This file is indexed.

/usr/include/gmsh/ChainComplex.h is in libgmsh-dev 2.8.5+dfsg-1.1+b1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
// Gmsh - Copyright (C) 1997-2014 C. Geuzaine, J.-F. Remacle
//
// See the LICENSE.txt file for license information. Please report all
// bugs and problems to the public mailing list <gmsh@geuz.org>.
//
// Contributed by Matti Pellikka <matti.pellikka@microsoft.com>.

#ifndef _CHAINCOMPLEX_H_
#define _CHAINCOMPLEX_H_

#include "GmshConfig.h"
#if defined(HAVE_KBIPACK)

#include <cstdio>
#include <string>
#include <algorithm>
#include <set>
#include <queue>
#include "CellComplex.h"

#if defined(HAVE_GMP)
  #include "gmp.h"
  #include "gmp_normal_form.h"
#else
  #include "mpz.h"
  #include "gmp_normal_form.h"
#endif

class CellComplex;

// A class representing a chain complex of a cell complex.
// This should only be constructed for a reduced cell complex because of
// dense matrix representations and great computational complexity in
// its methods.
class ChainComplex
{
 private:
  // boundary operator matrices for this chain complex
  // h_k: C_k -> C_(k-1)
  gmp_matrix* _HMatrix[5];

  // Basis matrices for the kernels and codomains of the boundary operator
  // matrices
  gmp_matrix* _kerH[5];
  gmp_matrix* _codH[5];

  // matrix of the mapping B_k -> Z_k
  gmp_matrix* _JMatrix[5];
  // matrix of the mapping H_k -> Z_k
  gmp_matrix* _QMatrix[5];

  // bases for homology groups
  gmp_matrix* _Hbasis[5];
  // torsion coefficients of homology generators
  // corresponding the columns of _Hbasis
  std::vector<long int> _torsion[5];

  int _dim;
  CellComplex* _cellComplex;

  // index to cell map
  // matrix indices correspond to these cells in _cellComplex
  std::map<Cell*, int, Less_Cell> _cellIndices[4];

  // set the matrices
  void setHMatrix(int dim, gmp_matrix* matrix) {
    if(dim > -1 && dim < 5) _HMatrix[dim] = matrix;}
  void setKerHMatrix(int dim, gmp_matrix* matrix) {
    if(dim > -1 && dim < 5)  _kerH[dim] = matrix;}
  void setCodHMatrix(int dim, gmp_matrix* matrix) {
    if(dim > -1 && dim < 5)  _codH[dim] = matrix;}
  void setJMatrix(int dim, gmp_matrix* matrix) {
    if(dim > -1 && dim < 5)  _JMatrix[dim] = matrix;}
  void setQMatrix(int dim, gmp_matrix* matrix) {
    if(dim > -1 && dim < 5)  _QMatrix[dim] = matrix;}
  void setHbasis(int dim, gmp_matrix* matrix) {
    if(dim > -1 && dim < 5) _Hbasis[dim] = matrix;}


  // get the boundary operator matrix dim->dim-1
  gmp_matrix* getHMatrix(int dim) const {
    if(dim > -1 && dim < 5) return _HMatrix[dim]; else return NULL;}
  gmp_matrix* getKerHMatrix(int dim) const {
    if(dim > -1 && dim < 5) return _kerH[dim]; else return NULL;}
  gmp_matrix* getCodHMatrix(int dim) const {
    if(dim > -1 && dim < 5) return _codH[dim]; else return NULL;}
  gmp_matrix* getJMatrix(int dim) const {
    if(dim > -1 && dim < 5) return _JMatrix[dim]; else return NULL;}
  gmp_matrix* getQMatrix(int dim) const {
    if(dim > -1 && dim < 5) return _QMatrix[dim]; else return NULL;}
  gmp_matrix* getHbasis(int dim) const {
    if(dim > -1 && dim < 5) return _Hbasis[dim]; else return NULL;}

