/usr/include/gpac/math.h is in libgpac-dev 0.5.0+svn5324~dfsg1-1+b3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 | /*
* GPAC - Multimedia Framework C SDK
*
* Authors: Jean Le Feuvre
* Copyright (c) Telecom ParisTech 2000-2012
* All rights reserved
*
* This file is part of GPAC / common tools sub-project
*
* GPAC is free software; you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published by
* the Free Software Foundation; either version 2, or (at your option)
* any later version.
*
* GPAC is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; see the file COPYING. If not, write to
* the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
*
*/
#ifndef _GF_MATH_H_
#define _GF_MATH_H_
#ifdef __cplusplus
extern "C" {
#endif
/*!
* \file <gpac/math.h>
* \brief math and trigo functions.
*/
#include <gpac/setup.h>
#include <math.h>
/*!
*\addtogroup math_grp math
*\ingroup utils_grp
*\brief Mathematics and Trigonometric functions
*
*This section documents the math and trigo functions used in the GPAC framework. GPAC can be compiled with
*fixed-point support, representing float values on a 16.16 signed integer, which implies a developer
*must take care of float computations when using GPAC.\n
*A developper should not need to know in which mode the framework has been compiled as long as he uses
*the math functions of GPAC which work in both float and fixed-point mode.\n
*Using fixed-point version is decided at compilation time and cannot be changed. The feature is signaled
*through the following macros:
*- GPAC_FIXED_POINT: when defined, GPAC has been compiled in fixed-point mode
*- GPAC_NO_FIXED_POINT: when defined, GPAC has been compiled in regular (float) mode
* @{
*/
/*****************************************************************************************
FIXED-POINT SUPPORT - HARDCODED FOR 16.16 representation
the software rasterizer also use a 16.16 representation even in non-fixed version
******************************************************************************************/
#ifdef GPAC_FIXED_POINT
/*!
*Fixed 16.16 number
*\hideinitializer
\note This documentation has been generated for a fixed-point version of the GPAC framework.
*/
typedef s32 Fixed;
#define FIX_ONE 0x10000L
#define INT2FIX(v) ((Fixed)( ((s32) (v) ) << 16))
#define FLT2FIX(v) ((Fixed) ((v) * FIX_ONE))
#define FIX2INT(v) ((s32)(((v)+((FIX_ONE>>1)))>>16))
#define FIX2FLT(v) ((Float)( ((Float)(v)) / ((Float) FIX_ONE)))
#define FIX_EPSILON 2
#define FIX_MAX 0x7FFFFFFF
#define FIX_MIN -FIX_MAX
#define GF_PI2 102944
#define GF_PI 205887
#define GF_2PI 411774
/*!\return 1/a, expressed as fixed number*/
Fixed gf_invfix(Fixed a);
/*!\return a*b, expressed as fixed number*/
Fixed gf_mulfix(Fixed a, Fixed b);
/*!\return a*b/c, expressed as fixed number*/
Fixed gf_muldiv(Fixed a, Fixed b, Fixed c);
/*!\return a/b, expressed as fixed number*/
Fixed gf_divfix(Fixed a, Fixed b);
/*!\return sqrt(a), expressed as fixed number*/
Fixed gf_sqrt(Fixed x);
/*!\return ceil(a), expressed as fixed number*/
Fixed gf_ceil(Fixed a);
/*!\return floor(a), expressed as fixed number*/
Fixed gf_floor(Fixed a);
/*!\return cos(a), expressed as fixed number*/
Fixed gf_cos(Fixed angle);
/*!\return sin(a), expressed as fixed number*/
Fixed gf_sin(Fixed angle);
/*!\return tan(a), expressed as fixed number*/
Fixed gf_tan(Fixed angle);
/*!\return acos(a), expressed as fixed number*/
Fixed gf_acos(Fixed angle);
/*!\return asin(a), expressed as fixed number*/
Fixed gf_asin(Fixed angle);
/*!\return atan(y, x), expressed as fixed number*/
Fixed gf_atan2(Fixed y, Fixed x);
#else
/*!Fixed is 32bit float number
\note This documentation has been generated for a float version of the GPAC framework.
