This file is indexed.

/usr/include/gmsh/GModel.h is in libgmsh-dev 2.8.5+dfsg-1.1+b1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
// Gmsh - Copyright (C) 1997-2014 C. Geuzaine, J.-F. Remacle
//
// See the LICENSE.txt file for license information. Please report all
// bugs and problems to the public mailing list <gmsh@geuz.org>.

#ifndef _GMODEL_H_
#define _GMODEL_H_

#include <algorithm>
#include <vector>
#include <set>
#include <map>
#include <string>
#include "GVertex.h"
#include "GEdge.h"
#include "GFace.h"
#include "GRegion.h"
#include "SPoint3.h"
#include "SBoundingBox3d.h"

template <class scalar> class simpleFunction;

class FM_Internals;
class GEO_Internals;
class OCC_Internals;
class SGEOM_Internals;
class ACIS_Internals;
class smooth_normals;
class FieldManager;
class CGNSOptions;
class gLevelset;
class discreteFace;
class discreteRegion;
class MElementOctree;
class GModelFactory;

// A geometric model. The model is a "not yet" non-manifold B-Rep.
class GModel
{
 private:
  friend class OCCFactory;
  friend class SGEOMFactory;
  std::multimap<std::pair<std::vector<int>, std::vector<int> >,
                std::pair<std::string, std::vector<int> > > _homologyRequests;
  std::set<GRegion*, GEntityLessThan> _chainRegions;
  std::set<GFace*, GEntityLessThan> _chainFaces;
  std::set<GEdge*, GEntityLessThan> _chainEdges;
  std::set<GVertex*, GEntityLessThan> _chainVertices;

  int _readMSH2(const std::string &name);
  int _writeMSH2(const std::string &name, double version=2.2, bool binary=false,
                 bool saveAll=false, bool saveParametric=false,
                 double scalingFactor=1.0, int elementStartNum=0,
                 int saveSinglePartition=0,
                 bool multipleView=false);

  // the maximum vertex and element id number in the mesh
  int _maxVertexNum, _maxElementNum;
  int _checkPointedMaxVertexNum, _checkPointedMaxElementNum;
 protected:
  // the name of the model
  std::string _name;

  // the name of the file the model was read from
  std::string _fileName;
  std::set<std::string> _fileNames;

  // the visibility flag
  char _visible;

  // vertex and element caches to speed-up direct access by tag (only
  // used for post-processing I/O)
  std::vector<MVertex*> _vertexVectorCache;
  std::map<int, MVertex*> _vertexMapCache;
  std::vector<MElement*> _elementVectorCache;
  std::map<int, MElement*> _elementMapCache;
  std::map<int, int> _elementIndexCache;

  // ghost cell information (stores partitions for each element acting
  // as a ghost cell)
  std::multimap<MElement*, short> _ghostCells;

  // an octree for fast mesh element lookup
  MElementOctree *_octree;

  // Geo (Gmsh native) model internal data
  GEO_Internals *_geo_internals;
  void _createGEOInternals();
  void _deleteGEOInternals();

  // OpenCascade model internal data
  OCC_Internals *_occ_internals;
  void _deleteOCCInternals();

  // SGEOM model internal data
  SGEOM_Internals *_sgeom_internals;
  void _deleteSGEOMInternals();

  // ACIS model internal data
  ACIS_Internals *_acis_internals;
  void _deleteACISInternals();

  // Fourier model internal data
  FM_Internals *_fm_internals;
  void _createFMInternals();
  void _deleteFMInternals();

  // CAD creation factory
  GModelFactory *_factory;

  // characteristic length (mesh size) fields
  FieldManager *_fields;

  // store the elements given in the map (indexed by elementary region
  // number) into the model, creating discrete geometrical entities on
  // the fly if needed
  void _storeElementsInEntities(std::map<int, std::vector<MElement*> > &map);

  // loop over all vertices connected to elements and associate
  // geometrical entity
  void _associateEntityWithMeshVertices();

