/usr/include/ginac/class_info.h is in libginac-dev 1.6.2-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 | /** @file class_info.h
*
* Helper templates to provide per-class information for class hierarchies. */
/*
* GiNaC Copyright (C) 1999-2011 Johannes Gutenberg University Mainz, Germany
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#ifndef GINAC_CLASS_INFO_H
#define GINAC_CLASS_INFO_H
#include <cstddef> // for size_t
#include <cstring>
#include <iomanip>
#include <iostream>
#include <map>
#include <stdexcept>
#include <string>
#include <vector>
namespace GiNaC {
// OPT is the class that stores the actual per-class data. It must provide
// get_name(), get_parent_name() and get_id() members.
template <class OPT>
class class_info {
public:
class_info(const OPT & o) : options(o), next(first), parent(NULL)
{
first = this;
parents_identified = false;
}
/** Get pointer to class_info of parent class (or NULL). */
class_info *get_parent() const
{
identify_parents();
return parent;
}
/** Find class_info by name. */
static const class_info *find(const std::string &class_name);
/** Dump class hierarchy to std::cout. */
static void dump_hierarchy(bool verbose = false);
OPT options;
private:
struct tree_node {
tree_node(class_info *i) : info(i) {}
void add_child(tree_node *n) { children.push_back(n); }
std::vector<tree_node *> children;
class_info *info;
};
static void dump_tree(tree_node *n, const std::string & prefix, bool verbose);
static void identify_parents();
static class_info *first;
class_info *next;
mutable class_info *parent;
static bool parents_identified;
};
template <class OPT>
const class_info<OPT> *class_info<OPT>::find(const std::string &class_name)
{
// Use a map for faster lookup. The registered_class_info list doesn't
// change at run-time, so it's sufficient to construct the map once
// on the first trip through this function.
typedef std::map<std::string, const class_info *> name_map_type;
static name_map_type name_map;
static bool name_map_initialized = false;
if (!name_map_initialized) {
// Construct map
const class_info *p = first;
while (p) {
name_map[p->options.get_name()] = p;
p = p->next;
}
name_map_initialized = true;
}
typename name_map_type::const_iterator it = name_map.find(class_name);
if (it == name_map.end())
throw (std::runtime_error("class '" + class_name + "' not registered"));
else
return it->second;
}
template <class OPT>
void class_info<OPT>::dump_tree(tree_node *n, const std::string & prefix, bool verbose)
{
std::string name = n->info->options.get_name();
std::cout << name;
if (verbose)
std::cout << " [ID 0x" << std::hex << std::setw(8) << std::setfill('0') << n->info->options.get_id() << std::dec << "]" << std::endl;
size_t num_children = n->children.size();
if (num_children) {
for (size_t i = 0; i < num_children; ++i) {
if (verbose) {
std::cout << prefix << " +- ";
if (i == num_children - 1)
dump_tree(n->children[i], prefix + " ", verbose);
else
dump_tree(n->children[i], prefix + " | ", verbose);
} else {
std::string spaces(name.size(), ' ');
if (i > 0)
std::cout << prefix << spaces;
if (num_children == 1)
std::cout << " --- ";
else if (i > 0)
std::cout << " +- ";
else
std::cout << " -+- ";
if (i == num_children - 1)
dump_tree(n->children[i], prefix + spaces + " ", verbose);
else
dump_tree(n->children[i], prefix + spaces + " | ", verbose);
}
}
} else if (!verbose)
std::cout << std::endl;
}
template <class OPT>
void class_info<OPT>::dump_hierarchy(bool verbose)
{
identify_parents();
// Create tree nodes for all class_infos
std::vector<tree_node> tree;
for (class_info *p = first; p; p = p->next)
tree.push_back(tree_node(p));
// Identify children for all nodes and find the root
tree_node *root = NULL;
for (typename std::vector<tree_node>::iterator i = tree.begin(); i != tree.end(); ++i) {
class_info *p = i->info->get_parent();
if (p) {
for (typename std::vector<tree_node>::iterator j = tree.begin(); j != tree.end(); ++j) {
if (j->info == p) {
j->add_child(&*i);
break;
}
}
} else
root = &*i;
}
// Print hierarchy tree starting at the root
dump_tree(root, "", verbose);
}
template <class OPT>
void class_info<OPT>::identify_parents()
{
if (!parents_identified) {
for (class_info *p = first; p; p = p->next) {
const char *parent_name = p->options.get_parent_name();
for (class_info *q = first; q; q = q->next) {
if (std::strcmp(q->options.get_name(), parent_name) == 0) {
p->parent = q;
break;
}
}
}
parents_identified = true;
}
}
template <class OPT> class_info<OPT> *class_info<OPT>::first = NULL;
template <class OPT> bool class_info<OPT>::parents_identified = false;
} // namespace GiNaC
#endif // ndef GINAC_CLASS_INFO_H
|