This file is indexed.

/usr/include/getfem/getfem_contact_and_friction_nodal.h is in libgetfem++-dev 4.2.1~beta1~svn4635~dfsg-3+b1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
/* -*- c++ -*- (enables emacs c++ mode) */
/*===========================================================================
 
 Copyright (C) 2004-2012 Yves Renard, Konstantinos Poulios.
 
 This file is a part of GETFEM++
 
 Getfem++  is  free software;  you  can  redistribute  it  and/or modify it
 under  the  terms  of the  GNU  Lesser General Public License as published
 by  the  Free Software Foundation;  either version 3 of the License,  or
 (at your option) any later version along with the GCC Runtime Library
 Exception either version 3.1 or (at your option) any later version.
 This program  is  distributed  in  the  hope  that it will be useful,  but
 WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
 or  FITNESS  FOR  A PARTICULAR PURPOSE.  See the GNU Lesser General Public
 License and GCC Runtime Library Exception for more details.
 You  should  have received a copy of the GNU Lesser General Public License
 along  with  this program;  if not, write to the Free Software Foundation,
 Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301, USA.
 
 As a special exception, you  may use  this file  as it is a part of a free
 software  library  without  restriction.  Specifically,  if   other  files
 instantiate  templates  or  use macros or inline functions from this file,
 or  you compile this  file  and  link  it  with other files  to produce an
 executable, this file  does  not  by itself cause the resulting executable
 to be covered  by the GNU Lesser General Public License.  This   exception
 does not  however  invalidate  any  other  reasons why the executable file
 might be covered by the GNU Lesser General Public License.
 
===========================================================================*/

/** @file getfem_contact_and_friction_nodal.h
    @author Yves Renard <Yves.Renard@insa-lyon.fr>
    @author Konstantinos Poulios <logari81@googlemail.com>
    @date July 6, 2004.
    @brief Unilateral contact and Coulomb friction condition brick.
 */
#ifndef GETFEM_CONTACT_AND_FRICTION_NODAL_H__
#define GETFEM_CONTACT_AND_FRICTION_NODAL_H__

#include "getfem_models.h"

namespace getfem {

 typedef gmm::row_matrix<gmm::rsvector<scalar_type> > CONTACT_B_MATRIX;

  /** Add a frictionless contact condition to the model. If U is the vector
      of degrees of freedom on which the unilateral constraint is applied,
      the matrix `BN` has to be such that this condition is defined by
      $B_N U \le gap$. The constraint is prescribed thank to a multiplier
      `multname_n` whose dimension should be equal to the number of lines of
      `BN`. The augmentation parameter `r` should be chosen in a range of
      acceptabe values (see Getfem user documentation). `dataname_gap` is an
      optional parameter representing the initial gap. It can be a single value
      or a vector of value. `dataname_alpha` is an optional homogenization
      parameter for the augmentation parameter
      (see Getfem user documentation). The parameter `aug_version` indicates
      the augmentation strategy : 1 for the non-symmetric Alart-Curnier
      augmented Lagrangian, 2 for the symmetric one, 3 for the unsymmetric
      method with augmented multiplier.
  */
  size_type add_basic_contact_brick
  (model &md, const std::string &varname_u, const std::string &multname_n,
   const std::string &dataname_r, CONTACT_B_MATRIX &BN,
   std::string dataname_gap = "", std::string dataname_alpha = "",
   int aug_version=1, bool Hughes_stabilized=false);