  // store the vertices in the geometrical entity they are associated
  // with, and delete those that are not associated with any entity
  void _storeVerticesInEntities(std::map<int, MVertex*> &vertices);
  void _storeVerticesInEntities(std::vector<MVertex*> &vertices);

  // remove all mesh vertex associations to geometrical entities and
  // remove vertices from geometrical entities, then
  // _associateEntityWithMeshVertices and _storeVerticesInEntities
  // are called to rebuild the associations
  void _pruneMeshVertexAssociations();

  // store the physical tags in the geometrical entities
  void _storePhysicalTagsInEntities(int dim,
                                    std::map<int, std::map<int, std::string> > &map);

  // entity that is currently being meshed (used for error reporting)
  GEntity *_currentMeshEntity;

  // index of the current model (in the static list of all loaded
  // models)
  static int _current;

 protected:
  // the sets of geometrical regions, faces, edges and vertices in the
  // model
  std::set<GRegion*, GEntityLessThan> regions;
  std::set<GFace*, GEntityLessThan> faces;
  std::set<GEdge*, GEntityLessThan> edges;
  std::set<GVertex*, GEntityLessThan> vertices;

  // map between the pair <dimension, elementary or physical number>
  // and an optional associated name
  std::map<std::pair<int, int>, std::string> physicalNames, elementaryNames;

  // the set of all used mesh partition numbers
  std::set<int> meshPartitions;
  int partitionSize[2];

 public:
  GModel(std::string name="");
  virtual ~GModel();


  // the static list of all loaded models
  static std::vector<GModel*> list;

  // return the current model, and sets the current model index if
  // index >= 0
  static GModel *current(int index=-1);

  // sets a model to current
  static int setCurrent(GModel *m);
  int setAsCurrent(){ return setCurrent(this); }

  // find a model by name; if fileName is given, return model only if it does
  // *not* have a link to the fileName
  static GModel *findByName(const std::string &name, const std::string &fileName="");

  // delete everything in a GModel (optionally keep name and fileName)
  void destroy(bool keepName=false);

  // get/set global vertex/element num
  int getMaxVertexNumber(){ return _maxVertexNum; }
  int getMaxElementNumber(){ return _maxElementNum; }
  void setMaxVertexNumber(int num){ _maxVertexNum = num; }
  void setMaxElementNumber(int num){ _maxElementNum = num; }
  void checkPointMaxNumbers()
  {
    _checkPointedMaxVertexNum = _maxVertexNum;
    _checkPointedMaxVertexNum = _maxVertexNum;
  }
  void getCheckPointedMaxNumbers(int &maxv, int &maxe)
  {
    maxv = _checkPointedMaxVertexNum;
    maxe = _checkPointedMaxElementNum;
  }

  // delete all the mesh-related caches (this must be called when the
  // mesh is changed)
  void destroyMeshCaches();
  //delete the mesh stored in entities and call destroMeshCaches
  void deleteMesh();

  // access internal CAD representations
  GEO_Internals *getGEOInternals(){ return _geo_internals; }
  OCC_Internals *getOCCInternals(){ return _occ_internals; }
  SGEOM_Internals *getSGEOMInternals(){ return _sgeom_internals; }
  FM_Internals *getFMInternals() { return _fm_internals; }
  ACIS_Internals *getACISInternals(){ return _acis_internals; }

  // access characteristic length (mesh size) fields
  FieldManager *getFields(){ return _fields; }

  // get/set the model name
  void setName(std::string name){ _name = name; }
  std::string getName(){ return _name; }

  // get/set the model file name
  void setFileName(std::string fileName)
  {
    _fileName = fileName;
    _fileNames.insert(fileName);
  }
  std::string getFileName(){ return _fileName; }
  bool hasFileName(const std::string &name)
  {
    return _fileNames.find(name) != _fileNames.end();
  }

  // get/set the visibility flag
  char getVisibility(){ return _visible; }
  void setVisibility(char val){ _visible = val; }

  // set the visibility of compound entities
  void setCompoundVisibility();