*/
typedef Float Fixed;
#define FIX_ONE 1.0f
#define INT2FIX(v) ((Float) (v))
#define FLT2FIX(v) ((Float) (v))
#define FIX2INT(v) ((s32)(v))
#define FIX2FLT(v) ((Float) (v))
#define FIX_EPSILON GF_EPSILON_FLOAT
#define FIX_MAX GF_MAX_FLOAT
#define FIX_MIN -GF_MAX_FLOAT
#define GF_PI2 1.5707963267949f
#define GF_PI 3.1415926535898f
#define GF_2PI 6.2831853071796f
/*!\hideinitializer 1/_a, expressed as fixed number*/
#define gf_invfix(_a) (FIX_ONE/(_a))
/*!\hideinitializer _a*_b, expressed as fixed number*/
#define gf_mulfix(_a, _b) ((_a)*(_b))
/*!\hideinitializer _a*_b/_c, expressed as fixed number*/
#define gf_muldiv(_a, _b, _c) ((_c) ? (_a)*(_b)/(_c) : GF_MAX_FLOAT)
/*!\hideinitializer _a/_b, expressed as fixed number*/
#define gf_divfix(_a, _b) ((_b) ? (_a)/(_b) : GF_MAX_FLOAT)
/*!\hideinitializer sqrt(_a), expressed as fixed number*/
#define gf_sqrt(_a) ((Float) sqrt(_a))
/*!\hideinitializer ceil(_a), expressed as fixed number*/
#define gf_ceil(_a) ((Float) ceil(_a))
/*!\hideinitializer floor(_a), expressed as fixed number*/
#define gf_floor(_a) ((Float) floor(_a))
/*!\hideinitializer cos(_a), expressed as fixed number*/
#define gf_cos(_a) ((Float) cos(_a))
/*!\hideinitializer sin(_a), expressed as fixed number*/
#define gf_sin(_a) ((Float) sin(_a))
/*!\hideinitializer tan(_a), expressed as fixed number*/
#define gf_tan(_a) ((Float) tan(_a))
/*!\hideinitializer atan2(_y,_x), expressed as fixed number*/
#define gf_atan2(_y, _x) ((Float) atan2(_y, _x))
/*!\hideinitializer acos(_a), expressed as fixed number*/
#define gf_acos(_a) ((Float) acos(_a))
/*!\hideinitializer asin(_a), expressed as fixed number*/
#define gf_asin(_a) ((Float) asin(_a))
#endif
/*!\def FIX_ONE
\hideinitializer
Fixed unit value
*/
/*!\def INT2FIX(v)
\hideinitializer
Conversion from integer to fixed
*/
/*!\def FLT2FIX(v)
\hideinitializer
Conversion from float to fixed
*/
/*!\def FIX2INT(v)
\hideinitializer
Conversion from fixed to integer
*/
/*!\def FIX2FLT(v)
\hideinitializer
Conversion from fixed to float
*/
/*!\def FIX_EPSILON
\hideinitializer
Epsilon Fixed (positive value closest to 0)
*/
/*!\def FIX_MAX
\hideinitializer
Maximum Fixed (maximum representable fixed value)
*/
/*!\def FIX_MIN
\hideinitializer
Minimum Fixed (minimum representable fixed value)
*/
/*!\def GF_PI2
\hideinitializer
PI/2 expressed as Fixed
*/
/*!\def GF_PI
\hideinitializer
PI expressed as Fixed
*/
/*!\def GF_2PI
\hideinitializer
2*PI expressed as Fixed
*/
Fixed gf_angle_diff(Fixed a, Fixed b);
/*!
* \brief Field bit-size
*
* Gets the number of bits needed to represent the value.
* \param MaxVal Maximum value to be represented.
* \return number of bits required to represent the value.
*/
u32 gf_get_bit_size(u32 MaxVal);
/*!
* \brief Get power of 2
*
* Gets the closest power of 2 greater or equal to the value.
* \param val value to be used.
* \return requested power of 2.
*/
u32 gf_get_next_pow2(u32 val);
/*!
