This file is indexed.

/usr/include/gofigure2/FunctionData.inl is in libgofigure-dev 0.9.0-3+b1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
/*=========================================================================
 Authors: Michael Kazhdan and Matthew Bolitho
 at Johns Hopkins University, 2006-10

 Copyright (c) 2006-10, Michael Kazhdan and Matthew Bolitho,
 Johns Hopkins University.
 All rights reserved.

 Redistribution and use in source and binary forms, with or without
 modification, are permitted provided that the following conditions are met:

 Redistributions of source code must retain the above copyright notice,
 this list of conditions and the following disclaimer.
 Redistributions in binary form must reproduce the above copyright notice,
 this list of conditions and the following disclaimer in the documentation
 and/or other materials provided with the distribution.
 Neither the name of the Johns Hopkins University nor the names of its
 contributors may be used to endorse or promote products derived from this
 software without specific prior written permission.

 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
 THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
 PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
 BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
 OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
 OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
 OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
 WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
 OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
 ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
=========================================================================*/

//////////////////
// FunctionData //
//////////////////
template<int Degree,class Real>
const int FunctionData<Degree,Real>::DOT_FLAG=1;
template<int Degree,class Real>
const int FunctionData<Degree,Real>::D_DOT_FLAG=2;
template<int Degree,class Real>
const int FunctionData<Degree,Real>::D2_DOT_FLAG=4;
template<int Degree,class Real>
const int FunctionData<Degree,Real>::VALUE_FLAG=1;
template<int Degree,class Real>
const int FunctionData<Degree,Real>::D_VALUE_FLAG=2;

template<int Degree,class Real>
inline FunctionData<Degree,Real>::FunctionData(void)
{
  dotTable=dDotTable=d2DotTable=NULL;
  valueTables=dValueTables=NULL;
  res=0;
}

template<int Degree,class Real>
inline FunctionData<Degree,Real>::~FunctionData(void)
{
  if(res){
    if(  dotTable){delete[]   dotTable;}
    if( dDotTable){delete[]  dDotTable;}
    if(d2DotTable){delete[] d2DotTable;}
    if( valueTables){delete[]  valueTables;}
    if(dValueTables){delete[] dValueTables;}
    if(baseFunctions){delete[] baseFunctions;}
  }
  dotTable=dDotTable=d2DotTable=NULL;
  valueTables=dValueTables=NULL;
  baseFunctions=NULL;
  res=0;
}

template<int Degree,class Real>
inline void FunctionData<Degree,Real>::set(const int& maxDepth,const PPolynomial<Degree>& F,const int& iNormalize,const int& iUseDotRatios)
{
  this->normalize=iNormalize;
  this->useDotRatios=iUseDotRatios;

  depth=maxDepth;
  res=BinaryNode<double>::CumulativeCenterCount(depth);
  res2=(1<<(depth+1))+1;
  baseFunctions=new PPolynomial<Degree+1>[res];
  // Scale the function so that it has:
  // 0] Value 1 at 0
  // 1] Integral equal to 1
  // 2] Square integral equal to 1
  switch(normalize){
    case 2:
      baseFunction=F/sqrt((F*F).integral(F.polys[0].start,F.polys[F.polyCount-1].start));
      break;
    case 1:
      baseFunction=F/F.integral(F.polys[0].start,F.polys[F.polyCount-1].start);
      break;
    default:
      baseFunction=F/F(0);
  }
  dBaseFunction=baseFunction.derivative();
  double c1,w1;
  for(int i=0;i<res;i++){
    BinaryNode<double>::CenterAndWidth(i,c1,w1);
    baseFunctions[i]=baseFunction.scale(w1).shift(c1);
    // Scale the function so that it has L2-norm equal to one
    switch(normalize){
      case 2:
        baseFunctions[i]/=sqrt(w1);
        break;
      case 1:
        baseFunctions[i]/=w1;
        break;
    }
  }
}