  // get the number of entities in this model
  int getNumRegions() const { return regions.size(); }
  int getNumFaces() const { return faces.size(); }
  int getNumEdges() const { return edges.size(); }
  int getNumVertices() const { return vertices.size(); }

  // quickly check if the model is empty (i.e., if it contains no
  // entities)
  bool empty() const;

  // region, face, edge and vertex iterators
  typedef std::set<GRegion*, GEntityLessThan>::iterator riter;
  typedef std::set<GFace*, GEntityLessThan>::iterator fiter;
  typedef std::set<GEdge*, GEntityLessThan>::iterator eiter;
  typedef std::set<GVertex*, GEntityLessThan>::iterator viter;

  // get an iterator initialized to the first/last entity in this model
  riter firstRegion() { return regions.begin(); }
  fiter firstFace() { return faces.begin(); }
  eiter firstEdge() { return edges.begin(); }
  viter firstVertex() { return vertices.begin(); }
  riter lastRegion() { return regions.end(); }
  fiter lastFace() { return faces.end(); }
  eiter lastEdge() { return edges.end(); }
  viter lastVertex() { return vertices.end(); }

  // find the entity with the given tag
  GRegion *getRegionByTag(int n) const;
  GFace *getFaceByTag(int n) const;
  GEdge *getEdgeByTag(int n) const;
  GVertex *getVertexByTag(int n) const;
  std::vector<int> getEdgesByStringTag(const std::string tag);

  // add/remove an entity in the model
  void add(GRegion *r) { regions.insert(r); }
  void add(GFace *f) { faces.insert(f); }
  void add(GEdge *e) { edges.insert(e); }
  void add(GVertex *v) { vertices.insert(v); }
  void remove(GRegion *r);
  void remove(GFace *f);
  void remove(GEdge *e);
  void remove(GVertex *v);

  // snap vertices on model edges by using geometry tolerance
  void snapVertices();

  // fill a vector containing all the entities in the model
  void getEntities(std::vector<GEntity*> &entities) const;

  // return the highest number associated with an elementary entity of
  // a given dimension (or the highest overall if dim < 0)
  int getMaxElementaryNumber(int dim);

  // check if there are no physical entities in the model
  bool noPhysicalGroups();

  // return all physical groups (one map per dimension: 0-D to 3-D)
  void getPhysicalGroups(std::map<int, std::vector<GEntity*> > groups[4]);

  // delete physical groups in the model
  void deletePhysicalGroups();
  void deletePhysicalGroup(int dim, int num);

  // return the highest number associated with a physical entity of a
  // given dimension (or highest for all dimenions if dim < 0)
  int getMaxPhysicalNumber(int dim);

  // elementary/physical name iterator
  typedef std::map<std::pair<int, int>, std::string>::iterator piter;

  // get an iterator on the elementary/physical names
  piter firstPhysicalName() { return physicalNames.begin(); }
  piter lastPhysicalName() { return physicalNames.end(); }
  piter firstElementaryName() { return elementaryNames.begin(); }
  piter lastElementaryName() { return elementaryNames.end(); }

  // get the number of physical names
  int numPhysicalNames(){ return physicalNames.size(); }

  // associate a name with a physical entity of dimension "dim" and
  // number "num" (returns a new number id if "num"==0)
  int setPhysicalName(std::string name, int dim, int num=0);

  // get the name (if any) of a given physical group of dimension
  // "dim" and id number "num"
  std::string getPhysicalName(int dim, int num) const;

  // get the number of a given physical group of dimension
  // "dim" and name "name". return -1 if not found
  int getPhysicalNumber(const int &dim, const std::string & name);

  // get the name (if any) of a given elementary entity of dimension
  // "dim" and id number "num"
  std::string getElementaryName(int dim, int num);

  //get the highest dimension of the GModel
  int getDim() const;

  // set the selection flag on all entities
  void setSelection(int val);

  // the bounding box
  SBoundingBox3d bounds(bool aroundVisible=false);

