/usr/include/gmsh/GModel.h is in libgmsh-dev 2.8.5+dfsg-1.1+b1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 | // Gmsh - Copyright (C) 1997-2014 C. Geuzaine, J.-F. Remacle
//
// See the LICENSE.txt file for license information. Please report all
// bugs and problems to the public mailing list <gmsh@geuz.org>.
#ifndef _GMODEL_H_
#define _GMODEL_H_
#include <algorithm>
#include <vector>
#include <set>
#include <map>
#include <string>
#include "GVertex.h"
#include "GEdge.h"
#include "GFace.h"
#include "GRegion.h"
#include "SPoint3.h"
#include "SBoundingBox3d.h"
template <class scalar> class simpleFunction;
class FM_Internals;
class GEO_Internals;
class OCC_Internals;
class SGEOM_Internals;
class ACIS_Internals;
class smooth_normals;
class FieldManager;
class CGNSOptions;
class gLevelset;
class discreteFace;
class discreteRegion;
class MElementOctree;
class GModelFactory;
// A geometric model. The model is a "not yet" non-manifold B-Rep.
class GModel
{
private:
friend class OCCFactory;
friend class SGEOMFactory;
std::multimap<std::pair<std::vector<int>, std::vector<int> >,
std::pair<std::string, std::vector<int> > > _homologyRequests;
std::set<GRegion*, GEntityLessThan> _chainRegions;
std::set<GFace*, GEntityLessThan> _chainFaces;
std::set<GEdge*, GEntityLessThan> _chainEdges;
std::set<GVertex*, GEntityLessThan> _chainVertices;
int _readMSH2(const std::string &name);
int _writeMSH2(const std::string &name, double version=2.2, bool binary=false,
bool saveAll=false, bool saveParametric=false,
double scalingFactor=1.0, int elementStartNum=0,
int saveSinglePartition=0,
bool multipleView=false);
// the maximum vertex and element id number in the mesh
int _maxVertexNum, _maxElementNum;
int _checkPointedMaxVertexNum, _checkPointedMaxElementNum;
protected:
// the name of the model
std::string _name;
// the name of the file the model was read from
std::string _fileName;
std::set<std::string> _fileNames;
// the visibility flag
char _visible;
// vertex and element caches to speed-up direct access by tag (only
// used for post-processing I/O)
std::vector<MVertex*> _vertexVectorCache;
std::map<int, MVertex*> _vertexMapCache;
std::vector<MElement*> _elementVectorCache;
std::map<int, MElement*> _elementMapCache;
std::map<int, int> _elementIndexCache;
// ghost cell information (stores partitions for each element acting
// as a ghost cell)
std::multimap<MElement*, short> _ghostCells;
// an octree for fast mesh element lookup
MElementOctree *_octree;
// Geo (Gmsh native) model internal data
GEO_Internals *_geo_internals;
void _createGEOInternals();
void _deleteGEOInternals();
// OpenCascade model internal data
OCC_Internals *_occ_internals;
void _deleteOCCInternals();
// SGEOM model internal data
SGEOM_Internals *_sgeom_internals;
void _deleteSGEOMInternals();
// ACIS model internal data
ACIS_Internals *_acis_internals;
void _deleteACISInternals();
// Fourier model internal data
FM_Internals *_fm_internals;
void _createFMInternals();
void _deleteFMInternals();
// CAD creation factory
GModelFactory *_factory;
// characteristic length (mesh size) fields
FieldManager *_fields;
// store the elements given in the map (indexed by elementary region
// number) into the model, creating discrete geometrical entities on
// the fly if needed
void _storeElementsInEntities(std::map<int, std::vector<MElement*> > &map);
// loop over all vertices connected to elements and associate
// geometrical entity
void _associateEntityWithMeshVertices();
// store the vertices in the geometrical entity they are associated
// with, and delete those that are not associated with any entity
void _storeVerticesInEntities(std::map<int, MVertex*> &vertices);
void _storeVerticesInEntities(std::vector<MVertex*> &vertices);
// remove all mesh vertex associations to geometrical entities and
// remove vertices from geometrical entities, then
// _associateEntityWithMeshVertices and _storeVerticesInEntities
// are called to rebuild the associations
void _pruneMeshVertexAssociations();
// store the physical tags in the geometrical entities
void _storePhysicalTagsInEntities(int dim,
std::map<int, std::map<int, std::string> > &map);
// entity that is currently being meshed (used for error reporting)
GEntity *_currentMeshEntity;
// index of the current model (in the static list of all loaded
// models)
static int _current;
protected:
// the sets of geometrical regions, faces, edges and vertices in the
// model
std::set<GRegion*, GEntityLessThan> regions;
std::set<GFace*, GEntityLessThan> faces;
std::set<GEdge*, GEntityLessThan> edges;
std::set<GVertex*, GEntityLessThan> vertices;
// map between the pair <dimension, elementary or physical number>