template<int Degree,class Real>
inline void FunctionData<Degree,Real>::setDotTables(const int& flags)
{
  clearDotTables(flags);
  int size;
  size=(res*res+res)>>1;
  if(flags & DOT_FLAG){
    dotTable=new Real[size];
    memset(dotTable,0,sizeof(Real)*size);
  }
  if(flags & D_DOT_FLAG){
    dDotTable=new Real[size];
    memset(dDotTable,0,sizeof(Real)*size);
  }
  if(flags & D2_DOT_FLAG){
    d2DotTable=new Real[size];
    memset(d2DotTable,0,sizeof(Real)*size);
  }
  double t1,t2;
  t1=baseFunction.polys[0].start;
  t2=baseFunction.polys[baseFunction.polyCount-1].start;
  for(int i=0;i<res;i++){
    double c1,c2,w1,w2;
    BinaryNode<double>::CenterAndWidth(i,c1,w1);
    double start1	=t1*w1+c1;
    double end1		=t2*w1+c1;
    for(int j=0;j<=i;j++){
      BinaryNode<double>::CenterAndWidth(j,c2,w2);
      int idx=SymmetricIndex(i,j);

      double start	=t1*w2+c2;
      double end		=t2*w2+c2;

      if(start<start1){start=start1;}
      if(end>end1)	{end=end1;}
      if(start>=end){continue;}

      BinaryNode<double>::CenterAndWidth(j,c2,w2);
      Real dot=dotProduct(c1,w1,c2,w2);
      if(fabs(dot)<1e-15){continue;}
      if(flags & DOT_FLAG){dotTable[idx]=dot;}
      if(useDotRatios){
        if(flags & D_DOT_FLAG){
          dDotTable [idx]=-dDotProduct(c1,w1,c2,w2)/dot;
        }
        if(flags & D2_DOT_FLAG){d2DotTable[idx]=d2DotProduct(c1,w1,c2,w2)/dot;}
      }
      else{
        if(flags & D_DOT_FLAG){
          dDotTable[idx]= dDotProduct(c1,w1,c2,w2);
        }
        if(flags & D2_DOT_FLAG){d2DotTable[idx]=d2DotProduct(c1,w1,c2,w2);}
      }
    }
  }
}

template<int Degree,class Real>
inline void FunctionData<Degree,Real>::clearDotTables(const int& flags)
{
  if((flags & DOT_FLAG) && dotTable){
    delete[] dotTable;
    dotTable=NULL;
  }
  if((flags & D_DOT_FLAG) && dDotTable){
    delete[] dDotTable;
    dDotTable=NULL;
  }
  if((flags & D2_DOT_FLAG) && d2DotTable){
    delete[] d2DotTable;
    d2DotTable=NULL;
  }
}

template<int Degree,class Real>
inline void FunctionData<Degree,Real>::setValueTables(const int& flags,const double& smooth)
{
  clearValueTables();
  if(flags &   VALUE_FLAG){ valueTables=new Real[res*res2];}
  if(flags & D_VALUE_FLAG){dValueTables=new Real[res*res2];}
  PPolynomial<Degree+1> function;
  PPolynomial<Degree>  dFunction;
  for(int i=0;i<res;i++){
    if(smooth>0){
      function=baseFunctions[i].MovingAverage(smooth);
      dFunction=baseFunctions[i].derivative().MovingAverage(smooth);
    }
    else{
      function=baseFunctions[i];
      dFunction=baseFunctions[i].derivative();
    }
    for(int j=0;j<res2;j++){
      double x=double(j)/(res2-1);
      if(flags &   VALUE_FLAG){ valueTables[j*res+i]=Real( function(x));}
      if(flags & D_VALUE_FLAG){dValueTables[j*res+i]=Real(dFunction(x));}
    }
  }
}