  // return the mesh status for the entire model
  int getMeshStatus(bool countDiscrete=true);

  // return the total number of elements in the mesh
  int getNumMeshElements();
  int getNumMeshParentElements();

  // get the number of each type of element in the mesh at the largest
  // dimension and return the dimension
  int getNumMeshElements(unsigned c[5]);

  // access a mesh element by coordinates (using an octree search)
  MElement *getMeshElementByCoord(SPoint3 &p, int dim=-1, bool strict=true);
  std::vector<MElement*> getMeshElementsByCoord(SPoint3 &p, int dim=-1, bool strict=true);

  // access a mesh element by tag, using the element cache
  MElement *getMeshElementByTag(int n);

  // access temporary mesh element index
  int getMeshElementIndex(MElement *e);
  void setMeshElementIndex(MElement *e, int index);

  // return the total number of vertices in the mesh
  int getNumMeshVertices() const;

  // access a mesh vertex by tag, using the vertex cache
  MVertex *getMeshVertexByTag(int n);

  // get all the mesh vertices associated with the physical group
  // of dimension "dim" and id number "num"
  void getMeshVerticesForPhysicalGroup(int dim, int num, std::vector<MVertex*> &);

  // index all the (used) mesh vertices in a continuous sequence,
  // starting at 1
  int indexMeshVertices(bool all, int singlePartition=0, bool renumber=true);

  // scale the mesh by the given factor
  void scaleMesh(double factor);

  // set/get entity that is currently being meshed (for error reporting)
  void setCurrentMeshEntity(GEntity *e){ _currentMeshEntity = e; }
  GEntity *getCurrentMeshEntity(){ return _currentMeshEntity; }

  // delete all invisble mesh elements
  void removeInvisibleElements();

  // the list of partitions
  std::set<int> &getMeshPartitions() { return meshPartitions; }
  void recomputeMeshPartitions();

  // delete all the partitions
  void deleteMeshPartitions();

  // store/recall min and max partitions size
  void setMinPartitionSize(const int pSize) { partitionSize[0] = pSize; }
  void setMaxPartitionSize(const int pSize) { partitionSize[1] = pSize; }
  int getMinPartitionSize() const { return partitionSize[0]; }
  int getMaxPartitionSize() const { return partitionSize[1]; }

  std::multimap<MElement*, short> &getGhostCells(){ return _ghostCells; }

  // perform various coherence tests on the mesh
  void checkMeshCoherence(double tolerance);

  // remove duplicate mesh vertices
  int removeDuplicateMeshVertices(double tolerance);

  // create topology from mesh
  void createTopologyFromMesh(int ignoreHoles=0);
  void createTopologyFromRegions(std::vector<discreteRegion*> &discRegions);
  void createTopologyFromFaces(std::vector<discreteFace*> &pFaces, int ignoreHoles=0);
  void makeDiscreteRegionsSimplyConnected();
  void makeDiscreteFacesSimplyConnected();

  // a container for smooth normals
  smooth_normals *normals;

  // mesh the model
  int mesh(int dimension);

  // adapt the mesh anisotropically using metrics that are computed from a set of functions f(x,y,z).
  //   For all algorithms
  //           parameters[1] = lcmin (default : in global gmsh options CTX::instance()->mesh.lcMin)
  //           parameters[2] = lcmax (default : in global gmsh options CTX::instance()->mesh.lcMax)
  //   niter is the maximum number of iterations
  //   Available algorithms:
  //    1) Assume that the function is a levelset -> adapt using Coupez technique (technique = 1)
  //           parameters[0] = thickness of the interface (mandatory)
  //    2) Assume that the function is a physical quantity -> adapt using the Hessian (technique = 2)
  //           parameters[0] = N, the final number of elements
  //    3) A variant of 1) by P. Frey (= Coupez + takes curvature function into account)
  //           parameters[0] = thickness of the interface (mandatory)
  //           parameters[3] = the required minimum number of elements to represent a circle - used for curvature-based metric (default: = 15)
  //    4) A variant (3), direct implementation in the metric eigendirections, assuming a level set (ls):
  //        - hmin is imposed in the ls gradient,
  //        - hmax is imposed in the two eigendirections of the ls hessian that are (almost ?) tangent to the iso-zero plane
  //          + the latter eigenvalues (1/hmax^2) are modified if necessary to capture the iso-zero curvature
  //           parameters[0] = thickness of the interface in the positive ls direction (mandatory)
  //           parameters[4] = thickness of the interface in the negative ls direction (=parameters[0] if not specified)
  //           parameters[3] = the required minimum number of elements to represent a circle - used for curvature-based metric (default: = 15)
  //    5) Same as 4, except that the transition in band E uses linear interpolation of h, instead of linear interpolation of metric
  // The algorithm first generate a mesh if no one is available

