This file is indexed.

/usr/include/getfem/getfem_Coulomb_friction.h is in libgetfem++-dev 4.2.1~beta1~svn4635~dfsg-3+b1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
/* -*- c++ -*- (enables emacs c++ mode) */
/*===========================================================================
 
 Copyright (C) 2004-2012 Yves Renard
 
 This file is a part of GETFEM++
 
 Getfem++  is  free software;  you  can  redistribute  it  and/or modify it
 under  the  terms  of the  GNU  Lesser General Public License as published
 by  the  Free Software Foundation;  either version 3 of the License,  or
 (at your option) any later version along with the GCC Runtime Library
 Exception either version 3.1 or (at your option) any later version.
 This program  is  distributed  in  the  hope  that it will be useful,  but
 WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
 or  FITNESS  FOR  A PARTICULAR PURPOSE.  See the GNU Lesser General Public
 License and GCC Runtime Library Exception for more details.
 You  should  have received a copy of the GNU Lesser General Public License
 along  with  this program;  if not, write to the Free Software Foundation,
 Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301, USA.
 
 As a special exception, you  may use  this file  as it is a part of a free
 software  library  without  restriction.  Specifically,  if   other  files
 instantiate  templates  or  use macros or inline functions from this file,
 or  you compile this  file  and  link  it  with other files  to produce an
 executable, this file  does  not  by itself cause the resulting executable
 to be covered  by the GNU Lesser General Public License.  This   exception
 does not  however  invalidate  any  other  reasons why the executable file
 might be covered by the GNU Lesser General Public License.
 
===========================================================================*/

/** @file getfem_Coulomb_friction.h
    @author Yves Renard <Yves.Renard@insa-lyon.fr>
    @author Julien Pommier <Julien.Pommier@insa-toulouse.fr>
    @date July 6, 2004.
    @brief Unilateral contact and Coulomb friction condition brick.
 */
#ifndef GETFEM_COULOMB_FRICTION_H__
#define GETFEM_COULOMB_FRICTION_H__

#include "getfem_modeling.h"

// header files for the new brick system

#include "getfem_contact_and_friction_nodal.h"
#include "getfem_contact_and_friction_integral.h"
#include "getfem_contact_and_friction_large_sliding.h"

namespace getfem {


//===========================================================================
//
//  Brick for the old brick system
//
//===========================================================================

# define MDBRICK_COULOMB_FRICTION 434245

  /**
   * Unilateral contact and Coulomb friction condition brick.
   * (for conformal small displacement problems)
   * @ingroup bricks
   */
  template<typename MODEL_STATE = standard_model_state>
  class mdbrick_Coulomb_friction : public mdbrick_abstract<MODEL_STATE>  {

    TYPEDEF_MODEL_STATE_TYPES;

    mdbrick_abstract<MODEL_STATE> &sub_problem;
    size_type num_fem;

    T_MATRIX BN, BT;
    typedef gmm::row_matrix<gmm::rsvector<value_type> > RT_MATRIX;
    typedef gmm::dense_matrix<bool> CH_MATRIX;
    RT_MATRIX AUG_M; // For Hansbo augmentation.
    CH_MATRIX CH_M; // For determining the Jacobian manually; only for 2D.
    VECTOR gap, threshold, WT, WN, friction_coef, RLN, RLT;
    value_type r, alpha, beta;
    size_type d, nbc;

    const mesh_fem *mf_u;
    gmm::sub_interval SUBU, SUBN, SUBT;

    bool Tresca_version, symmetrized, contact_only, really_stationary;

    template<typename VEC> static void ball_projection(const VEC &x,
                                                       value_type radius) {
      value_type a = gmm::vect_norm2(x);
      if (radius <= 0) gmm::clear(const_cast<VEC&>(x));
      else if (a > radius) gmm::scale(const_cast<VEC&>(x), radius/a);
    }

    template<class VEC, class VECR>
    static void ball_projection_grad_r(const VEC &x, value_type radius,
                                       VECR &g) {
      value_type a = gmm::vect_norm2(x);
      if (radius > 0 && a >= radius)
        gmm::copy(gmm::scaled(x, value_type(1)/a), g);
      else gmm::clear(g);
    }