// and an optional associated name
std::map<std::pair<int, int>, std::string> physicalNames, elementaryNames;
// the set of all used mesh partition numbers
std::set<int> meshPartitions;
int partitionSize[2];
public:
GModel(std::string name="");
virtual ~GModel();
// the static list of all loaded models
static std::vector<GModel*> list;
// return the current model, and sets the current model index if
// index >= 0
static GModel *current(int index=-1);
// sets a model to current
static int setCurrent(GModel *m);
int setAsCurrent(){ return setCurrent(this); }
// find a model by name; if fileName is given, return model only if it does
// *not* have a link to the fileName
static GModel *findByName(const std::string &name, const std::string &fileName="");
// delete everything in a GModel (optionally keep name and fileName)
void destroy(bool keepName=false);
// get/set global vertex/element num
int getMaxVertexNumber(){ return _maxVertexNum; }
int getMaxElementNumber(){ return _maxElementNum; }
void setMaxVertexNumber(int num){ _maxVertexNum = num; }
void setMaxElementNumber(int num){ _maxElementNum = num; }
void checkPointMaxNumbers()
{
_checkPointedMaxVertexNum = _maxVertexNum;
_checkPointedMaxVertexNum = _maxVertexNum;
}
void getCheckPointedMaxNumbers(int &maxv, int &maxe)
{
maxv = _checkPointedMaxVertexNum;
maxe = _checkPointedMaxElementNum;
}
// delete all the mesh-related caches (this must be called when the
// mesh is changed)
void destroyMeshCaches();
//delete the mesh stored in entities and call destroMeshCaches
void deleteMesh();
// access internal CAD representations
GEO_Internals *getGEOInternals(){ return _geo_internals; }
OCC_Internals *getOCCInternals(){ return _occ_internals; }
SGEOM_Internals *getSGEOMInternals(){ return _sgeom_internals; }
FM_Internals *getFMInternals() { return _fm_internals; }
ACIS_Internals *getACISInternals(){ return _acis_internals; }
// access characteristic length (mesh size) fields
FieldManager *getFields(){ return _fields; }
// get/set the model name
void setName(std::string name){ _name = name; }
std::string getName(){ return _name; }
// get/set the model file name
void setFileName(std::string fileName)
{
_fileName = fileName;
_fileNames.insert(fileName);
}
std::string getFileName(){ return _fileName; }
bool hasFileName(const std::string &name)
{
return _fileNames.find(name) != _fileNames.end();
}
// get/set the visibility flag
char getVisibility(){ return _visible; }
void setVisibility(char val){ _visible = val; }
// set the visibility of compound entities
void setCompoundVisibility();
// get the number of entities in this model
int getNumRegions() const { return regions.size(); }
int getNumFaces() const { return faces.size(); }
int getNumEdges() const { return edges.size(); }
int getNumVertices() const { return vertices.size(); }
// quickly check if the model is empty (i.e., if it contains no
// entities)
bool empty() const;
// region, face, edge and vertex iterators
typedef std::set<GRegion*, GEntityLessThan>::iterator riter;
typedef std::set<GFace*, GEntityLessThan>::iterator fiter;
typedef std::set<GEdge*, GEntityLessThan>::iterator eiter;
typedef std::set<GVertex*, GEntityLessThan>::iterator viter;
// get an iterator initialized to the first/last entity in this model
riter firstRegion() { return regions.begin(); }
fiter firstFace() { return faces.begin(); }
eiter firstEdge() { return edges.begin(); }
viter firstVertex() { return vertices.begin(); }
riter lastRegion() { return regions.end(); }
fiter lastFace() { return faces.end(); }
eiter lastEdge() { return edges.end(); }
viter lastVertex() { return vertices.end(); }
// find the entity with the given tag
GRegion *getRegionByTag(int n) const;
GFace *getFaceByTag(int n) const;
GEdge *getEdgeByTag(int n) const;
GVertex *getVertexByTag(int n) const;
std::vector<int> getEdgesByStringTag(const std::string tag);
// add/remove an entity in the model
void add(GRegion *r) { regions.insert(r); }
void add(GFace *f) { faces.insert(f); }
void add(GEdge *e) { edges.insert(e); }
void add(GVertex *v) { vertices.insert(v); }
void remove(GRegion *r);
void remove(GFace *f);
void remove(GEdge *e);
void remove(GVertex *v);
// snap vertices on model edges by using geometry tolerance
void snapVertices();
// fill a vector containing all the entities in the model
void getEntities(std::vector<GEntity*> &entities) const;
// return the highest number associated with an elementary entity of
// a given dimension (or the highest overall if dim < 0)
int getMaxElementaryNumber(int dim);
// check if there are no physical entities in the model
bool noPhysicalGroups();