  /** Add a contact with friction condition to the model. If U is the vector
      of degrees of freedom on which the condition is applied,
      the matrix `BN` has to be such that the contact condition is defined
      by $B_N U \le gap$ and `BT` have to be such that the relative tangential
      displacement is $B_T U$. The matrix `BT` should have as many rows as
      `BN` multiplied by $d-1$ where $d$ is the domain dimension.
      The contact condition is prescribed thank to a multiplier
      `multname_n` whose dimension should be equal to the number of rows of
      `BN` and the friction condition by a mutliplier `multname_t` whose size
      should be the number of rows of `BT`.
      The parameter `dataname_friction_coeff` describes the friction
      coefficient. It could be a scalar or a vector describing the
      coefficient on each contact condition.
      The augmentation parameter
      `r` should be chosen in a range of acceptabe values
      (see Getfem user documentation). `dataname_gap` is an
      optional parameter representing the initial gap. It can be a single value
      or a vector of value. `dataname_alpha` is an optional homogenization
      parameter for the augmentation parameter
      (see Getfem user documentation). The parameter `aug_version`
      indicates the augmentation strategy : 1 for the non-symmetric
      Alart-Curnier augmented Lagrangian, 2 for the symmetric one,
      3 for the unsymmetric
      method with augmented multiplier and 4 for the unsymmetric
      method with augmented multiplier and De Saxce projection.
  */
  size_type add_basic_contact_brick
  (model &md, const std::string &varname_u, const std::string &multname_n,
   const std::string &multname_t, const std::string &dataname_r,
   CONTACT_B_MATRIX &BN, CONTACT_B_MATRIX &BT,
   std::string dataname_friction_coeff,
   std::string dataname_gap="", std::string dataname_alpha="",
   int aug_version=1, bool Tresca_version=false, const std::string dataname_threshold="",
   std::string dataname_gamma="", std::string dataname_wt="", bool Hughes_stabilized=false);

  /** Can be used to change the matrix BN of a basic contact/friction brick
   */
  CONTACT_B_MATRIX &contact_brick_set_BN(model &md, size_type indbrick);

  /** Can be used to change the matrix DN of a basic contact/friction brick
   */
  CONTACT_B_MATRIX &contact_brick_set_DN(model &md, size_type indbrick);

 /** Can be used to change the matrix DT of a basic contact/friction brick
   */
  CONTACT_B_MATRIX &contact_brick_set_DT(model &md, size_type indbrick);

  /** Can be used to change the matrix BT of a basic contact/friction brick
   */
  CONTACT_B_MATRIX &contact_brick_set_BT(model &md, size_type indbrick);

/** Add Hughes stabilized frictionless contact condition to the model. If U
    is the vector of degrees of freedom on which the unilateral constraint is applied,
    and Lambda the multiplier Vector of contact force.Then Hughes stabilized frictionless
    contact condition is defined by the matrix `BN` and 'DN' have to be such that this
    condition is defined by $B_N U - DN Lambda \le 0$. where 'DN' is the masse matrix
    relative to stabilzed term.
    The augmentation parameter `r` should be chosen in a range of acceptabe values.
    `dataname_gap` is an optional parameter representing the initial gap. It can be
    a single value or a vector of value. `dataname_alpha` is an optional homogenization
    parameter for the augmentation parameter. The parameter `aug_version`
    indicates the augmentation strategy : 1 for the non-symmetric
      Alart-Curnier augmented Lagrangian, 2 for the symmetric one,
      3 for the unsymmetric method with augmented multiplier.
  */
   inline size_type add_Hughes_stab_basic_contact_brick
   (model &md, const std::string &varname_u, const std::string &multname_n,
    const std::string &dataname_r, CONTACT_B_MATRIX &BN, CONTACT_B_MATRIX &DN,
    std::string dataname_gap="", std::string dataname_alpha="",
    int aug_version=1) {

    size_type indbrick = add_basic_contact_brick
      (md, varname_u, multname_n, dataname_r, BN,
       dataname_gap, dataname_alpha, aug_version, true);
    gmm::resize(contact_brick_set_DN(md, indbrick),
                gmm::mat_nrows(DN), gmm::mat_ncols(DN));
    gmm::copy(DN, contact_brick_set_DN(md, indbrick));
    return indbrick;
   }

