This file is indexed.

/usr/include/gmsh/fullMatrix.h is in libgmsh-dev 2.8.5+dfsg-1.1+b1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
// Gmsh - Copyright (C) 1997-2014 C. Geuzaine, J.-F. Remacle
//
// See the LICENSE.txt file for license information. Please report all
// bugs and problems to the public mailing list <gmsh@geuz.org>.

#ifndef _FULL_MATRIX_H_
#define _FULL_MATRIX_H_

#include <math.h>
#include <stdio.h>
#include "GmshConfig.h"
#include "GmshMessage.h"

template <class scalar> class fullMatrix;

/**
   @class fullVector
   @brief Vector of scalar

   This class represents a vector of scalar.@n
   Scalars can be real or complex, with simple or double precision.

   The first index of a fullVector is @c 0.

   fullVector%s can own their scalars,
   or just be an access point to an other fullVector.@n
   Such a fullVector is called a proxy.

   @see fullVector::setAsProxy(const fullVector&, int, int)
*/

/**
   @class fullMatrix
   @brief Matrix of scalar

   This class represents a matrix of scalar.@n
   Scalars can be real or complex, with simple or double precision.
*/

// An abstract interface for vectors of scalar
template <class scalar>
class fullVector
{
 private:
  int _r;          // size of the vector
  scalar *_data;   // pointer on the first element
  bool _own_data;
  friend class fullMatrix<scalar>;

 public:
  // constructor and destructor
  /**
     Instantiates a zero size fullVector.
  */
  fullVector(void) : _r(0),_data(0),_own_data(1) {}

  /**
     @param r A positive integer.

     Instantiates a fullVector of size r filled with zeros.
  */
  fullVector(int r) : _r(r),_own_data(1)
  {
    _data = new scalar[_r];
    setAll(scalar(0.));
  }

  /**
     @param original A scalar pointer;
     @param r A positive integer.

     Instantiates a proxy fullVector given by:
     [original[0], original[1], ..., original[r - 1]].
  */
  fullVector(scalar *original, int r)
  {
    _r = r;
    _own_data = false;
    _data = original;
  }

  /**
     @param other A fullVector.

     Instantiates a fullVector, which is a copy (and not a proxy) of other.
  */
  fullVector(const fullVector<scalar> &other) : _r(other._r),_own_data(1)
  {
    _data = new scalar[_r];
    for(int i = 0; i < _r; ++i) _data[i] = other._data[i];
  }

  /**
     Deletes this fullVector.
  */
  ~fullVector()
  {
    if(_own_data && _data) delete [] _data;
  }

  // get information (size, value)
  /**
     @return Returns the size of this fullVector
  */
  inline int size()                  const { return _r; }

  /**
     @return Returns a const pointer to this fullVector data.@n
     This pointer will point to the following memory segment:
     [(*this)(0), (*this)(1), ..., (*this)(this->size() - 1)].
  */
  inline const scalar * getDataPtr() const { return _data; }

  /**
     @return Returns a  pointer to this fullVector data.@n
     This pointer will point to the following memory segment:
     [(*this)(0), (*this)(1), ..., (*this)(this->size() - 1)].
  */
  inline scalar * getDataPtr() { return _data; }

  /**
     @param i A vector index between 0 and size() - 1.
     @returns Returns the ith scalar of this fullVector.
  */
  inline scalar operator () (int i)  const { return _data[i]; }

  /**
     @param i A vector index between 0 and size() - 1.
     @returns Returns a reference to the ith scalar of this fullVector.
  */
  inline scalar & operator () (int i)      { return _data[i]; }

  // copy
  /**
     @param other A fullVector.

     The right hand side fullVector will become a copy of other,
     and will loose its previous data.
  */
  fullVector<scalar>& operator= (const fullVector<scalar> &other)
  {
    if (this != &other) {
      if ((!resize(other.size(), false) && _r > 2*other.size())) {
        if (_data) delete[] _data;
        _r = other.size();
        _data = new scalar[_r];
      }
      setAll(other);
    }
    return *this;
  }

  // set
  /**
     @param r A vector index between 0 and size() - 1;
     @param v A scalar.