// return all physical groups (one map per dimension: 0-D to 3-D)
void getPhysicalGroups(std::map<int, std::vector<GEntity*> > groups[4]);
// delete physical groups in the model
void deletePhysicalGroups();
void deletePhysicalGroup(int dim, int num);
// return the highest number associated with a physical entity of a
// given dimension (or highest for all dimenions if dim < 0)
int getMaxPhysicalNumber(int dim);
// elementary/physical name iterator
typedef std::map<std::pair<int, int>, std::string>::iterator piter;
// get an iterator on the elementary/physical names
piter firstPhysicalName() { return physicalNames.begin(); }
piter lastPhysicalName() { return physicalNames.end(); }
piter firstElementaryName() { return elementaryNames.begin(); }
piter lastElementaryName() { return elementaryNames.end(); }
// get the number of physical names
int numPhysicalNames(){ return physicalNames.size(); }
// associate a name with a physical entity of dimension "dim" and
// number "num" (returns a new number id if "num"==0)
int setPhysicalName(std::string name, int dim, int num=0);
// get the name (if any) of a given physical group of dimension
// "dim" and id number "num"
std::string getPhysicalName(int dim, int num) const;
// get the number of a given physical group of dimension
// "dim" and name "name". return -1 if not found
int getPhysicalNumber(const int &dim, const std::string & name);
// get the name (if any) of a given elementary entity of dimension
// "dim" and id number "num"
std::string getElementaryName(int dim, int num);
//get the highest dimension of the GModel
int getDim() const;
// set the selection flag on all entities
void setSelection(int val);
// the bounding box
SBoundingBox3d bounds(bool aroundVisible=false);
// return the mesh status for the entire model
int getMeshStatus(bool countDiscrete=true);
// return the total number of elements in the mesh
int getNumMeshElements();
int getNumMeshParentElements();
// get the number of each type of element in the mesh at the largest
// dimension and return the dimension
int getNumMeshElements(unsigned c[5]);
// access a mesh element by coordinates (using an octree search)
MElement *getMeshElementByCoord(SPoint3 &p, int dim=-1, bool strict=true);
std::vector<MElement*> getMeshElementsByCoord(SPoint3 &p, int dim=-1, bool strict=true);
// access a mesh element by tag, using the element cache
MElement *getMeshElementByTag(int n);
// access temporary mesh element index
int getMeshElementIndex(MElement *e);
void setMeshElementIndex(MElement *e, int index);
// return the total number of vertices in the mesh
int getNumMeshVertices() const;
// access a mesh vertex by tag, using the vertex cache
MVertex *getMeshVertexByTag(int n);
// get all the mesh vertices associated with the physical group
// of dimension "dim" and id number "num"
void getMeshVerticesForPhysicalGroup(int dim, int num, std::vector<MVertex*> &);
// index all the (used) mesh vertices in a continuous sequence,
// starting at 1
int indexMeshVertices(bool all, int singlePartition=0, bool renumber=true);
// scale the mesh by the given factor
void scaleMesh(double factor);
// set/get entity that is currently being meshed (for error reporting)
void setCurrentMeshEntity(GEntity *e){ _currentMeshEntity = e; }
GEntity *getCurrentMeshEntity(){ return _currentMeshEntity; }
// delete all invisble mesh elements
void removeInvisibleElements();
// the list of partitions
std::set<int> &getMeshPartitions() { return meshPartitions; }
void recomputeMeshPartitions();
// delete all the partitions
void deleteMeshPartitions();
// store/recall min and max partitions size
void setMinPartitionSize(const int pSize) { partitionSize[0] = pSize; }
void setMaxPartitionSize(const int pSize) { partitionSize[1] = pSize; }
int getMinPartitionSize() const { return partitionSize[0]; }
int getMaxPartitionSize() const { return partitionSize[1]; }
std::multimap<MElement*, short> &getGhostCells(){ return _ghostCells; }
// perform various coherence tests on the mesh
void checkMeshCoherence(double tolerance);
// remove duplicate mesh vertices
int removeDuplicateMeshVertices(double tolerance);
// create topology from mesh
void createTopologyFromMesh(int ignoreHoles=0);
void createTopologyFromRegions(std::vector<discreteRegion*> &discRegions);
void createTopologyFromFaces(std::vector<discreteFace*> &pFaces, int ignoreHoles=0);
void makeDiscreteRegionsSimplyConnected();
void makeDiscreteFacesSimplyConnected();
// a container for smooth normals
smooth_normals *normals;
// mesh the model
int mesh(int dimension);
// adapt the mesh anisotropically using metrics that are computed from a set of functions f(x,y,z).