template<int Degree,class Real>
inline void FunctionData<Degree,Real>::setValueTables(const int& flags,const double& valueSmooth,const double& normalSmooth)
{
  clearValueTables();
  if(flags &   VALUE_FLAG){ valueTables=new Real[res*res2];}
  if(flags & D_VALUE_FLAG){dValueTables=new Real[res*res2];}
  PPolynomial<Degree+1> function;
  PPolynomial<Degree>  dFunction;
  for(int i=0;i<res;i++){
    if(valueSmooth>0)	{ function=baseFunctions[i].MovingAverage(valueSmooth);}
    else				{ function=baseFunctions[i];}
    if(normalSmooth>0)	{dFunction=baseFunctions[i].derivative().MovingAverage(normalSmooth);}
    else				{dFunction=baseFunctions[i].derivative();}

    for(int j=0;j<res2;j++){
      double x=double(j)/(res2-1);
      if(flags &   VALUE_FLAG){ valueTables[j*res+i]=Real( function(x));}
      if(flags & D_VALUE_FLAG){dValueTables[j*res+i]=Real(dFunction(x));}
    }
  }
}


template<int Degree,class Real>
inline void FunctionData<Degree,Real>::clearValueTables(void)
{
  if( valueTables){delete[]  valueTables;}
  if(dValueTables){delete[] dValueTables;}
  valueTables=dValueTables=NULL;
}

template<int Degree,class Real>
inline Real FunctionData<Degree,Real>::dotProduct(const double& center1,const double& width1,const double& center2,const double& width2) const
{
  double r=fabs(baseFunction.polys[0].start);
  switch(normalize){
    case 2:
      return Real((baseFunction*baseFunction.scale(width2/width1).shift((center2-center1)/width1)).integral(-2*r,2*r)*width1/sqrt(width1*width2));
    case 1:
      return Real((baseFunction*baseFunction.scale(width2/width1).shift((center2-center1)/width1)).integral(-2*r,2*r)*width1/(width1*width2));
    default:
      return Real((baseFunction*baseFunction.scale(width2/width1).shift((center2-center1)/width1)).integral(-2*r,2*r)*width1);
  }
}

template<int Degree,class Real>
inline Real FunctionData<Degree,Real>::dDotProduct(const double& center1,const double& width1,const double& center2,const double& width2) const
{
  double r=fabs(baseFunction.polys[0].start);
  switch(normalize){
    case 2:
      return Real((dBaseFunction*baseFunction.scale(width2/width1).shift((center2-center1)/width1)).integral(-2*r,2*r)/sqrt(width1*width2));
    case 1:
      return Real((dBaseFunction*baseFunction.scale(width2/width1).shift((center2-center1)/width1)).integral(-2*r,2*r)/(width1*width2));
    default:
      return Real((dBaseFunction*baseFunction.scale(width2/width1).shift((center2-center1)/width1)).integral(-2*r,2*r));
  }
}

template<int Degree,class Real>
inline Real FunctionData<Degree,Real>::d2DotProduct(const double& center1,const double& width1,const double& center2,const double& width2) const
{
  double r=fabs(baseFunction.polys[0].start);
  switch(normalize){
    case 2:
      return Real((dBaseFunction*dBaseFunction.scale(width2/width1).shift((center2-center1)/width1)).integral(-2*r,2*r)/width2/sqrt(width1*width2));
    case 1:
      return Real((dBaseFunction*dBaseFunction.scale(width2/width1).shift((center2-center1)/width1)).integral(-2*r,2*r)/width2/(width1*width2));
    default:
      return Real((dBaseFunction*dBaseFunction.scale(width2/width1).shift((center2-center1)/width1)).integral(-2*r,2*r)/width2);
  }
}

template<int Degree,class Real>
inline int FunctionData<Degree,Real>::SymmetricIndex(const int& i1,const int& i2){

  if(i1>i2)	{return ((i1*i1+i1)>>1)+i2;}
  else		{return ((i2*i2+i2)>>1)+i1;}
}

template<int Degree,class Real>
inline int FunctionData<Degree,Real>::SymmetricIndex(const int& i1,const int& i2,int& index)
{
  if(i1<i2){
    index=((i2*i2+i2)>>1)+i1;
    return 1;
  }
  else{
    index=((i1*i1+i1)>>1)+i2;
    return 0;
  }
}