/usr/include/gmsh/ChainComplex.h is in libgmsh-dev 2.8.5+dfsg-1.1+b1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 | // Gmsh - Copyright (C) 1997-2014 C. Geuzaine, J.-F. Remacle
//
// See the LICENSE.txt file for license information. Please report all
// bugs and problems to the public mailing list <gmsh@geuz.org>.
//
// Contributed by Matti Pellikka <matti.pellikka@microsoft.com>.
#ifndef _CHAINCOMPLEX_H_
#define _CHAINCOMPLEX_H_
#include "GmshConfig.h"
#if defined(HAVE_KBIPACK)
#include <cstdio>
#include <string>
#include <algorithm>
#include <set>
#include <queue>
#include "CellComplex.h"
#if defined(HAVE_GMP)
#include "gmp.h"
#include "gmp_normal_form.h"
#else
#include "mpz.h"
#include "gmp_normal_form.h"
#endif
class CellComplex;
// A class representing a chain complex of a cell complex.
// This should only be constructed for a reduced cell complex because of
// dense matrix representations and great computational complexity in
// its methods.
class ChainComplex
{
private:
// boundary operator matrices for this chain complex
// h_k: C_k -> C_(k-1)
gmp_matrix* _HMatrix[5];
// Basis matrices for the kernels and codomains of the boundary operator
// matrices
gmp_matrix* _kerH[5];
gmp_matrix* _codH[5];
// matrix of the mapping B_k -> Z_k
gmp_matrix* _JMatrix[5];
// matrix of the mapping H_k -> Z_k
gmp_matrix* _QMatrix[5];
// bases for homology groups
gmp_matrix* _Hbasis[5];
// torsion coefficients of homology generators
// corresponding the columns of _Hbasis
std::vector<long int> _torsion[5];
int _dim;
CellComplex* _cellComplex;
// index to cell map
// matrix indices correspond to these cells in _cellComplex
std::map<Cell*, int, Less_Cell> _cellIndices[4];
// set the matrices
void setHMatrix(int dim, gmp_matrix* matrix) {
if(dim > -1 && dim < 5) _HMatrix[dim] = matrix;}
void setKerHMatrix(int dim, gmp_matrix* matrix) {
if(dim > -1 && dim < 5) _kerH[dim] = matrix;}
void setCodHMatrix(int dim, gmp_matrix* matrix) {
if(dim > -1 && dim < 5) _codH[dim] = matrix;}
void setJMatrix(int dim, gmp_matrix* matrix) {
if(dim > -1 && dim < 5) _JMatrix[dim] = matrix;}
void setQMatrix(int dim, gmp_matrix* matrix) {
if(dim > -1 && dim < 5) _QMatrix[dim] = matrix;}
void setHbasis(int dim, gmp_matrix* matrix) {
if(dim > -1 && dim < 5) _Hbasis[dim] = matrix;}
// get the boundary operator matrix dim->dim-1
gmp_matrix* getHMatrix(int dim) const {
if(dim > -1 && dim < 5) return _HMatrix[dim]; else return NULL;}
gmp_matrix* getKerHMatrix(int dim) const {
if(dim > -1 && dim < 5) return _kerH[dim]; else return NULL;}
gmp_matrix* getCodHMatrix(int dim) const {
if(dim > -1 && dim < 5) return _codH[dim]; else return NULL;}
gmp_matrix* getJMatrix(int dim) const {
if(dim > -1 && dim < 5) return _JMatrix[dim]; else return NULL;}
gmp_matrix* getQMatrix(int dim) const {
if(dim > -1 && dim < 5) return _QMatrix[dim]; else return NULL;}
gmp_matrix* getHbasis(int dim) const {
if(dim > -1 && dim < 5) return _Hbasis[dim]; else return NULL;}
// local deformation tools for chains
bool deformChain(std::map<Cell*, int, Less_Cell>& cells,
std::pair<Cell*, int> cell, bool bend);
bool deform(std::map<Cell*, int, Less_Cell>& cells,
std::map<Cell*, int, Less_Cell>& cellsInChain,
std::map<Cell*, int, Less_Cell>& cellsNotInChain);
void smoothenChain(std::map<Cell*, int, Less_Cell>& cells);
void eraseNullCells(std::map<Cell*, int, Less_Cell>& cells);
void deImmuneCells(std::map<Cell*, int, Less_Cell>& cells);
public:
// domain = 0 : relative chain space
// domain = 1 : absolute chain space of all cells in cellComplex
// domain = 2 : absolute chain space of cells in subdomain
ChainComplex(CellComplex* cellComplex, int domain=0);
~ChainComplex();
int getDim() const { return _dim; }
// 1 : Z basis (cycles)
// 2 : B basis (boundaries)
// 3 : H basis (homology)
// get the bases for various spaces
gmp_matrix* getBasis(int dim, int basis);
gmp_matrix* getBoundaryOp(int dim) {
if(dim > -1 && dim < 5) return _HMatrix[dim]; else return NULL;}
// compute basis for kernel and codomain of boundary operator matrix
// of dimension dim (ie. ker(h_dim) and cod(h_dim) )
void KerCod(int dim);
// compute matrix representation J for inclusion relation from dim-cells
// who are boundary of dim+1-cells to cycles of dim-cells
// (ie. j: cod(h_(dim+1)) -> ker(h_dim) )
void Inclusion(int lowDim, int highDim);
// compute quotient problem for given inclusion relation j to find
// representatives of homology group generators and possible
// torsion coeffcients
void Quotient(int dim, int setDim);
// transpose the boundary operator matrices, these are boundary operator
// matrices for the dual mesh
void transposeHMatrices();
void transposeHMatrix(int dim);
// Compute bases for the homology groups of this chain complex
void computeHomology(bool dual=false);
typedef std::map<Cell*, int, Less_Cell>::iterator citer;
citer firstCell(int dim){ return _cellIndices[dim].begin(); }
citer lastCell(int dim){ return _cellIndices[dim].end(); }
// get the cell index
int getCellIndex(Cell* cell){
citer cit = _cellIndices[cell->getDim()].find(cell);
if(cit != lastCell(cell->getDim())) return cit->second;
else return 0;
}
// get coefficient vector for dim-dimensional Hbasis chain chainNumber
std::vector<int> getCoeffVector(int dim, int chainNumber);
// get basis chain from a basis matrix
// (deform: with local deformations to make chain smoother and to have
// smaller support, deformed chain is homologous to the old one,
// only works for chains of the primary chain complex)
void getBasisChain(std::map<Cell*, int, Less_Cell>& chain,
int num, int dim, int basis, bool deform=false);
// get rank of a basis
int getBasisSize(int dim, int basis);
// homology torsion coefficient for dim-dimensional chain num
int getTorsion(int dim, int num);
// apply a transformation T to a basis (T should be unimodular)
void transformBasis(gmp_matrix* T, int dim, int basis){
if(basis == 3 && _Hbasis[dim] != NULL) {
gmp_matrix_right_mult(_Hbasis[dim], T);
}
}
//void printBasisChain(std::map<Cell*, int, Less_Cell>& chain);
// debugging aid
int printMatrix(gmp_matrix* matrix){
printf("%d rows and %d columns\n",
(int)gmp_matrix_rows(matrix), (int)gmp_matrix_cols(matrix));
return gmp_matrix_printf(matrix); }
void matrixTest();
};
#endif
#endif
|