    template <class VEC, class MAT>
    static void ball_projection_grad(const VEC &x, double radius, MAT &g) {
      if (radius <= value_type(0)) { gmm::clear(g); return; }
      gmm::copy(gmm::identity_matrix(), g);
      value_type a = gmm::vect_norm2(x);
      if (a >= radius) {
        gmm::scale(g, radius/a);
        // gmm::rank_one_update(g, gmm::scaled(x, -radius/(a*a*a)), x);
        for (size_type i = 0; i < x.size(); ++i)
          for (size_type j = 0; j < x.size(); ++j)
            g(i,j) -= radius*x[i]*x[j] / (a*a*a);
      }
    }

    void precomp(MODEL_STATE &MS, size_type i0) {
      size_type i1 = this->mesh_fem_positions[num_fem];
      gmm::resize(RLN, gmm::mat_nrows(BN));
      gmm::resize(RLT, gmm::mat_nrows(BT));
      SUBU = gmm::sub_interval(i0 + i1, mf_u->nb_dof());
      SUBN = gmm::sub_interval(i0 + sub_problem.nb_dof(), gmm::mat_nrows(BN));
      SUBT = gmm::sub_interval(i0 + sub_problem.nb_dof() + gmm::mat_nrows(BN),
                               gmm::mat_nrows(BT));
      gmm::add(gmm::sub_vector(MS.state(), SUBN), gmm::scaled(gap, r*alpha), RLN);
      if (gmm::vect_size(WN) > 0)
        gmm::mult_add(BN, gmm::scaled(WN, -r*alpha), RLN);
      gmm::mult_add(BN, gmm::scaled(gmm::sub_vector(MS.state(), SUBU),
                                    -r*alpha), RLN);
      if (gmm::mat_nrows(AUG_M) > 0)
        gmm::mult_add(AUG_M, gmm::scaled(gmm::sub_vector(MS.state(),SUBN),-r),
                      RLN);
      if (!contact_only) {
        gmm::copy(gmm::sub_vector(MS.state(), SUBT), RLT);
        if (gmm::vect_size(WT) > 0)
          gmm::mult_add(BT, gmm::scaled(WT, -r*beta), RLT);
        if (!really_stationary)
          gmm::mult_add(BT, gmm::scaled(gmm::sub_vector(MS.state(), SUBU),
                                        -r*beta), RLT);
      }
    }

    void proper_update(void) {
      mf_u = this->mesh_fems[num_fem];
      d = mf_u->linked_mesh().dim();
      gmm::resize(BN, nbc, mf_u->nb_dof());
      gmm::resize(BT, nbc*(d-1), mf_u->nb_dof());
      gmm::resize(gap, nbc); gmm::resize(friction_coef, nbc);
      gmm::resize(threshold, nbc);
      // gmm::resize(WT, mf_u->nb_dof()); gmm::resize(WN, mf_u->nb_dof());
      this->proper_additional_dof = gmm::mat_nrows(BN)
        + (contact_only ? 0 : gmm::mat_nrows(BT));
      this->proper_mixed_variables.clear();
      this->proper_mixed_variables.add(sub_problem.nb_dof(),
                                       this->proper_additional_dof);
    }

  public :

    inline size_type nb_contact_nodes(void) const
    { return gmm::mat_nrows(BN); }

    virtual void do_compute_tangent_matrix(MODEL_STATE &MS, size_type i0,
                                           size_type) {
      precomp(MS, i0);

      RT_MATRIX BBN(gmm::mat_nrows(BN), gmm::mat_ncols(BN));
      RT_MATRIX MM(nb_contact_nodes(), nb_contact_nodes());
      gmm::copy(gmm::scaled(BN, -alpha), BBN);
      if (gmm::mat_nrows(AUG_M) > 0)
        gmm::copy(gmm::scaled(AUG_M, -value_type(1)), MM);
      for (size_type i=0; i < nb_contact_nodes(); ++i) {
        if (gmm::mat_nrows(CH_M) > 0) {
          if (!CH_M(i, 0)) {
            gmm::clear(BBN[i]);
            if (gmm::mat_nrows(AUG_M) > 0) gmm::clear(MM[i]);
            MM(i, i) = -value_type(1)/r;
          }
        }
        else if (RLN[i] >= value_type(0)) {
          gmm::clear(BBN[i]);
          if (gmm::mat_nrows(AUG_M) > 0) gmm::clear(MM[i]);
          MM(i, i) = -value_type(1)/r;
        }
      }
      gmm::copy(BBN, gmm::sub_matrix(MS.tangent_matrix(), SUBN, SUBU));
      gmm::copy(MM, gmm::sub_matrix(MS.tangent_matrix(), SUBN));