// For all algorithms
// parameters[1] = lcmin (default : in global gmsh options CTX::instance()->mesh.lcMin)
// parameters[2] = lcmax (default : in global gmsh options CTX::instance()->mesh.lcMax)
// niter is the maximum number of iterations
// Available algorithms:
// 1) Assume that the function is a levelset -> adapt using Coupez technique (technique = 1)
// parameters[0] = thickness of the interface (mandatory)
// 2) Assume that the function is a physical quantity -> adapt using the Hessian (technique = 2)
// parameters[0] = N, the final number of elements
// 3) A variant of 1) by P. Frey (= Coupez + takes curvature function into account)
// parameters[0] = thickness of the interface (mandatory)
// parameters[3] = the required minimum number of elements to represent a circle - used for curvature-based metric (default: = 15)
// 4) A variant (3), direct implementation in the metric eigendirections, assuming a level set (ls):
// - hmin is imposed in the ls gradient,
// - hmax is imposed in the two eigendirections of the ls hessian that are (almost ?) tangent to the iso-zero plane
// + the latter eigenvalues (1/hmax^2) are modified if necessary to capture the iso-zero curvature
// parameters[0] = thickness of the interface in the positive ls direction (mandatory)
// parameters[4] = thickness of the interface in the negative ls direction (=parameters[0] if not specified)
// parameters[3] = the required minimum number of elements to represent a circle - used for curvature-based metric (default: = 15)
// 5) Same as 4, except that the transition in band E uses linear interpolation of h, instead of linear interpolation of metric
// The algorithm first generate a mesh if no one is available
// In this first attempt, only the highest dimensional mesh is adapted, which is ok if
// we assume that boundaries are already adapted.
// This should be fixed.
int adaptMesh(std::vector<int> technique,
std::vector<simpleFunction<double>*> f,
std::vector<std::vector<double> > parameters,
int niter, bool meshAll=false);
// Ensure that the Jacobian of all volume elements is positive
bool setAllVolumesPositive();
// make the mesh a high order mesh at order N
// linear is 1 if the high order points are not placed on the geometry of the model
// incomplete is 1 if incomplete basis are used
int setOrderN(int order, int linear, int incomplete);
// refine the mesh by splitting all elements
int refineMesh(int linear);
// create partition boundaries
void createPartitionBoundaries(int createGhostCells, int createAllDims = 0);
// fill the vertex arrays, given the current option and data
void fillVertexArrays();
// reclassify a mesh i.e. use an angle threshold to tag edges faces and regions
void detectEdges(double _tresholdAngle);
void classifyFaces(std::set<GFace*> &_faces);
// glue entities in the model (assume a tolerance eps and merge
// vertices that are too close, then merge edges, faces and
// regions). Warning: the gluer changes the geometric model, so that
// some pointers could become invalid.