     The rth value of this fullVector is set to v.
  */
  inline void set(int r, scalar v){
    #ifdef _DEBUG
    if (r >= _r || r < 0)
      Msg::Fatal("invalid index to access fullVector : %i (size = %i)",
                 r, _r);
    #endif
    (*this)(r) = v;
  }

  // operations
  /**
     @return Returns the @f$ L^2 @f$ norm of this fullVector.
  */
  inline scalar norm() const
  {
    scalar n = 0.;
    for(int i = 0; i < _r; ++i) n += _data[i] * _data[i];
    return sqrt(n);
  }

  /**
     @param r A positive integer;
     @param resetValue A boolean (with default value equals to true).

     Resizes this fullVector to r. Previous data may be damaged.@n
     If resetValue is true, the fullVector data are set to zero.@n
     If this fullVector was a proxy, it now owns its data.

     @return Returns:
     @li true if the previous data are damaged;
     @li false if not (except if resetValue is true).

     @warning
     Nicolas: I'm not sure if this is exactly what resize does !

     @todo
     Check doc of fullVector::resize()
  */
  bool resize(int r, bool resetValue = true)
  {
    if (_r < r || !_own_data) {
      if (_own_data && _data) delete[] _data;
      _r = r;
      _data = new scalar[_r];
      _own_data = true;
      if(resetValue)
        setAll(scalar(0.));
      return true;
    }
    _r = r;
    if(resetValue)
      setAll(scalar(0.));
    return false;
  }

  /**
     @param original A fullVector;
     @param r_start A valid index of original;
     @param r A number between 0 and original.size() - r_start.

     This fullVector becomes a proxy of original, that is:
     [original(r_start), ..., original(r_start + r - 1)].

     Previous data are lost.
  */
  void setAsProxy(const fullVector<scalar> &original, int r_start, int r)
  {
    if(_own_data && _data) delete [] _data;
    _own_data = false;
    _r = r;
    _data = original._data + r_start;
  }

  /**
     @param original A fullMatrix;
     @param c A valid column index of original.

     This fullVector becomes a proxy of original cth row, that is:
     [original(0, c), ..., original(original.size1() - 1, c)].

     Previous data are lost.
  */
  void setAsProxy(const fullMatrix<scalar> &original, int c)
  {
    if(_own_data && _data) delete [] _data;
    _own_data = false;
    _r = original._r;
    _data = original._data + c * _r;
  }

  /**
     @param s A scalar.

     Multiplies all the data of this fullVector by s.
  */
  inline void scale(const scalar s)
  {
    if(s == scalar(0.))
      for(int i = 0; i < _r; ++i) _data[i] = scalar(0.);
    else if (s == -1.)
      for(int i = 0; i < _r; ++i) _data[i] = -_data[i];
    else
      for(int i = 0; i < _r; ++i) _data[i] *= s;
  }

  /**
     @param m A scalar.

     Sets all the data of this fullVector to m.
  */
  inline void setAll(const scalar &m)
  {
    for(int i = 0; i < _r; i++) set(i,m);
  }

  /**
     @param m A fullVector.

     If:
     @li @f$ v @f$ is this fullVector;
     @li @f$ N @f$ is equal to this fullVector size,

     then:
     @f$ v(i) = m(i) \qquad \forall{} i \in \{0, \dots, N - 1\} @f$.

     m.size() must be greater or equal to @f$ N @f$.
  */
  void setAll(const fullVector<scalar> &m)
#if !defined(HAVE_BLAS)
  {
    for(int i = 0; i < _r; i++) _data[i] = m._data[i];
  }
#endif
  ;

  /**
     @param other A fullVector.

     @return Returns the scalar product of this fullVector with the other.
  */
  inline scalar operator *(const fullVector<scalar> &other)
  {
    scalar s = 0.;
    for(int i = 0; i < _r; ++i) s += _data[i] * other._data[i];
    return s;
  }

  /**
     @param x A fullVector;
     @param alpha A scalar (by default set to one).