//       gmm::copy(gmm::scaled(BN, -alpha),
//              gmm::sub_matrix(MS.tangent_matrix(), SUBN, SUBU));
//       gmm::clear(gmm::sub_matrix(MS.tangent_matrix(), SUBN));
//       if (gmm::mat_nrows(AUG_M) > 0)
//      gmm::copy(gmm::scaled(AUG_M, -value_type(1)),
//                gmm::sub_matrix(MS.tangent_matrix(), SUBN));
//       for (size_type i=0; i < nb_contact_nodes(); ++i) {
//      if (RLN[i] >= value_type(0)) {
//        gmm::clear(gmm::sub_matrix(MS.tangent_matrix(),
//                                   gmm::sub_interval(SUBN.first()+i,1),
//                                   SUBU));
//        if (gmm::mat_nrows(AUG_M) > 0)
//          gmm::clear(gmm::sub_matrix(MS.tangent_matrix(),
//                                gmm::sub_interval(SUBN.first()+i,1), SUBN));
//        MS.tangent_matrix()(SUBN.first()+i, SUBN.first()+i)=-value_type(1)/r;
//      }
//       }

      if (!contact_only) {
        base_matrix pg(d-1, d-1);
        base_vector vg(d-1);

        RT_MATRIX BBT(gmm::mat_nrows(BT), gmm::mat_ncols(BT));
        gmm::dense_matrix<value_type> BTi(d-1,  gmm::mat_ncols(BT));

        for (size_type i=0; i < nb_contact_nodes(); ++i) {
          gmm::sub_interval SUBI(i*(d-1), d-1);
          gmm::sub_interval SUBJ(SUBT.first()+i*(d-1),(d-1));
          gmm::sub_interval SUBJJ(i*(d-1),(d-1));
          value_type th = Tresca_version ? threshold[i]
            : - (MS.state())[SUBN.first()+i] * friction_coef[i];
          std::vector<double> rlt_CH(1);

          if (mat_nrows(CH_M) > 0) {
            if (!CH_M(i, 0)) th = 0.0;
            else th = 1.0;
            if (!CH_M(i, 1)) rlt_CH[0] = -2.0;
            else if (!CH_M(i, 2)) rlt_CH[0] = 2.0;
            else rlt_CH[0] = 0.0;
            ball_projection_grad(rlt_CH, th, pg);
          } else
            ball_projection_grad(gmm::sub_vector(RLT, SUBI), th, pg);
          if (!really_stationary)
            gmm::mult(gmm::scaled(pg, -beta),
                      gmm::sub_matrix(BT, SUBI,
                                      gmm::sub_interval(0, gmm::mat_ncols(BT))),
                      BTi);
          gmm::copy(BTi, gmm::sub_matrix(BBT, SUBJJ, SUBU));

          if (!Tresca_version) {
            if (mat_nrows(CH_M) > 0)
              ball_projection_grad_r(rlt_CH, th, vg);
            else
              ball_projection_grad_r(gmm::sub_vector(RLT, SUBI), th, vg);
            for (size_type k = 0; k < d-1; ++k)
              MS.tangent_matrix()(SUBT.first()+i*(d-1)+k, SUBN.first()+i)
                = - friction_coef[i] * vg[k] / r;
          }
          for (size_type j = 0; j < d-1; ++j) pg(j,j) -= value_type(1);
          gmm::copy(gmm::scaled(pg,value_type(1)/r),
                    gmm::sub_matrix(MS.tangent_matrix(), SUBJ));
        }
        T_MATRIX BBBT(gmm::mat_nrows(BT), gmm::mat_ncols(BT));
        gmm::copy(BBT, BBBT);
        gmm::copy(BBBT, gmm::sub_matrix(MS.tangent_matrix(), SUBT, SUBU));
      }

//       if (!contact_only) {
//      base_matrix pg(d-1, d-1);
//      base_vector vg(d-1);

//      for (size_type i=0; i < nb_contact_nodes(); ++i) {
//        gmm::sub_interval SUBI(i*(d-1), d-1);
//        gmm::sub_interval SUBJ(SUBT.first()+i*(d-1),(d-1));
//        value_type th = Tresca_version ? threshold[i]
//          : - (MS.state())[SUBN.first()+i] * friction_coef[i];