  /**  Add Hughes stabilized friction contact condition to the model (broken ?). If U is the vector
      of degrees of freedom on which the condition is applied,
      the matrix `BN` have to be such that the contact condition is defined
      by $B_N U+DN Lambda \le 0$ (where 'DN' is the masse matrix
      relative to stabilzed term) and `BT` have to be such that the relative
      tangential displacement is $B_T U$. The matrix `BT` should have as many
      rows as `BN` multiplied b $d-1$ where $d$ is the domain dimension.
      The contact condition is prescribed thank to a multiplier
      `multname_n` whose dimension should be equal to the number of rows of
      `BN` and the friction condition by a mutliplier `multname_t` whise size
      should be the number of rows of `BT`.
      The parameter `dataname_friction_coeff` describe the friction
      coefficient. It could be a scalar or a vector describing the
      coefficient on each contact condition.
      The augmentation parameter
      `r` should be chosen in a range of acceptabe values
      (see Getfem user documentation). `dataname_gap` is an
      optional parameter representing the initial gap. It can be a single value
      or a vector of value. `dataname_alpha` is an optional homogenization
      parameter for the augmentation parameter
      (see Getfem user documentation). The parameter `aug_version`
      indicates the augmentation strategy : 1 for the non-symmetric
      Alart-Curnier augmented Lagrangian, 2 for the symmetric one,
      3 for the unsymmetric
      method with augmented multiplier and 4 for the unsymmetric
      method with augmented multiplier and De Saxce projection.
   **/
  inline size_type add_Hughes_stab_basic_contact_brick
  (model &md, const std::string &varname_u, const std::string &multname_n,
   const std::string &multname_t, const std::string &dataname_r,
   CONTACT_B_MATRIX &BN, CONTACT_B_MATRIX &BT, CONTACT_B_MATRIX &DN,CONTACT_B_MATRIX &DT,
   std::string dataname_friction_coeff,
   std::string dataname_gap="", std::string dataname_alpha="",
   int aug_version=1, bool Tresca_version=false, const std::string dataname_threshold="") {

    size_type indbrick = add_basic_contact_brick
      (md, varname_u, multname_n, multname_t, dataname_r, BN, BT,
       dataname_friction_coeff, dataname_gap, dataname_alpha,
       aug_version, Tresca_version, dataname_threshold, "", "", true);
    gmm::resize(contact_brick_set_DN(md, indbrick),
                gmm::mat_nrows(DN), gmm::mat_ncols(DN));
    gmm::copy(DN, contact_brick_set_DN(md, indbrick));

    gmm::resize(contact_brick_set_DT(md, indbrick),
                gmm::mat_nrows(DT), gmm::mat_ncols(DT));
    gmm::copy(DT, contact_brick_set_DT(md, indbrick));
    return indbrick;
  }



  /** Add a frictionless contact condition with a rigid obstacle
      to the model. The condition is applied on the variable `varname_u`
      on the boundary corresponding to `region`. The rigid obstacle should
      be described with the string `obstacle` being a signed distance to
      the obstacle. This string should be an expression where the coordinates
      are 'x', 'y' in 2D and 'x', 'y', 'z' in 3D. For instance, if the rigid
      obstacle correspond to $z \le 0$, the corresponding signed distance will
      be simply "z". `multname_n` should be a fixed size variable whose size is
      the number of degrees of freedom on boundary `region`. It represents the
      contact equivalent nodal forces.
      The augmentation parameter `r` should be chosen in a
      range of acceptabe values (close to the Young modulus of the elastic
      body, see Getfem user documentation). The parameter `aug_version`
      indicates the augmentation strategy : 1 for the non-symmetric
      Alart-Curnier augmented Lagrangian, 2 for the symmetric one,
      3 for the unsymmetric
      method with augmented multiplier.
      Basically, this brick computes the matrix BN
      and the vectors gap and alpha and calls the basic contact brick.
  */
  size_type add_nodal_contact_with_rigid_obstacle_brick
  (model &md, const mesh_im &mim, const std::string &varname_u,
   const std::string &multname_n, const std::string &dataname_r,
   size_type region, const std::string &obstacle, int aug_version=1);


  /** Add a contact with friction condition with a rigid obstacle
      to the model. The condition is applied on the variable `varname_u`
      on the boundary corresponding to `region`. The rigid obstacle should
      be described with the string `obstacle` being a signed distance to
      the obstacle. This string should be an expression where the coordinates
      are 'x', 'y' in 2D and 'x', 'y', 'z' in 3D. For instance, if the rigid
      obstacle correspond to $z \le 0$, the corresponding signed distance will
      be simply "z". `multname_n` should be a fixed size variable whose size is
      the number of degrees of freedom on boundary `region`. It represents the
      contact equivalent nodal forces.
      `multname_t` should be a fixed size variable whose size is
      the number of degrees of freedom on boundary `region` multiplied by
      $d-1$ where $d$ is the domain dimension. It represents the
      friction equivalent nodal forces.
      The augmentation parameter `r` should be chosen in a
      range of acceptabe values (close to the Young modulus of the elastic
      body, see Getfem user documentation). `dataname_friction_coeff` is
      the friction coefficient. It could be a scalar or a vector of values
      representing the friction coefficient on each contact node.
      The parameter `aug_version`
      indicates the augmentation strategy : 1 for the non-symmetric
      Alart-Curnier augmented Lagrangian, 2 for the symmetric one,
      3 for the unsymmetric
      method with augmented multiplier and 4 for the unsymmetric
      method with augmented multiplier and De Saxce projection.
      Basically, this brick computes the matrix BN
      and the vectors gap and alpha and calls the basic contact brick.
  */
  size_type add_nodal_contact_with_rigid_obstacle_brick
  (model &md, const mesh_im &mim, const std::string &varname_u,
   const std::string &multname_n, const std::string &multname_t,
   const std::string &dataname_r, const std::string &dataname_friction_coeff,
   size_type region, const std::string &obstacle, int aug_version=1);