*\addtogroup math2d_grp math2d
*\ingroup math_grp
*\brief 2D Mathematics functions
*
*This section documents mathematic tools for 2D geometry and color matrices operations
* @{
*/
/*!\brief 2D point
*
*The 2D point object is used in all the GPAC framework for both point and vector representation.
*/
typedef struct __vec2f
{
Fixed x;
Fixed y;
} GF_Point2D;
/*!
*\brief get 2D vector length
*
*Gets the length of a 2D vector
*\return length of the vector
*/
Fixed gf_v2d_len(GF_Point2D *vec);
/*!
*\brief get distance between 2 points
*
*Gets the distance between the 2 points
*\return distance
*/
Fixed gf_v2d_distance(GF_Point2D *a, GF_Point2D *b);
/*!
*\brief 2D vector from polar coordinates
*
*Constructs a 2D vector from its polar coordinates
*\param length the length of the vector
*\param angle the angle of the vector in radians
*\return the 2D vector
*/
GF_Point2D gf_v2d_from_polar(Fixed length, Fixed angle);
/*!\brief rectangle 2D
*
*The 2D rectangle used in the GPAC project.
*/
typedef struct
{
/*!the left coordinate of the rectangle*/
Fixed x;
/*!the top coordinate of the rectangle, regardless of the canvas orientation. In other words, y is always the
greatest coordinate value, even if the rectangle is presented bottom-up. This insures proper rectangles testing*/
Fixed y;
/*!the width of the rectangle. Width must be greater than or equal to 0*/
Fixed width;
/*!the height of the rectangle. Height must be greater than or equal to 0*/
Fixed height;
} GF_Rect;
/*!
\brief rectangle union
*
*Gets the union of two rectangles.
*\param rc1 first rectangle of the union. Upon return, this rectangle will contain the result of the union
*\param rc2 second rectangle of the union
*/
void gf_rect_union(GF_Rect *rc1, GF_Rect *rc2);
/*!
\brief centers a rectangle
*
*Builds a rectangle centered on the origin
*\param w width of the rectangle
*\param h height of the rectangle
*\return centered rectangle object
*/
GF_Rect gf_rect_center(Fixed w, Fixed h);
/*!
\brief rectangle overlap test
*
*Tests if two rectangles overlap.
*\param rc1 first rectangle to test
*\param rc2 second rectangle to test
*\return 1 if rectangles overlap, 0 otherwise
*/
Bool gf_rect_overlaps(GF_Rect rc1, GF_Rect rc2);
/*!
\brief rectangle identity test
*
*Tests if two rectangles are identical.
*\param rc1 first rectangle to test
*\param rc2 second rectangle to test
*\return 1 if rectangles are identical, 0 otherwise
*/
Bool gf_rect_equal(GF_Rect rc1, GF_Rect rc2);
/*!
*\brief pixel-aligned rectangle
*
*Pixel-aligned rectangle used in the GPAC framework. This is usually needed for 2D drawing algorithms.
*/
typedef struct
{
/*!the left coordinate of the rectangle*/
s32 x;
/*!the top coordinate of the rectangle, regardless of the canvas orientation. In other words, y is always the
greatest coordinate value, even if the rectangle is presented bottom-up. This insures proper rectangles operations*/
s32 y;
/*!the width of the rectangle. Width must be greater than or equal to 0*/
s32 width;
/*!the height of the rectangle. Height must be greater than or equal to 0*/
s32 height;
} GF_IRect;
/*!
*\brief gets the pixelized version of a rectangle
*
*Returns the smallest pixel-aligned rectangle completely containing a rectangle
*\param r the rectangle to transform
*\return the pixel-aligned transformed rectangle
*/
GF_IRect gf_rect_pixelize(GF_Rect *r);
/*!