void glue(double eps);
// change the entity creation factory
void setFactory(std::string name);
// create brep geometry entities using the factory
GVertex *addVertex(double x, double y, double z, double lc);
GEdge *addLine(GVertex *v1, GVertex *v2);
GEdge *addCircleArcCenter(double x, double y, double z, GVertex *start, GVertex *end);
GEdge *addCircleArcCenter(GVertex *start, GVertex *center, GVertex *end);
GEdge *addCircleArc3Points(double x, double y, double z, GVertex *start, GVertex *end);
GEdge *addBezier(GVertex *start, GVertex *end, std::vector<std::vector<double> > points);
GEdge *addBSpline(GVertex *start, GVertex *end, std::vector<std::vector<double> > points);
GEdge *addNURBS(GVertex *start, GVertex *end,
std::vector<std::vector<double> > points,
std::vector<double> knots,
std::vector<double> weights,
std::vector<int> mult);
GEntity *revolve(GEntity *e, std::vector<double> p1, std::vector<double> p2,
double angle);
GEntity *extrude(GEntity *e, std::vector<double> p1, std::vector<double> p2);
std::vector<GEntity*> extrudeBoundaryLayer(GEntity *e, int nbLayers, double hLayers,
int dir=1, int view=-1);
GEntity *addPipe(GEntity *e, std::vector<GEdge *> edges);
std::vector<GFace *> addRuledFaces(std::vector<std::vector<GEdge *> > edges);
GFace *addFace(std::vector<GEdge *> edges, std::vector< std::vector<double > > points);
GFace *addPlanarFace(std::vector<std::vector<GEdge *> > edges);
GFace *add2Drect(double x0, double y0, double dx, double dy);
GFace *add2Dellips(double xc, double yc, double rx, double ry);
GEdge *addCompoundEdge(std::vector<GEdge*> edges, int num=-1);
GFace *addCompoundFace(std::vector<GFace*> faces, int type, int split, int num=-1);
GRegion *addVolume(std::vector<std::vector<GFace*> > faces);
// create solid geometry primitives using the factory
GEntity *addSphere(double cx, double cy, double cz, double radius);
GEntity *addCylinder(std::vector<double> p1, std::vector<double> p2, double radius);
GEntity *addTorus(std::vector<double> p1, std::vector<double> p2, double radius1,
double radius2);
GEntity *addBlock(std::vector<double> p1, std::vector<double> p2);
GEntity *add3DBlock(std::vector<double> p1, double dx, double dy , double dz);
GEntity *addCone(std::vector<double> p1, std::vector<double> p2, double radius1,
double radius2);
// heal geometry using the factory
void healGeometry(double tolerance = -1);
// boolean operators acting on 2 models
GModel *computeBooleanUnion(GModel *tool, int createNewModel=0);
GModel *computeBooleanIntersection(GModel *tool, int createNewModel=0);
GModel *computeBooleanDifference(GModel *tool, int createNewModel=0);
void salomeconnect();
void occconnect();
// do stuff for all entities inside a bounding box
void setPeriodicAllFaces(std::vector<double> FaceTranslationVector);
void setPeriodicPairOfFaces(int numFaceMaster, std::vector<int> EdgeListMaster,
int numFaceSlave, std::vector<int> EdgeListSlave);
void setPhysicalNumToEntitiesInBox(int EntityType, int PhysicalGroupNumber,
std::vector<double> p1,std::vector<double> p2);
// build a new GModel by cutting the elements crossed by the levelset ls
// if cutElem is set to false, split the model without cutting the elements
GModel *buildCutGModel(gLevelset *ls, bool cutElem=true, bool saveTri=false);
// create a GModel by importing a mesh (vertexMap has a dim equal to the
// number of vertices and all the other vectors have a dim equal to the number
// of elements)
static GModel *createGModel(std::map<int, MVertex*> &vertexMap,
std::vector<int> &numElement,
std::vector<std::vector<int> > &vertexIndices,
std::vector<int> &elementType,
std::vector<int> &physical,
std::vector<int> &elementary,
std::vector<int> &partition);
// create a GModel from newly created mesh elements (with their own newly
// created mesh vertices), and let element entities have given physical group
// tags
static GModel *createGModel
(std::map<int, std::vector<MElement*> > &entityToElementsMap,
std::map<int, std::vector<int> > &entityToPhysicalsMap);
// for elements cut having new vertices
void store(std::vector<MVertex*> &vertices, int dim,
std::map<int, std::vector<MElement*> > &entityMap,
std::map<int, std::map<int, std::string> > &physicalMap);
// store mesh elements of a chain in a new elementary and physical entity
void storeChain(int dim,
std::map<int, std::vector<MElement*> > &entityMap,
std::map<int, std::map<int, std::string> > &physicalMap);