  /** Add a frictionless contact condition between two faces of one or two
      elastic bodies. The condition is applied on the variable `varname_u` or
      the variables `varname_u1` and `varname_u2` depending if a single or
      two distinct displacement fields are given. Vectors `rg1` and `rg2`
      contain pairs of regions expected to come in contact with each other. In
      case of a single region per side, `rg1` and `rg2` can be given as normal
      integers. In the single displacement variable case the regions defined in
      both `rg1` and `rg2` refer to the variable `varname_u`. In the case of
      two displacement variables, `rg1` refers to `varname_u1` and `rg2` refers
      to `varname_u2`. `multname_n` should be a fixed size variable whose size
      is the number of degrees of freedom on those regions among the ones
      defined in `rg1` and `rg2` which are characterized as "slaves". It
      represents the contact equivalent nodal forces. The augmentation
      parameter `r` should be chosen in a range of acceptabe values (close to
      the Young modulus of the elastic body, see Getfem user documentation).
      The optional parameters `slave1` and `slave2` declare if the regions
      defined in `rg1` and `rg2` are correspondingly considered as "slaves".
      By default `slave1` is true and `slave2` is false, i.e. `rg1` contains
      the slave surfaces, while 'rg2' the master surfaces. Preferably only
      one of `slave1` and `slave2` is set to true. The parameter `aug_version`
      indicates the augmentation strategy : 1 for the non-symmetric
      Alart-Curnier augmented Lagrangian, 2 for the symmetric one,
      3 for the unsymmetric
      method with augmented multiplier.
      Basically, this brick computes the matrix BN and the vectors gap and
      alpha and calls the basic contact brick.
  */
  size_type add_nodal_contact_between_nonmatching_meshes_brick
  (model &md, const mesh_im &mim1, const mesh_im &mim2,
   const std::string &varname_u1, const std::string &varname_u2,
   std::string &multname_n, const std::string &dataname_r,
   const std::vector<size_type> &rg1, const std::vector<size_type> &rg2,
   bool slave1=true, bool slave2=false, int aug_version=1);

  inline size_type add_nodal_contact_between_nonmatching_meshes_brick
  (model &md, const mesh_im &mim1, const mesh_im &mim2,
   const std::string &varname_u1, const std::string &varname_u2,
   std::string &multname_n, const std::string &dataname_r,
   size_type rg1, size_type rg2, bool slave1=true, bool slave2=false,
   int aug_version=0) {

    std::vector<size_type> vrg1(1,rg1);
    std::vector<size_type> vrg2(1,rg2);
    return add_nodal_contact_between_nonmatching_meshes_brick
      (md, mim1, mim2, varname_u1, varname_u2, multname_n, dataname_r,
       vrg1, vrg2, slave1, slave2, aug_version);
  }

  inline size_type add_nodal_contact_between_nonmatching_meshes_brick
  (model &md, const mesh_im &mim, const std::string &varname_u,
   std::string &multname_n, const std::string &dataname_r,
   const std::vector<size_type> &rg1, const std::vector<size_type> &rg2,
   bool slave1=true, bool slave2=false, int aug_version=1) {

    return add_nodal_contact_between_nonmatching_meshes_brick
      (md, mim, mim, varname_u, varname_u, multname_n, dataname_r,
       rg1, rg2, slave1, slave2, aug_version);
  }

  inline size_type add_nodal_contact_between_nonmatching_meshes_brick
  (model &md, const mesh_im &mim, const std::string &varname_u,
   std::string &multname_n, const std::string &dataname_r,
   size_type rg1, size_type rg2, bool slave1=true, bool slave2=false,
   int aug_version=1) {

    std::vector<size_type> vrg1(1,rg1);
    std::vector<size_type> vrg2(1,rg2);
    return add_nodal_contact_between_nonmatching_meshes_brick
      (md, mim, mim, varname_u, varname_u, multname_n, dataname_r,
       vrg1, vrg2, slave1, slave2, aug_version);
  }