     If:
     @li @f$ v @f$ is this fullVector;
     @li @f$ N @f$ is equal to this fullVector size,

     then:
     @f$ v(i) = v(i) + alpha \times{} x(i) \qquad
     \forall{} i \in \{0, \dots, N - 1\} @f$.

     x.size() must be greater or equal to @f$ N @f$.
  */
  void axpy(const fullVector<scalar> &x, scalar alpha=1.)
#if !defined(HAVE_BLAS)
  {
    for (int i = 0; i < _r; i++) _data[i] += alpha * x._data[i];
  }
#endif
  ;

  /**
     @param x A fullVector.

     If:
     @li @f$ v @f$ is this fullVector;
     @li @f$ N @f$ is equal to this fullVector size,

     then:
     @f$ v(i) = v(i) \times{} x(i) \qquad
     \forall{} i \in \{0, \dots, N - 1\} @f$.

     x.size() must be greater or equal to @f$ N @f$.
  */
  void multTByT(const fullVector<scalar> &x)
  {
    for (int i = 0; i < _r; i++) _data[i] *= x._data[i];
  }

  // printing and file treatment
  /**
     @param name A string in @c C style (set by default to "").

     Prints on the standard output a string describing
     this fullVector.

     This string starts by name.
  */
  void print(const char *name="") const
  {
    printf("double %s[%d]=\n", name,size());
    printf("{  ");
    for(int I = 0; I < size(); I++){
      printf("%12.5E ", (*this)(I));
    }
    printf("};\n");
  }

  /**
     @param f A pointer to a FILE stream.

     Writes a binary representation of this fullVector
     into f.
  */
  void binarySave (FILE *f) const
  {
    fwrite (_data, sizeof(scalar), _r, f);
  }

  /**
     @param f A pointer to a FILE stream containing a fullVector.

     Loads a binary representation, of the fullVector in f,
     into this fullVector.

     @see fullVector::binarySave
  */
  void binaryLoad (FILE *f)
  {
    if(fread (_data, sizeof(scalar), _r, f) != (size_t)_r) return;
  }
};

// An abstract interface for dense matrix of scalar
template <class scalar>
class fullMatrix
{
 private:
  bool _own_data; // should data be freed on delete ?
  int _r, _c; // size of the matrix
  scalar *_data; // pointer on the first element
  friend class fullVector<scalar>;

 public:
  // constructor and destructor
  fullMatrix(scalar *original, int r, int c)
  {
    _r = r;
    _c = c;
    _own_data = false;
    _data = original;
  }
  fullMatrix(fullMatrix<scalar> &original, int c_start, int c)
  {
    _c = c;
    _r = original._r;
    _own_data = false;
    _data = original._data + c_start * _r;
  }
  fullMatrix(int r, int c, bool init0 = true) : _r(r), _c(c)
  {
    _data = new scalar[_r * _c];
    _own_data = true;
    if (init0)
      setAll(scalar(0.));
  }
  fullMatrix(int r, int c, double *data)
    : _r(r), _c(c), _data(data), _own_data(false)
  {
    setAll(scalar(0.));
  }
  fullMatrix(const fullMatrix<scalar> &other) : _r(other._r), _c(other._c)
  {
    _data = new scalar[_r * _c];
    _own_data=true;
    for(int i = 0; i < _r * _c; ++i) _data[i] = other._data[i];
  }
  fullMatrix() : _own_data(false),_r(0), _c(0), _data(0) {}
  ~fullMatrix()
  {
    if(_data && _own_data) delete [] _data;
  }

  // get information (size, value)
  inline int size1() const { return _r; }
  inline int size2() const { return _c; }
  inline scalar get(int r, int c) const
  {
    #ifdef _DEBUG
    if (r >= _r || r < 0 || c >= _c || c < 0)
      Msg::Fatal("invalid index to access fullMatrix : %i %i (size = %i %i)",
                 r, c, _r, _c);
    #endif
    return (*this)(r, c);
  }

  inline const scalar * getDataPtr() const { return _data; }
  inline scalar * getDataPtr() { return _data; }

