0] = tr0; trtab[1] = tr1;
      init(trtab, with_index_values);
    }
    void assign(const tensor_ref& tr0, const tensor_ref& tr1,  bool with_index_values) {
      multi_tensor_iterator m(tr0, tr1, with_index_values);
      swap(m);
    }
    multi_tensor_iterator(const tensor_ref& tr0, 
			  const tensor_ref& tr1, 
			  const tensor_ref& tr2, bool with_index_values) {
      std::vector<tensor_ref> trtab(3); trtab[0] = tr0; trtab[1] = tr1; trtab[2] = tr2;
      init(trtab, with_index_values);
    }
    void assign(const tensor_ref& tr0, const tensor_ref& tr1, const tensor_ref& tr2,  bool with_index_values) {
      multi_tensor_iterator m(tr0, tr1, tr2, with_index_values);
      swap(m);
    }
    void init(std::vector<tensor_ref> trtab, bool with_index_values);
    void print() const;
  };


  /* handles a tree of reductions
     The tree is used if more than two tensors are reduced, i.e.
       z(:,:)=t(:,i).u(i,j).v(j,:) 
     in that case, the reduction against j can be performed on u(:,j).v(j,:) = w(:,:)
     and then, z(:,:) = t(:,i).w(i,:) 
  */
  struct tensor_reduction {
    struct tref_or_reduction {
      tensor_ref tr_;
      tensor_reduction *reduction;
      tensor_ref &tr() { return tr_; }
      const tensor_ref &tr() const { return tr_; }
      explicit tref_or_reduction(const tensor_ref &tr__, const std::string& s) 
	: tr_(tr__), reduction(0), ridx(s) {}
      explicit tref_or_reduction(tensor_reduction *p, const std::string& s) 
	: reduction(p), ridx(s) {
	reduction->result(tr_);
      }
      bool is_reduction() const { return reduction != 0; }
      void swap(tref_or_reduction &other) { tr_.swap(other.tr_); std::swap(reduction, other.reduction); }
      std::string ridx;      /* reduction indexes, no index can appear
			      twice in the same tensor */
      std::vector<dim_type> gdim; /* mapping to the global virtual
				     tensor whose range is the
				     union of the ranges of each
				     reduced tensor */
      std::vector<dim_type> rdim; /* mapping to the dimensions of the
				     reduced tensor ( = dim_type(-1) for
				     dimensions i s.t. ridx[i] != ' ' ) */
				     
    };
    tensor_ranges reduced_range;
    std::string reduction_chars; /* list of all indexes used for reduction */
    tensor_ref trres;
    typedef std::vector<tref_or_reduction>::iterator trtab_iterator;
    std::vector<tref_or_reduction> trtab;
    multi_tensor_iterator mti;
    std::vector<scalar_type> out_data; /* optional storage of output */
    TDIter pout_data;
  public:
    tensor_reduction() { clear(); }
    virtual ~tensor_reduction() { clear(); }
    void clear();

    /* renvoie les formes diagonalisées 
       pour bien faire, il faudrait que cette fonction prenne en argument
       le required_shape de l'objet ATN_reducted_tensor, et fasse le merge
       avec ce qu'elle renvoie... non trivial
    */
    static void diag_shape(tensor_shape& ts, const std::string& s) {
      for (index_type i=0; i < s.length(); ++i) {
	size_type pos = s.find(s[i]);
	if (s[i] != ' ' && pos != i) { // ce n'est pas de l'indice => reduction sur la diagonale
	  ts = ts.diag_shape(tensor_mask::Diagonal(dim_type(pos),dim_type(i)));
	}
      }
    }

    void insert(const tensor_ref& tr_, const std::string& s);
    void prepare(const tensor_ref* tr_out = NULL);
    void do_reduction();
    void result(tensor_ref& res) const {
      res=trres;
      res.remove_unused_dimensions();
    }
  private:
    void insert(const tref_or_reduction& tr_, const std::string& s);
    void update_reduction_chars();
    void pre_prepare();
    void make_sub_reductions();
    size_type find_best_sub_reduction(dal::bit_vector &best_lst, std::string &best_idxset);
  };

} /* namespace bgeot */

#endif