  /** Add a contact with friction condition between two faces of one or two
      elastic bodies. The condition is applied on the variable `varname_u` or
      the variables `varname_u1` and `varname_u2` depending if a single or
      two distinct displacement fields are given. Vectors `rg1` and `rg2`
      contain pairs of regions expected to come in contact with each other. In
      case of a single region per side, `rg1` and `rg2` can be given as normal
      integers. In the single displacement variable case the regions defined in
      both `rg1` and `rg2` refer to the variable `varname_u`. In the case of
      two displacement variables, `rg1` refers to `varname_u1` and `rg2` refers
      to `varname_u2`. `multname_n` should be a fixed size variable whose size
      is the number of degrees of freedom on those regions among the ones
      defined in `rg1` and `rg2` which are characterized as "slaves". It
      represents the contact equivalent nodal normal forces. `multname_t`
      should be a fixed size variable whose size corresponds to the size of
      `multname_n` multiplied by qdim - 1 . It represents the contact
      equivalent nodal tangent (frictional) forces. The augmentation parameter
      `r` should be chosen in a range of acceptabe values (close to the Young
      modulus of the elastic body, see Getfem user documentation). The friction
      coefficient stored in the parameter `friction_coeff` is either a single
      value or a vector of the same size as `multname_n`. The optional
      parameters `slave1` and `slave2` declare if the regions defined in `rg1`
      and `rg2` are correspondingly considered as "slaves". By default `slave1`
      is true and `slave2` is false, i.e. `rg1` contains the slave surfaces,
      while 'rg2' the master surfaces. Preferably only one of `slave1` and
      `slave2` is set to true.  The parameter `aug_version`
      indicates the augmentation strategy : 1 for the non-symmetric
      Alart-Curnier augmented Lagrangian, 2 for the symmetric one,
      3 for the unsymmetric
      method with augmented multiplier and 4 for the unsymmetric
      method with augmented multiplier and De Saxce projection.
      Basically, this brick computes the matrices BN and BT as well the vectors
      gap and alpha and calls the basic contact brick.
  */
  size_type add_nodal_contact_between_nonmatching_meshes_brick
  (model &md, const mesh_im &mim1, const mesh_im &mim2,
   const std::string &varname_u1, const std::string &varname_u2,
   std::string &multname_n, std::string &multname_t,
   const std::string &dataname_r, const std::string &dataname_friction_coeff,
   const std::vector<size_type> &rg1, const std::vector<size_type> &rg2,
   bool slave1=true, bool slave2=false, int aug_version=1);

  inline size_type add_nodal_contact_between_nonmatching_meshes_brick
  (model &md, const mesh_im &mim1, const mesh_im &mim2,
   const std::string &varname_u1, const std::string &varname_u2,
   std::string &multname_n, std::string &multname_t,
   const std::string &dataname_r, const std::string &dataname_friction_coeff,
   size_type rg1, size_type rg2, bool slave1=true, bool slave2=false,
   int aug_version=1) {

    std::vector<size_type> vrg1(1,rg1);
    std::vector<size_type> vrg2(1,rg2);
    return add_nodal_contact_between_nonmatching_meshes_brick
      (md, mim1, mim2, varname_u1, varname_u2, multname_n, multname_t,
       dataname_r, dataname_friction_coeff,
       vrg1, vrg2, slave1, slave2, aug_version);
  }

  inline size_type add_nodal_contact_between_nonmatching_meshes_brick
  (model &md, const mesh_im &mim, const std::string &varname_u,
   std::string &multname_n, std::string &multname_t,
   const std::string &dataname_r, const std::string &dataname_friction_coeff,
   const std::vector<size_type> &rg1, const std::vector<size_type> &rg2,
   bool slave1=true, bool slave2=false, int aug_version=1) {

    return add_nodal_contact_between_nonmatching_meshes_brick
      (md, mim, mim, varname_u, varname_u, multname_n, multname_t,
       dataname_r, dataname_friction_coeff,
       rg1, rg2, slave1, slave2, aug_version);
  }