  // operations
  inline void set(int r, int c, scalar v){
    #ifdef _DEBUG
    if (r >= _r || r < 0 || c >= _c || c < 0)
      Msg::Fatal("invalid index to access fullMatrix : %i %i (size = %i %i)",
                 r, c, _r, _c);
    #endif
    (*this)(r, c) = v;
  }
  inline scalar norm() const
  {
    scalar n = 0.;
    for(int i = 0; i < _r; ++i)
      for(int j = 0; j < _c; ++j)
        n += (*this)(i, j) * (*this)(i, j);
    return sqrt(n);
  }
  bool resize(int r, int c, bool resetValue = true) // data will be owned (same as constructor)
  {
    if ((r * c > _r * _c) || !_own_data) {
      if (_own_data && _data) delete[] _data;
      _r = r;
      _c = c;
      _data = new scalar[_r * _c];
      _own_data = true;
      if(resetValue)
        setAll(scalar(0.));
      return true;
    }
    _r = r;
    _c = c;
    if(resetValue)
      setAll(scalar(0.));
    return false; // no reallocation
  }
  void reshape(int nbRows, int nbColumns){
    if (nbRows == -1 && nbColumns != -1)
      nbRows = _r * _c / nbColumns;
    if (nbRows != -1 && nbColumns == -1)
      nbColumns = _r * _c / nbRows;
    if (nbRows*nbColumns != size1()*size2())
      Msg::Error("Invalid reshape, total number of entries must be equal");
    _r = nbRows;
    _c = nbColumns;
  }
  void setAsProxy(const fullMatrix<scalar> &original)
  {
    if(_data && _own_data)
      delete [] _data;
    _c = original._c;
    _r = original._r;
    _own_data = false;
    _data = original._data;
  }
  void setAsProxy(const fullMatrix<scalar> &original, int c_start, int c)
  {
    if(_data && _own_data)
      delete [] _data;
    _c = c;
    _r = original._r;
    _own_data = false;
    _data = original._data + c_start * _r;
  }
  void setAsProxy(double *data, int r, int c)
  {
    if(_data && _own_data)
      delete [] _data;
    _c = c;
    _r = r;
    _own_data = false;
    _data = data;
  }
  fullMatrix<scalar> & operator = (const fullMatrix<scalar> &other)
  {
    copy(other);
    return *this;
  }
  void operator += (const fullMatrix<scalar> &other)
  {
    if(_r != other._r || _c!= other._c)
      Msg::Error("sum matrices of different sizes\n");
    for(int i = 0; i < _r * _c; ++i) _data[i] += other._data[i];
  }
  inline scalar operator () (int i, int j) const
  {
    #ifdef _DEBUG
    if (i >= _r || i < 0 || j >= _c || j < 0)
      Msg::Fatal("invalid index to access fullMatrix : %i %i (size = %i %i)",
                 i, j, _r, _c);
    #endif
    return _data[i + _r * j];
  }
  inline scalar & operator () (int i, int j)
  {
    #ifdef _DEBUG
    if (i >= _r || i < 0 || j >= _c || j < 0)
      Msg::Fatal("invalid index to access fullMatrix : %i %i (size = %i %i)",
                 i, j, _r, _c);
    #endif
    return _data[i + _r * j];
  }
  void copy(const fullMatrix<scalar> &a, int i0, int ni, int j0, int nj,
            int desti0, int destj0)
  {
    for(int i = i0, desti = desti0; i < i0 + ni; i++, desti++)
      for(int j = j0, destj = destj0; j < j0 + nj; j++, destj++)
        (*this)(desti, destj) = a(i, j);
  }
  void copy(const fullMatrix<scalar> &a)
  {
    if (_data && !_own_data)
      Msg::Fatal("fullMatrix::copy operation is prohibited for proxies, use setAll instead");
    if (_r != a._r || _c != a._c) {
      if(_data && _own_data)
        delete [] _data;
      _r = a._r;
      _c = a._c;
      _data = new scalar[_r * _c];
      _own_data = true;
    }
    setAll(a);
  }
  void mult_naive(const fullMatrix<scalar> &b, fullMatrix<scalar> &c) const
  {
    c.scale(scalar(0.));
    for(int i = 0; i < _r; i++)
      for(int j = 0; j < b.size2(); j++)
        for(int k = 0; k < _c; k++)
          c._data[i + _r * j] += (*this)(i, k) * b(k, j);
  }
  void mult(const fullMatrix<scalar> &b, fullMatrix<scalar> &c) const
#if !defined(HAVE_BLAS)
  {
    mult_naive(b,c);
  }
#endif
  ;
  void multTByT(const fullMatrix<scalar> &a)
  {
    for (int i = 0; i < _r * _c; i++) _data[i] *= a._data[i];
  }