  // In this first attempt, only the highest dimensional mesh is adapted, which is ok if
  // we assume that boundaries are already adapted.
  // This should be fixed.
  int adaptMesh(std::vector<int> technique,
		std::vector<simpleFunction<double>*> f,
		std::vector<std::vector<double> > parameters,
		int niter, bool meshAll=false);

  // Ensure that the Jacobian of all volume elements is positive
  bool setAllVolumesPositive();

  // make the mesh a high order mesh at order N
  // linear is 1 if the high order points are not placed on the geometry of the model
  // incomplete is 1 if incomplete basis are used
  int setOrderN(int order, int linear, int incomplete);

  // refine the mesh by splitting all elements
  int refineMesh(int linear);

  // create partition boundaries
  void createPartitionBoundaries(int createGhostCells, int createAllDims = 0);

  // fill the vertex arrays, given the current option and data
  void fillVertexArrays();

  // reclassify a mesh i.e. use an angle threshold to tag edges faces and regions
  void detectEdges(double _tresholdAngle);
  void classifyFaces(std::set<GFace*> &_faces);

  // glue entities in the model (assume a tolerance eps and merge
  // vertices that are too close, then merge edges, faces and
  // regions). Warning: the gluer changes the geometric model, so that
  // some pointers could become invalid.
  void glue(double eps);

  // change the entity creation factory
  void setFactory(std::string name);

  // create brep geometry entities using the factory
  GVertex *addVertex(double x, double y, double z, double lc);
  GEdge *addLine(GVertex *v1, GVertex *v2);
  GEdge *addCircleArcCenter(double x, double y, double z, GVertex *start, GVertex *end);
  GEdge *addCircleArcCenter(GVertex *start, GVertex *center, GVertex *end);
  GEdge *addCircleArc3Points(double x, double y, double z, GVertex *start, GVertex *end);
  GEdge *addBezier(GVertex *start, GVertex *end, std::vector<std::vector<double> > points);
  GEdge *addBSpline(GVertex *start, GVertex *end, std::vector<std::vector<double> > points);
  GEdge *addNURBS(GVertex *start, GVertex *end,
		  std::vector<std::vector<double> > points,
		  std::vector<double> knots,
		  std::vector<double> weights,
		  std::vector<int> mult);
  GEntity *revolve(GEntity *e, std::vector<double> p1, std::vector<double> p2,
                   double angle);
  GEntity *extrude(GEntity *e, std::vector<double> p1, std::vector<double> p2);
  std::vector<GEntity*> extrudeBoundaryLayer(GEntity *e, int nbLayers, double hLayers,
                                             int dir=1, int view=-1);
  GEntity *addPipe(GEntity *e, std::vector<GEdge *>  edges);

  std::vector<GFace *> addRuledFaces(std::vector<std::vector<GEdge *> > edges);
  GFace *addFace(std::vector<GEdge *> edges, std::vector< std::vector<double > > points);
  GFace *addPlanarFace(std::vector<std::vector<GEdge *> > edges);
  GFace *add2Drect(double x0, double y0, double dx, double dy);
  GFace *add2Dellips(double xc, double yc, double rx, double ry);