  inline size_type add_nodal_contact_between_nonmatching_meshes_brick
  (model &md, const mesh_im &mim, const std::string &varname_u,
   std::string &multname_n, std::string &multname_t,
   const std::string &dataname_r, const std::string &dataname_friction_coeff,
   size_type rg1, size_type rg2, bool slave1=true, bool slave2=false,
   int aug_version=1) {

    std::vector<size_type> vrg1(1,rg1);
    std::vector<size_type> vrg2(1,rg2);
    return add_nodal_contact_between_nonmatching_meshes_brick
      (md, mim, mim, varname_u, varname_u, multname_n, multname_t,
       dataname_r, dataname_friction_coeff,
       vrg1, vrg2, slave1, slave2, aug_version);
  }


  // DEPRECATED FUNCTION NAMES

  IS_DEPRECATED inline size_type add_basic_contact_with_friction_brick
    (model &md, const std::string &varname_u, const std::string &multname_n,
     const std::string &multname_t, const std::string &dataname_r,
     CONTACT_B_MATRIX &BN, CONTACT_B_MATRIX &BT,
     std::string dataname_friction_coeff,
     std::string dataname_gap="", std::string dataname_alpha="",
     int aug_version=1, bool Tresca_version=false, bool Hughes_stabilized=false)
  { return add_basic_contact_brick
      (md, varname_u, multname_n, multname_t, dataname_r, BN, BT, dataname_friction_coeff,
       dataname_gap, dataname_alpha, aug_version, Tresca_version, "", "", "", Hughes_stabilized); }

  IS_DEPRECATED inline size_type add_Hughes_stab_with_friction_contact_brick
    (model &md, const std::string &varname_u, const std::string &multname_n,
     const std::string &multname_t, const std::string &dataname_r,
     CONTACT_B_MATRIX &BN, CONTACT_B_MATRIX &BT, CONTACT_B_MATRIX &DN,CONTACT_B_MATRIX &DT,
     std::string dataname_friction_coeff, std::string dataname_gap="",
     std::string dataname_alpha="", int aug_version=1, bool Tresca_version=false)
  { return add_Hughes_stab_basic_contact_brick
      (md, varname_u, multname_n, multname_t, dataname_r, BN, BT, DN, DT,
       dataname_friction_coeff, dataname_gap, dataname_alpha, aug_version, Tresca_version, ""); }

  // rigid obstacle
  IS_DEPRECATED inline size_type add_contact_with_rigid_obstacle_brick
    (model &md, const mesh_im &mim, const std::string &varname_u,
     const std::string &multname_n, const std::string &dataname_r,
     size_type region, const std::string &obstacle, int aug_version=1)
  { return add_nodal_contact_with_rigid_obstacle_brick
      (md, mim, varname_u, multname_n, dataname_r, region, obstacle, aug_version); }

  IS_DEPRECATED inline size_type add_contact_with_friction_with_rigid_obstacle_brick
    (model &md, const mesh_im &mim, const std::string &varname_u,
     const std::string &multname_n, const std::string &multname_t,
     const std::string &dataname_r, const std::string &dataname_friction_coeff,
     size_type region, const std::string &obstacle, int aug_version=1)
  { return add_nodal_contact_with_rigid_obstacle_brick
      (md, mim, varname_u, multname_n, multname_t, dataname_r,
       dataname_friction_coeff, region, obstacle, aug_version); }

  // non-matching meshes
  IS_DEPRECATED inline size_type add_nonmatching_meshes_contact_brick
    (model &md, const mesh_im &mim1, const mesh_im &mim2,
     const std::string &varname_u1, const std::string &varname_u2,
     std::string &multname_n, const std::string &dataname_r,
     const std::vector<size_type> &rg1, const std::vector<size_type> &rg2,
     bool slave1=true, bool slave2=false, int aug_version=1)
  { return add_nodal_contact_between_nonmatching_meshes_brick
      (md, mim1, mim2, varname_u1, varname_u2, multname_n, dataname_r,
       rg1, rg2, slave1, slave2, aug_version); }