  // local deformation tools for chains
  bool deformChain(std::map<Cell*, int, Less_Cell>& cells,
		   std::pair<Cell*, int> cell, bool bend);
  bool deform(std::map<Cell*, int, Less_Cell>& cells,
	      std::map<Cell*, int, Less_Cell>& cellsInChain,
	      std::map<Cell*, int, Less_Cell>& cellsNotInChain);
  void smoothenChain(std::map<Cell*, int, Less_Cell>& cells);
  void eraseNullCells(std::map<Cell*, int, Less_Cell>& cells);
  void deImmuneCells(std::map<Cell*, int, Less_Cell>& cells);

 public:
  // domain = 0 : relative chain space
  // domain = 1 : absolute chain space of all cells in cellComplex
  // domain = 2 : absolute chain space of cells in subdomain
  ChainComplex(CellComplex* cellComplex, int domain=0);
  ~ChainComplex();

  int getDim() const { return _dim; }

  // 1 : Z basis (cycles)
  // 2 : B basis (boundaries)
  // 3 : H basis (homology)
  // get the bases for various spaces
  gmp_matrix* getBasis(int dim, int basis);
  gmp_matrix* getBoundaryOp(int dim) {
    if(dim > -1 && dim < 5) return _HMatrix[dim]; else return NULL;}

  // compute basis for kernel and codomain of boundary operator matrix
  // of dimension dim (ie. ker(h_dim) and cod(h_dim) )
  void KerCod(int dim);
   // compute matrix representation J for inclusion relation from dim-cells
   // who are boundary of dim+1-cells to cycles of dim-cells
   // (ie. j: cod(h_(dim+1)) -> ker(h_dim) )
  void Inclusion(int lowDim, int highDim);
  // compute quotient problem for given inclusion relation j to find
  // representatives of homology group generators and possible
  // torsion coeffcients
  void Quotient(int dim, int setDim);

  // transpose the boundary operator matrices, these are boundary operator
  // matrices for the dual mesh
  void transposeHMatrices();
  void transposeHMatrix(int dim);

  // Compute bases for the homology groups of this chain complex
  void computeHomology(bool dual=false);


  typedef std::map<Cell*, int, Less_Cell>::iterator citer;
  citer firstCell(int dim){ return _cellIndices[dim].begin(); }
  citer lastCell(int dim){ return _cellIndices[dim].end(); }
  // get the cell index
  int getCellIndex(Cell* cell){
    citer cit = _cellIndices[cell->getDim()].find(cell);
    if(cit != lastCell(cell->getDim())) return cit->second;
    else return 0;
  }

  // get coefficient vector for dim-dimensional Hbasis chain chainNumber
  std::vector<int> getCoeffVector(int dim, int chainNumber);
  // get basis chain from a basis matrix
  // (deform: with local deformations to make chain smoother and to have
  // smaller support, deformed chain is homologous to the old one,
  // only works for chains of the primary chain complex)
  void getBasisChain(std::map<Cell*, int, Less_Cell>& chain,
		     int num, int dim, int basis, bool deform=false);
  // get rank of a basis
  int getBasisSize(int dim, int basis);
  // homology torsion coefficient for dim-dimensional chain num
  int getTorsion(int dim, int num);

  // apply a transformation T to a basis (T should be unimodular)
  void transformBasis(gmp_matrix* T, int dim, int basis){
    if(basis == 3 && _Hbasis[dim] != NULL) {
      gmp_matrix_right_mult(_Hbasis[dim], T);
    }
  }
  //void printBasisChain(std::map<Cell*, int, Less_Cell>& chain);

  // debugging aid
  int printMatrix(gmp_matrix* matrix){
    printf("%d rows and %d columns\n",
	   (int)gmp_matrix_rows(matrix), (int)gmp_matrix_cols(matrix));
    return gmp_matrix_printf(matrix); }
  void matrixTest();
};

#endif
#endif