//        ball_projection_grad(gmm::sub_vector(RLT, SUBI), th, pg);
//        if (!really_stationary)
//          gmm::mult(gmm::scaled(pg, -beta),
//                    gmm::sub_matrix(BT, SUBI,
//                                    gmm::sub_interval(0,gmm::mat_ncols(BT))),
//                    gmm::sub_matrix(MS.tangent_matrix(), SUBJ, SUBU));

//        if (!Tresca_version) {
//          ball_projection_grad_r(gmm::sub_vector(RLT, SUBI), th, vg);
//          for (size_type k = 0; k < d-1; ++k)
//            MS.tangent_matrix()(SUBT.first()+i*(d-1)+k, SUBN.first()+i)
//              = - friction_coef[i] * vg[k] / r;
//        }
//        for (size_type j = 0; j < d-1; ++j) pg(j,j) -= value_type(1);
//        gmm::copy(gmm::scaled(pg,value_type(1)/r),
//                  gmm::sub_matrix(MS.tangent_matrix(), SUBJ));
//      }
//       }


      if (symmetrized) {
        T_MATRIX tmp(mf_u->nb_dof(), mf_u->nb_dof());

        gmm::resize(tmp, mf_u->nb_dof(), gmm::mat_nrows(BN));
        gmm::copy(gmm::transposed(gmm::sub_matrix(MS.tangent_matrix(),
                                                  SUBN, SUBU)), tmp);
        gmm::copy(tmp, gmm::sub_matrix(MS.tangent_matrix(), SUBU, SUBN));
        gmm::resize(tmp, mf_u->nb_dof(), mf_u->nb_dof());
        gmm::mult(gmm::transposed(gmm::scaled(BN,-r*alpha)),
                  gmm::sub_matrix(MS.tangent_matrix(), SUBN, SUBU), tmp);
        gmm::add(tmp, gmm::sub_matrix(MS.tangent_matrix(), SUBU));

        if (!contact_only) {
          gmm::mult(gmm::transposed(gmm::scaled(BT,-r*beta)),
                    gmm::sub_matrix(MS.tangent_matrix(), SUBT, SUBU), tmp);
          gmm::add(tmp, gmm::sub_matrix(MS.tangent_matrix(), SUBU));
          gmm::resize(tmp, mf_u->nb_dof(), gmm::mat_nrows(BT));
          gmm::copy(gmm::transposed(gmm::sub_matrix(MS.tangent_matrix(),
                                                    SUBT, SUBU)), tmp);
          gmm::copy(tmp, gmm::sub_matrix(MS.tangent_matrix(), SUBU, SUBT));
        }
      }
      else {
        gmm::copy(gmm::scaled(gmm::transposed(BN), value_type(-1)),
                  gmm::sub_matrix(MS.tangent_matrix(), SUBU, SUBN));
        if (!contact_only)
          gmm::copy(gmm::scaled(gmm::transposed(BT), value_type(-1)),
                    gmm::sub_matrix(MS.tangent_matrix(), SUBU, SUBT));
      }
    }

    virtual void do_compute_residual(MODEL_STATE &MS, size_type i0,size_type) {
      precomp(MS, i0);
      value_type c1(1);

      for (size_type i=0; i < nb_contact_nodes(); ++i) {
        RLN[i] = std::min(value_type(0), RLN[i]);
        if (!contact_only)
          ball_projection(gmm::sub_vector(RLT, gmm::sub_interval(i*(d-1),d-1)),
                          Tresca_version ? threshold[i]
                          : -friction_coef[i]*(MS.state())[SUBN.first()+i]);
      }

      if (symmetrized) {
        gmm::mult_add(gmm::transposed(BN), gmm::scaled(RLN, -c1),
                      gmm::sub_vector(MS.residual(), SUBU));
        if (!contact_only)
          gmm::mult_add(gmm::transposed(BT), gmm::scaled(RLT, -c1),
                        gmm::sub_vector(MS.residual(), SUBU));
      } else {
        gmm::mult_add(gmm::transposed(BN),
                      gmm::scaled(gmm::sub_vector(MS.state(), SUBN),-c1),
                      gmm::sub_vector(MS.residual(), SUBU));
        if (!contact_only)
          gmm::mult_add(gmm::transposed(BT),
                        gmm::scaled(gmm::sub_vector(MS.state(), SUBT),-c1),
                        gmm::sub_vector(MS.residual(), SUBU));
      }