  void axpy(const fullMatrix<scalar> &x, scalar alpha=1.)
#if !defined(HAVE_BLAS)
  {
    int n = _r * _c;
    for (int i = 0; i < n; i++) _data[i] += alpha * x._data[i];
  }
#endif
  ;
  void gemm_naive(const fullMatrix<scalar> &a, const fullMatrix<scalar> &b,
                  scalar alpha=1., scalar beta=1.)
  {
    fullMatrix<scalar> temp(a.size1(), b.size2());
    a.mult_naive(b, temp);
    temp.scale(alpha);
    scale(beta);
    add(temp);
  }
  void gemm(const fullMatrix<scalar> &a, const fullMatrix<scalar> &b,
            scalar alpha=1., scalar beta=1., bool transposeA = false, bool transposeB = false)
#if !defined(HAVE_BLAS)
  {
    gemm_naive(transposeA ? a.transpose() : a, transposeB ? b.transpose() : b, alpha, beta);
  }
#endif
  ;
  inline void setAll(const scalar &m)
  {
    for(int i = 0; i < _r * _c; i++) _data[i] = m;
  }
  void setAll(const fullMatrix<scalar> &m)
#if !defined(HAVE_BLAS)
  {
    if (_r != m._r || _c != m._c )
      Msg::Fatal("fullMatrix size does not match");
    for(int i = 0; i < _r * _c; i++) _data[i] = m._data[i];
  }
#endif
  ;
  void scale(const double s)
#if !defined(HAVE_BLAS)
  {
    if(s == 0.) // this is not really correct nan*0 (or inf*0) is expected to give nan
      for(int i = 0; i < _r * _c; ++i) _data[i] = scalar(0.);
    else
      for(int i = 0; i < _r * _c; ++i) _data[i] *= s;
  }
#endif
  ;
  inline void add(const double &a)
  {
    for(int i = 0; i < _r * _c; ++i) _data[i] += a;
  }
  inline void add(const fullMatrix<scalar> &m)
  {
    for(int i = 0; i < size1(); i++)
      for(int j = 0; j < size2(); j++)
        (*this)(i, j) += m(i, j);
  }
  inline void add(const fullMatrix<scalar> &m, const double &a)
  {
    for(int i = 0; i < size1(); i++)
      for(int j = 0; j < size2(); j++)
        (*this)(i, j) += a*m(i, j);
  }
  void mult(const fullVector<scalar> &x, fullVector<scalar> &y) const
#if !defined(HAVE_BLAS)
  {
    y.scale(scalar(0.));
    for(int i = 0; i < _r; i++)
      for(int j = 0; j < _c; j++)
        y._data[i] += (*this)(i, j) * x(j);
  }
#endif
  ;
  void multAddy(const fullVector<scalar> &x, fullVector<scalar> &y) const
#if !defined(HAVE_BLAS)
  {
    for(int i = 0; i < _r; i++)
      for(int j = 0; j < _c; j++)
        y._data[i] += (*this)(i, j) * x(j);
  }
#endif
  ;
  inline fullMatrix<scalar> transpose() const
  {
    fullMatrix<scalar> T(size2(), size1());
    for(int i = 0; i < size1(); i++)
      for(int j = 0; j < size2(); j++)
        T(j, i) = (*this)(i, j);
    return T;
  }
  inline void transposeInPlace()
  {
    if(size1() != size2()){
      Msg::Error("Not a square matrix (size1: %d, size2: %d)", size1(), size2());
    }
    scalar t;
    for(int i = 0; i < size1(); i++)
      for(int j = 0; j < i; j++) {
        t = _data[i + _r * j];
        _data[i + _r * j] = _data[j + _r * i];
        _data[j + _r * i] = t;
      }
  }
  bool luSolve(const fullVector<scalar> &rhs, fullVector<scalar> &result)
#if !defined(HAVE_LAPACK)
  {
    Msg::Error("LU factorization and substitution requires LAPACK");
    return false;
  }
#endif
  ;
 bool luFactor(fullVector<int> &ipiv)
#if !defined(HAVE_LAPACK)
  {
    Msg::Error("LU factorization requires LAPACK");
    return false;
  }
#endif
  ;
 bool luSubstitute(const fullVector<scalar> &rhs, fullVector<int> &ipiv, fullVector<scalar> &result)
#if !defined(HAVE_LAPACK)
  {
    Msg::Error("LU substitution requires LAPACK");
    return false;
  }
#endif
  ;
  bool invertInPlace()
#if !defined(HAVE_LAPACK)
  {
    Msg::Error("Matrix inversion requires LAPACK");
    return false;
  }
#endif
  ;
  bool eig(fullVector<double> &eigenValReal, fullVector<double> &eigenValImag,
           fullMatrix<scalar> &leftEigenVect, fullMatrix<scalar> &rightEigenVect,
           bool sortRealPart=false)
#if !defined(HAVE_LAPACK)
  {
    Msg::Error("Eigenvalue computations requires LAPACK");
    return false;
  }
#endif
  ;
  bool invert(fullMatrix<scalar> &result) const;