  IS_DEPRECATED inline size_type add_nonmatching_meshes_contact_brick
    (model &md, const mesh_im &mim1, const mesh_im &mim2,
     const std::string &varname_u1, const std::string &varname_u2,
     std::string &multname_n, const std::string &dataname_r,
     size_type rg1, size_type rg2, bool slave1=true, bool slave2=false,
     int aug_version=0)
  { return add_nodal_contact_between_nonmatching_meshes_brick
      (md, mim1, mim2, varname_u1, varname_u2, multname_n, dataname_r,
       rg1, rg2, slave1, slave2, aug_version); }

  IS_DEPRECATED inline size_type add_nonmatching_meshes_contact_brick
    (model &md, const mesh_im &mim, const std::string &varname_u,
     std::string &multname_n, const std::string &dataname_r,
     const std::vector<size_type> &rg1, const std::vector<size_type> &rg2,
     bool slave1=true, bool slave2=false, int aug_version=1)
  { return add_nodal_contact_between_nonmatching_meshes_brick
      (md, mim, varname_u, multname_n, dataname_r,
       rg1, rg2, slave1, slave2, aug_version); }

  IS_DEPRECATED inline size_type add_nonmatching_meshes_contact_brick
    (model &md, const mesh_im &mim, const std::string &varname_u,
     std::string &multname_n, const std::string &dataname_r,
     size_type rg1, size_type rg2, bool slave1=true, bool slave2=false,
     int aug_version=1)
  { return add_nodal_contact_between_nonmatching_meshes_brick
      (md, mim, varname_u, multname_n, dataname_r,
       rg1, rg2, slave1, slave2, aug_version); }

  // non-matching meshes with friction
  IS_DEPRECATED inline size_type add_nonmatching_meshes_contact_with_friction_brick
    (model &md, const mesh_im &mim1, const mesh_im &mim2,
     const std::string &varname_u1, const std::string &varname_u2,
     std::string &multname_n, std::string &multname_t,
     const std::string &dataname_r, const std::string &dataname_friction_coeff,
     const std::vector<size_type> &rg1, const std::vector<size_type> &rg2,
     bool slave1=true, bool slave2=false, int aug_version=1)
  { return add_nodal_contact_between_nonmatching_meshes_brick
      (md, mim1, mim2, varname_u1, varname_u2, multname_n, multname_t, dataname_r,
       dataname_friction_coeff, rg1, rg2, slave1, slave2, aug_version); }

  IS_DEPRECATED inline size_type add_nonmatching_meshes_contact_with_friction_brick
    (model &md, const mesh_im &mim1, const mesh_im &mim2,
     const std::string &varname_u1, const std::string &varname_u2,
     std::string &multname_n, std::string &multname_t,
     const std::string &dataname_r, const std::string &dataname_friction_coeff,
     size_type rg1, size_type rg2, bool slave1=true, bool slave2=false,
     int aug_version=1)
  { return add_nodal_contact_between_nonmatching_meshes_brick
      (md, mim1, mim2, varname_u1, varname_u2, multname_n, multname_t,
       dataname_r, dataname_friction_coeff, rg1, rg2, slave1, slave2, aug_version); }

  IS_DEPRECATED inline size_type add_nonmatching_meshes_contact_with_friction_brick
    (model &md, const mesh_im &mim, const std::string &varname_u,
     std::string &multname_n, std::string &multname_t,
     const std::string &dataname_r, const std::string &dataname_friction_coeff,
     const std::vector<size_type> &rg1, const std::vector<size_type> &rg2,
     bool slave1=true, bool slave2=false, int aug_version=1)
  { return add_nodal_contact_between_nonmatching_meshes_brick
      (md, mim, varname_u, multname_n, multname_t, dataname_r,
       dataname_friction_coeff, rg1, rg2, slave1, slave2, aug_version); }

  IS_DEPRECATED inline size_type add_nonmatching_meshes_contact_with_friction_brick
    (model &md, const mesh_im &mim, const std::string &varname_u,
     std::string &multname_n, std::string &multname_t,
     const std::string &dataname_r, const std::string &dataname_friction_coeff,
     size_type rg1, size_type rg2, bool slave1=true, bool slave2=false,
     int aug_version=1)
  { return add_nodal_contact_between_nonmatching_meshes_brick
      (md, mim, varname_u, multname_n, multname_t, dataname_r,
       dataname_friction_coeff, rg1, rg2, slave1, slave2, aug_version); }

}  /* end of namespace getfem.                                             */


#endif /* GETFEM_CONTACT_AND_FRICTION_NODAL_H__ */