  GEdge *addCompoundEdge(std::vector<GEdge*> edges, int num=-1);
  GFace *addCompoundFace(std::vector<GFace*> faces, int type, int split, int num=-1);
  GRegion *addVolume(std::vector<std::vector<GFace*> > faces);

  // create solid geometry primitives using the factory
  GEntity *addSphere(double cx, double cy, double cz, double radius);
  GEntity *addCylinder(std::vector<double> p1, std::vector<double> p2, double radius);
  GEntity *addTorus(std::vector<double> p1, std::vector<double> p2, double radius1,
                    double radius2);
  GEntity *addBlock(std::vector<double> p1, std::vector<double> p2);
  GEntity *add3DBlock(std::vector<double> p1, double dx, double dy , double dz);
  GEntity *addCone(std::vector<double> p1, std::vector<double> p2, double radius1,
                   double radius2);

  // heal geometry using the factory
  void healGeometry(double tolerance = -1);

  // boolean operators acting on 2 models
  GModel *computeBooleanUnion(GModel *tool, int createNewModel=0);
  GModel *computeBooleanIntersection(GModel *tool, int createNewModel=0);
  GModel *computeBooleanDifference(GModel *tool, int createNewModel=0);
  void    salomeconnect();
  void    occconnect();

	// do stuff for all entities inside a bounding box
  void    setPeriodicAllFaces(std::vector<double> FaceTranslationVector);
  void    setPeriodicPairOfFaces(int numFaceMaster, std::vector<int> EdgeListMaster,
																 int numFaceSlave, std::vector<int> EdgeListSlave);
  void    setPhysicalNumToEntitiesInBox(int EntityType, int PhysicalGroupNumber,
																				std::vector<double> p1,std::vector<double> p2);


  // build a new GModel by cutting the elements crossed by the levelset ls
  // if cutElem is set to false, split the model without cutting the elements
  GModel *buildCutGModel(gLevelset *ls, bool cutElem=true, bool saveTri=false);

  // create a GModel by importing a mesh (vertexMap has a dim equal to the
  // number of vertices and all the other vectors have a dim equal to the number
  // of elements)
  static GModel *createGModel(std::map<int, MVertex*> &vertexMap,
                              std::vector<int> &numElement,
                              std::vector<std::vector<int> > &vertexIndices,
                              std::vector<int> &elementType,
                              std::vector<int> &physical,
                              std::vector<int> &elementary,
                              std::vector<int> &partition);

  // create a GModel from newly created mesh elements (with their own newly
  // created mesh vertices), and let element entities have given physical group
  // tags
  static GModel *createGModel
    (std::map<int, std::vector<MElement*> > &entityToElementsMap,
     std::map<int, std::vector<int> > &entityToPhysicalsMap);

  // for elements cut having new vertices
  void store(std::vector<MVertex*> &vertices, int dim,
            std::map<int, std::vector<MElement*> > &entityMap,
            std::map<int, std::map<int, std::string> > &physicalMap);

  // store mesh elements of a chain in a new elementary and physical entity
  void storeChain(int dim,
                  std::map<int, std::vector<MElement*> > &entityMap,
                  std::map<int, std::map<int, std::string> > &physicalMap);

  // request homology computation
  void addHomologyRequest(const std::string &type, std::vector<int> &domain,
                          std::vector<int> &subdomain, std::vector<int> &dim);
  void computeHomology();

  // "automatic" IO based on Gmsh global functions
  void load(std::string fileName);
  void save(std::string fileName);

  // Gmsh native CAD format (readGEO is static, since it can create
  // multiple models)
  static int readGEO(const std::string &name);
  int writeGEO(const std::string &name, bool printLabels=true,
               bool onlyPhysicals=false);
  int importGEOInternals();
  int exportDiscreteGEOInternals();

  // Fourier model
  int readFourier();
  int readFourier(const std::string &name);
  int writeFourier(const std::string &name);