// request homology computation
void addHomologyRequest(const std::string &type, std::vector<int> &domain,
std::vector<int> &subdomain, std::vector<int> &dim);
void computeHomology();
// "automatic" IO based on Gmsh global functions
void load(std::string fileName);
void save(std::string fileName);
// Gmsh native CAD format (readGEO is static, since it can create
// multiple models)
static int readGEO(const std::string &name);
int writeGEO(const std::string &name, bool printLabels=true,
bool onlyPhysicals=false);
int importGEOInternals();
int exportDiscreteGEOInternals();
// Fourier model
int readFourier();
int readFourier(const std::string &name);
int writeFourier(const std::string &name);
// OCC model
int readOCCBREP(const std::string &name);
int readOCCSTEP(const std::string &name);
int readOCCIGES(const std::string &name);
int writeOCCSTEP(const std::string &name);
int writeOCCBREP(const std::string &name);
int importOCCShape(const void *shape);
// ACIS Model
int readACISSAT(const std::string &name);
// Gmsh mesh file format
int readMSH(const std::string &name);
int writeMSH(const std::string &name, double version=2.2, bool binary=false,
bool saveAll=false, bool saveParametric=false,
double scalingFactor=1.0, int elementStartNum=0,
int saveSinglePartition=0, bool multipleView=false);
int writePartitionedMSH(const std::string &baseName, bool binary=false,
bool saveAll=false, bool saveParametric=false,
double scalingFactor=1.0);
// Iridium file format
int writeIR3(const std::string &name, int elementTagType,
bool saveAll, double scalingFactor);
// mesh statistics (saved as a Gmsh post-processing view)
int writePOS(const std::string &name, bool printElementary,
bool printElementNumber, bool printGamma, bool printEta, bool printRho,
bool printDisto, bool saveAll=false, double scalingFactor=1.0);
// Stereo lithography format
int readSTL(const std::string &name, double tolerance=1.e-3);
int writeSTL(const std::string &name, bool binary=false,
bool saveAll=false, double scalingFactor=1.0);
// PLY(2) format (ascii text format)
int readPLY(const std::string &name);
int readPLY2(const std::string &name);
int writePLY2(const std::string &name);
// Inventor/VRML format
int readVRML(const std::string &name);
int writeVRML(const std::string &name,
bool saveAll=false, double scalingFactor=1.0);
// I-deas universal mesh format
int readUNV(const std::string &name);
int writeUNV(const std::string &name, bool saveAll=false,
bool saveGroupsOfNodes=false, double scalingFactor=1.0);
// Medit (INRIA) mesh format
int readMESH(const std::string &name);
int writeMESH(const std::string &name, int elementTagType=1,
bool saveAll=false, double scalingFactor=1.0);
// Nastran Bulk Data File format
int readBDF(const std::string &name);
int writeBDF(const std::string &name, int format=0, int elementTagType=1,
bool saveAll=false, double scalingFactor=1.0);
// Actran mesh
int readACTRAN(const std::string &name);
// Plot3D structured mesh format
int readP3D(const std::string &name);
int writeP3D(const std::string &name,
bool saveAll=false, double scalingFactor=1.0);
// CFD General Notation System files
int readCGNS(const std::string &name);
int writeCGNS(const std::string &name, int zoneDefinition,
const CGNSOptions &options, double scalingFactor=1.0);
// Med "Modele d'Echange de Donnees" file format (the static routine
// is allowed to load multiple models/meshes)
static int readMED(const std::string &name);
int readMED(const std::string &name, int meshIndex);
int writeMED(const std::string &name,
bool saveAll=false, double scalingFactor=1.0);
// VTK format
int readVTK(const std::string &name, bool bigEndian=false);
int writeVTK(const std::string &name, bool binary=false,
bool saveAll=false, double scalingFactor=1.0,
bool bigEndian=false);
// DIFFPACK format
int readDIFF(const std::string &name);
int writeDIFF(const std::string &name, bool binary=false,
bool saveAll=false, double scalingFactor=1.0);
// Abaqus
int writeINP(const std::string &name, bool saveAll=false,
bool saveGroupsOfNodes=false, double scalingFactor=1.0);
// CELUM
int writeCELUM(const std::string &name, bool saveAll=false,
double scalingFactor=1.0);
// Geomview mesh
int readGEOM(const std::string &name);
// CEA triangulation
int writeMAIL(const std::string &name, bool saveAll, double scalingFactor);
// SU2 mesh file
int writeSU2(const std::string &name, bool saveAll, double scalingFactor);
};
#endif
|