  fullMatrix<scalar> cofactor(int i, int j) const
  {
    int ni = size1();
    int nj = size2();
    fullMatrix<scalar> cof(ni - 1, nj - 1);
    for(int I = 0; I < ni; I++)
      for(int J = 0; J < nj; J++)
        if(J != j && I != i)
          cof(I < i ? I : I - 1, J < j ? J : J - 1) = (*this)(I, J);
    return cof;
  }
  scalar determinant() const;

  bool svd(fullMatrix<scalar> &V, fullVector<scalar> &S)
#if !defined(HAVE_LAPACK)
  {
    Msg::Error("Singular value decomposition requires LAPACK");
    return false;
  }
#endif
  ;

  void print(const std::string name = "", const std::string format = "%12.5E ") const
  {
    int ni = size1();
    int nj = size2();
    printf("double %s [ %d ][ %d ]= { \n", name.c_str(),ni,nj);
    for(int I = 0; I < ni; I++){
      printf("{  ");
      for(int J = 0; J < nj; J++){
        printf(format.c_str(), (*this)(I, J));
	if (J!=nj-1)printf(",");
      }
      if (I!=ni-1)printf("},\n");
      else printf("}\n");
    }
    printf("};\n");
  }

  void binarySave (FILE *f) const
  {
    fwrite (_data, sizeof(scalar), _r*_c, f);
  }
  void binaryLoad (FILE *f)
  {
    if(fread (_data, sizeof(scalar), _r*_c, f) != (size_t)_r) return;
  }

  // specific functions for dgshell
  void mult_naiveBlock(const fullMatrix<scalar> &b, const int ncol, const int fcol,
                       const int alpha, const int beta, fullVector<scalar> &c,
                       const int row=0) const
  {
    if(beta != 1)
      c.scale(beta);
    for(int j = fcol; j < fcol+ncol; j++)
      for(int k = 0; k < _c ; k++)
          c._data[j] += alpha*(*this)(row, k) * b(k, j);
  }
  void multOnBlock(const fullMatrix<scalar> &b, const int ncol, const int fcol,
                   const int alpha, const int beta, fullVector<scalar> &c) const
#if !defined(HAVE_BLAS)
  {
    mult_naiveBlock(b,ncol,fcol,alpha,beta,c);
  }
#endif
  ;

  void multWithATranspose(const fullVector<scalar> &x, scalar alpha, scalar beta,
                          fullVector<scalar> &y) const
#if !defined(HAVE_BLAS)
  {
    y.scale(beta);
    for(int j = 0; j < _c; j++)
      for(int i = 0; i < _r; i++)
        y._data[j] += alpha * (*this)(i, j) * x(i);
  }
#endif
  ;

  void copyOneColumn(const fullVector<scalar> &x, const int ind) const
  {
    int cind = _c*ind;
    for(int i = 0; i < _r; i++)
     _data[cind+i] = x(i);
  }

  bool getOwnData() {return _own_data;};
  void setOwnData(bool ownData) {_own_data = ownData;};
};
#endif