  // OCC model
  int readOCCBREP(const std::string &name);
  int readOCCSTEP(const std::string &name);
  int readOCCIGES(const std::string &name);
  int writeOCCSTEP(const std::string &name);
  int writeOCCBREP(const std::string &name);
  int importOCCShape(const void *shape);

  // ACIS Model
  int readACISSAT(const std::string &name);

  // Gmsh mesh file format
  int readMSH(const std::string &name);
  int writeMSH(const std::string &name, double version=2.2, bool binary=false,
               bool saveAll=false, bool saveParametric=false,
               double scalingFactor=1.0, int elementStartNum=0,
               int saveSinglePartition=0, bool multipleView=false);
  int writePartitionedMSH(const std::string &baseName, bool binary=false,
                          bool saveAll=false, bool saveParametric=false,
                          double scalingFactor=1.0);

  // Iridium file format
  int writeIR3(const std::string &name, int elementTagType,
               bool saveAll, double scalingFactor);

  // mesh statistics (saved as a Gmsh post-processing view)
  int writePOS(const std::string &name, bool printElementary,
               bool printElementNumber, bool printGamma, bool printEta, bool printRho,
               bool printDisto, bool saveAll=false, double scalingFactor=1.0);

  // Stereo lithography format
  int readSTL(const std::string &name, double tolerance=1.e-3);
  int writeSTL(const std::string &name, bool binary=false,
               bool saveAll=false, double scalingFactor=1.0);

  // PLY(2) format (ascii text format)
  int readPLY(const std::string &name);
  int readPLY2(const std::string &name);
  int writePLY2(const std::string &name);

  // Inventor/VRML format
  int readVRML(const std::string &name);
  int writeVRML(const std::string &name,
                bool saveAll=false, double scalingFactor=1.0);

  // I-deas universal mesh format
  int readUNV(const std::string &name);
  int writeUNV(const std::string &name, bool saveAll=false,
               bool saveGroupsOfNodes=false, double scalingFactor=1.0);

  // Medit (INRIA) mesh format
  int readMESH(const std::string &name);
  int writeMESH(const std::string &name, int elementTagType=1,
                bool saveAll=false, double scalingFactor=1.0);

  // Nastran Bulk Data File format
  int readBDF(const std::string &name);
  int writeBDF(const std::string &name, int format=0, int elementTagType=1,
               bool saveAll=false, double scalingFactor=1.0);

  // Actran mesh
  int readACTRAN(const std::string &name);

  // Plot3D structured mesh format
  int readP3D(const std::string &name);
  int writeP3D(const std::string &name,
               bool saveAll=false, double scalingFactor=1.0);

  // CFD General Notation System files
  int readCGNS(const std::string &name);
  int writeCGNS(const std::string &name, int zoneDefinition,
                const CGNSOptions &options, double scalingFactor=1.0);

  // Med "Modele d'Echange de Donnees" file format (the static routine
  // is allowed to load multiple models/meshes)
  static int readMED(const std::string &name);
  int readMED(const std::string &name, int meshIndex);
  int writeMED(const std::string &name,
               bool saveAll=false, double scalingFactor=1.0);

  // VTK format
  int readVTK(const std::string &name, bool bigEndian=false);
  int writeVTK(const std::string &name, bool binary=false,
               bool saveAll=false, double scalingFactor=1.0,
               bool bigEndian=false);

  // DIFFPACK format
  int readDIFF(const std::string &name);
  int writeDIFF(const std::string &name, bool binary=false,
               bool saveAll=false, double scalingFactor=1.0);

  // Abaqus
  int writeINP(const std::string &name, bool saveAll=false,
               bool saveGroupsOfNodes=false, double scalingFactor=1.0);

  // CELUM
  int writeCELUM(const std::string &name, bool saveAll=false,
                 double scalingFactor=1.0);

  // Geomview mesh
  int readGEOM(const std::string &name);

  // CEA triangulation
  int writeMAIL(const std::string &name, bool saveAll, double scalingFactor);

  // SU2 mesh file
  int writeSU2(const std::string &name, bool saveAll, double scalingFactor);
};

#endif