      /* residual on LN */
      gmm::add(gmm::scaled(gmm::sub_vector(MS.state(), SUBN), -c1/r),
               gmm::scaled(RLN, c1/r), gmm::sub_vector(MS.residual(), SUBN));
      // gmm::scale(gmm::sub_vector(MS.residual(), SUBN), c1 / r);

      /* residual on LT */
      if (!contact_only) {
        gmm::add(gmm::scaled(gmm::sub_vector(MS.state(),SUBT), -c1/r),
                 gmm::scaled(RLT, c1/r), gmm::sub_vector(MS.residual(), SUBT));
        // gmm::scale(gmm::sub_vector(MS.residual(), SUBT), c1 / r);
      }
    }

    void init(void) {
      this->add_sub_brick(sub_problem);
      this->proper_is_linear_ = this->proper_is_coercive_ = false;
      this->proper_is_symmetric_ = symmetrized && contact_only;
      r = value_type(1);
      beta = value_type(1);
      alpha = value_type(1);
      this->force_update();
    }

    void set_stationary(bool b) { really_stationary = b; }
    void set_beta(value_type a) { beta = a; }
    value_type get_beta(void) const { return beta; }
    void set_alpha(value_type a) { alpha = a; }
    value_type get_alpha(void) const { return alpha; }
    template<typename MAT> void set_augmented_matrix(const MAT &M) {
      gmm::resize(AUG_M, gmm::mat_nrows(M), gmm::mat_ncols(M));
      gmm::copy(M, AUG_M);
    }

    void clear_character_matrix(void) { gmm::resize(CH_M, 0, 0); }
    template<typename MAT> void set_character_matrix(const MAT &M) {
      gmm::resize(CH_M, gmm::mat_nrows(M), gmm::mat_ncols(M));
      gmm::copy(M, CH_M);
    }

    void set_r(value_type r_) { r = r_; }
    value_type get_r(void) const { return r; }
    template <class VEC> void set_WT(const VEC &WT_)
    { gmm::resize(WT, gmm::vect_size(WT_)); gmm::copy(WT_, WT); }
    template <class VEC> void set_WN(const VEC &WN_)
    { gmm::resize(WN, gmm::vect_size(WN_)); gmm::copy(WN_, WN); }

    VECTOR &get_gap(void) { return gap; }
    const VECTOR &get_gap(void) const { return gap; }

    VECTOR &get_friction_coef(void) { return friction_coef; }
    const VECTOR &get_friction_coef(void) const { return friction_coef; }

    SUBVECTOR get_LN(MODEL_STATE &MS) {
      SUBN = gmm::sub_interval(this->first_index() + sub_problem.nb_dof(),
                               gmm::mat_nrows(BN));
      return gmm::sub_vector(MS.state(), SUBN);
    }

    SUBVECTOR get_LT(MODEL_STATE &MS) {
      SUBT = gmm::sub_interval(this->first_index() + sub_problem.nb_dof()
                               + gmm::mat_nrows(BN),  gmm::mat_nrows(BT));
      return gmm::sub_vector(MS.state(), SUBT);
    }

    /* contact and friction */
    template <class MAT, class VEC> mdbrick_Coulomb_friction
    (mdbrick_abstract<MODEL_STATE> &problem, const MAT &BN_, const VEC &gap_,
     scalar_type FC_, const MAT &BT_, size_type num_fem_=0)
      : sub_problem(problem), num_fem(num_fem_) {
      contact_only = Tresca_version = symmetrized = really_stationary = false;
      nbc = gmm::mat_nrows(BN_);
      init();
      gmm::copy(BN_, BN); gmm::copy(BT_, BT); gmm::copy(gap_, gap);
      std::fill(friction_coef.begin(), friction_coef.end(), FC_);
    }

    /* contact only.        */
    template <class MAT, class VEC> mdbrick_Coulomb_friction
    (mdbrick_abstract<MODEL_STATE> &problem, const MAT &BN_, const VEC &gap_,
     size_type num_fem_=0) : sub_problem(problem), num_fem(num_fem_) {
      contact_only = true;
      Tresca_version = symmetrized = really_stationary = false;
      nbc = gmm::mat_nrows(BN_);
      init();
      gmm::copy(BN_, BN); gmm::copy(gap_, gap);
    }

  };


}  /* end of namespace getfem.                                             */


#endif /* GETFEM_COULOMB_FRICTION_H__ */