/usr/include/gmsh/Numeric.h is in libgmsh-dev 2.8.5+dfsg-1.1+b1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 | // Gmsh - Copyright (C) 1997-2014 C. Geuzaine, J.-F. Remacle
//
// See the LICENSE.txt file for license information. Please report all
// bugs and problems to the public mailing list <gmsh@geuz.org>.
#ifndef _NUMERIC_H_
#define _NUMERIC_H_
#include <math.h>
#include <vector>
#include "fullMatrix.h"
#include "SPoint3.h"
#include "SVector3.h"
#define myhypot(a,b) (sqrt((a)*(a)+(b)*(b)))
#define sign(x) (((x)>=0)?1:-1)
#define SQU(a) ((a)*(a))
struct mean_plane
{
double plan[3][3];
double a, b, c, d;
double x, y, z;
};
double myatan2(double a, double b);
double myasin(double a);
double myacos(double a);
inline double crossProd(double a[3], double b[3], int i)
{
int i1 = (i+1) % 3;
int i2 = (i+2) % 3;
return a[i1]*b[i2] - a[i2]*b[i1];
}
inline double scalProd(double a[3], double b[3])
{
return a[0]*b[0] + a[1]*b[1] + a[2]*b[2];
}
inline void prodve(double a[3], double b[3], double c[3])
{
c[2] = a[0] * b[1] - a[1] * b[0];
c[1] = -a[0] * b[2] + a[2] * b[0];
c[0] = a[1] * b[2] - a[2] * b[1];
}
inline void prosca(double a[3], double b[3], double *c)
{
*c = a[0] * b[0] + a[1] * b[1] + a[2] * b[2];
}
void matvec(double mat[3][3], double vec[3], double res[3]);
void matmat(double mat1[3][3], double mat2[3][3], double res[3][3]);
inline double norm3(double a[3])
{
return sqrt(a[0] * a[0] + a[1] * a[1] + a[2] * a[2]);
}
inline double norme(double a[3])
{
const double mod = norm3(a);
if(mod != 0.0){
const double one_over_mod = 1./mod;
a[0] *= one_over_mod;
a[1] *= one_over_mod;
a[2] *= one_over_mod;
}
return mod;
}
double norm2(double a[3][3]);
void normal3points(double x0, double y0, double z0,
double x1, double y1, double z1,
double x2, double y2, double z2,
double n[3]);
void normal2points(double x0, double y0, double z0,
double x1, double y1, double z1,
double n[3]);
int sys2x2(double mat[2][2], double b[2], double res[2]);
int sys3x3(double mat[3][3], double b[3], double res[3], double *det);
int sys3x3_with_tol(double mat[3][3], double b[3], double res[3], double *det);
double det2x2(double mat[2][2]);
double det2x3(double mat[2][3]);
double det3x3(double mat[3][3]);
double trace3x3(double mat[3][3]);
double trace2 (double mat[3][3]);
double inv3x3(double mat[3][3], double inv[3][3]);
double inv2x2(double mat[2][2], double inv[2][2]);
double angle_02pi(double A3);
double angle_plan(double v[3], double p1[3], double p2[3], double n[3]);
double triangle_area(double p0[3], double p1[3], double p2[3]);
double triangle_area2d(double p0[2], double p1[2], double p2[2]);
void circumCenterXY(double *p1, double *p2, double *p3, double *res);
void circumCenterXYZ(double *p1, double *p2, double *p3, double *res, double *uv=0);
// operate a transformation on the 4 points of a Quad in 3D, to have an equivalent Quad in 2D
void planarQuad_xyz2xy(double *x, double *y, double *z, double *xn, double *yn);
// compute the radius of the circle that is tangent to the 3 edges defined by 4 points
// edge_1=(x0,y0)->(x1,y1); edge_2=(x1,y1)->(x2,y2); edge_3=(x2,y2)->(x3,y3)
double computeInnerRadiusForQuad(double *x, double *y, int i);
char float2char(float f);
float char2float(char c);
void eigenvalue2x2(double mat[2][2], double v[2]);
void eigenvalue(double mat[3][3], double re[3]);
void FindCubicRoots(const double coeff[4], double re[3], double im[3]);
void eigsort(double d[3]);
void gradSimplex(double *x, double *y, double *z, double *v, double *grad);
double ComputeVonMises(double *val);
double ComputeScalarRep(int numComp, double *val);
void invert_singular_matrix3x3(double MM[3][3], double II[3][3]);
bool newton_fd(bool (*func)(fullVector<double> &, fullVector<double> &, void *),
fullVector<double> &x, void *data, double relax=1., double tolx=1.e-6);
double minimize_grad_fd(double (*func)(fullVector<double> &, void *),
fullVector<double> &x, void *data);
void signedDistancePointTriangle(const SPoint3 &p1,const SPoint3 &p2, const SPoint3 &p3,
const SPoint3 &p, double &d, SPoint3 &closePt);
void signedDistancesPointsTriangle(std::vector<double> &distances,
std::vector<SPoint3> &closePts,
const std::vector<SPoint3> &pts,
const SPoint3 &p1,
const SPoint3 &p2,
const SPoint3 &p3);
void signedDistancePointLine(const SPoint3 &p1, const SPoint3 &p2, const SPoint3 &p,
double &distance, SPoint3 &closePt);
void signedDistancesPointsLine (std::vector<double>&distances,
std::vector<SPoint3>&closePts,
const std::vector<SPoint3> &pts,
const SPoint3 &p1, const SPoint3 &p2);
void changeReferential(const int direction, const SPoint3 &p, const SPoint3 &closePt,
const SPoint3 &p1, const SPoint3 &p2, double *xp, double*yp,
double *otherp, double *x, double *y, double *other);
int computeDistanceRatio(const double &y, const double &yp, const double &x,
const double &xp, double *distance, const double &r1,
const double &r2);
void signedDistancesPointsEllipseLine (std::vector<double>&distances,
std::vector<double>&distancesE,
std::vector<int>&isInYarn,
std::vector<SPoint3>&closePts,
const std::vector<SPoint3> &pts,
const SPoint3 &p1, const SPoint3 &p2);
int intersection_segments (const SPoint3 &p1, const SPoint3 &p2,
const SPoint3 &q1, const SPoint3 &q2,
double x[2]);
//tools for projection onto plane
void computeMeanPlaneSimple(const std::vector<SPoint3> &points, mean_plane &meanPlane);
void projectPointToPlane(const SPoint3 &pt, SPoint3 &ptProj, const mean_plane &meanPlane);
void projectPointsToPlane(const std::vector<SPoint3> &pts, std::vector<SPoint3> &ptsProj, const mean_plane &meanPlane);
void transformPointsIntoOrthoBasis(const std::vector<SPoint3> &ptsProj, std::vector<SPoint3> &pointsUV,
const SPoint3 &ptCG, const mean_plane &meanPlane);
#endif
|