*\brief 2D matrix
*
*The 2D affine matrix object usied in GPAC. The transformation of P(x,y) in P'(X, Y) is:
\code
X = m[0]*x + m[1]*y + m[2];
Y = m[3]*x + m[4]*y + m[5];
\endcode
*/
typedef struct
{
Fixed m[6];
} GF_Matrix2D;
/*!\brief matrix initialization
*\hideinitializer
*
*Inits the matrix to the identity matrix
*/
#define gf_mx2d_init(_obj) { memset((_obj).m, 0, sizeof(Fixed)*6); (_obj).m[0] = (_obj).m[4] = FIX_ONE; }
/*!\brief matrix copy
*\hideinitializer
*
*Copies the matrix _from to the matrix _obj
*/
#define gf_mx2d_copy(_obj, from) memcpy((_obj).m, (from).m, sizeof(Fixed)*6)
/*!\brief matrix identity testing
*\hideinitializer
*
*This macro evaluates to 1 if the matrix _obj is the identity matrix, 0 otherwise
*/
#define gf_mx2d_is_identity(_obj) ((!(_obj).m[1] && !(_obj).m[2] && !(_obj).m[3] && !(_obj).m[5] && ((_obj).m[0]==FIX_ONE) && ((_obj).m[4]==FIX_ONE)) ? 1 : 0)
/*!\brief 2D matrix multiplication
*
*Multiplies two 2D matrices from*_this
*\param _this matrix being transformed. Once the function is called, _this contains the result matrix
*\param from transformation matrix to add
*/
void gf_mx2d_add_matrix(GF_Matrix2D *_this, GF_Matrix2D *from);
/*!\brief 2D matrix pre-multiplication
*
*Multiplies two 2D matrices _this*from
*\param _this matrix being transformed. Once the function is called, _this contains the result matrix
*\param from transformation matrix to add
*/
void gf_mx2d_pre_multiply(GF_Matrix2D *_this, GF_Matrix2D *from);
/*!\brief matrix translating
*
*Translates a 2D matrix
*\param _this matrix being transformed. Once the function is called, _this contains the result matrix
*\param cx horizontal translation
*\param cy vertical translation
*/
void gf_mx2d_add_translation(GF_Matrix2D *_this, Fixed cx, Fixed cy);
/*!\brief matrix rotating
*
*Rotates a 2D matrix
*\param _this matrix being transformed. Once the function is called, _this contains the result matrix
*\param cx horizontal rotation center coordinate
*\param cy vertical rotation center coordinate
*\param angle rotation angle in radians
*/
void gf_mx2d_add_rotation(GF_Matrix2D *_this, Fixed cx, Fixed cy, Fixed angle);
/*!\brief matrix scaling
*
*Scales a 2D matrix
*\param _this matrix being transformed. Once the function is called, _this contains the result matrix
*\param scale_x horizontal scaling factor
*\param scale_y vertical scaling factor
*/
void gf_mx2d_add_scale(GF_Matrix2D *_this, Fixed scale_x, Fixed scale_y);
/*!\brief matrix uncentered scaling
*
*Scales a 2D matrix with a non-centered scale
*\param _this matrix being transformed. Once the function is called, _this contains the result matrix
*\param scale_x horizontal scaling factor
*\param scale_y vertical scaling factor
*\param cx horizontal scaling center coordinate
*\param cy vertical scaling center coordinate
*\param angle scale orienttion angle in radians
*/
void gf_mx2d_add_scale_at(GF_Matrix2D *_this, Fixed scale_x, Fixed scale_y, Fixed cx, Fixed cy, Fixed angle);
/*!\brief matrix skewing
*
*Skews a 2D matrix
*\param _this matrix being transformed. Once the function is called, _this contains the result matrix
*\param skew_x horizontal skew factor
*\param skew_y vertical skew factor
*/
void gf_mx2d_add_skew(GF_Matrix2D *_this, Fixed skew_x, Fixed skew_y);
/*!\brief matrix horizontal skewing
*
*Skews a 2D matrix horizontally by a given angle
*\param _this matrix being transformed. Once the function is called, _this contains the result matrix
*\param angle horizontal skew angle in radians
*/
void gf_mx2d_add_skew_x(GF_Matrix2D *_this, Fixed angle);
/*!\brief matrix vertical skewing
*
*Skews a 2D matrix vertically by a given angle
*\param _this matrix being transformed. Once the function is called, _this contains the result matrix
*\param angle vertical skew angle in radians
*/
void gf_mx2d_add_skew_y(GF_Matrix2D *_this, Fixed angle);
/*!\brief matrix inversing
*
*Inverses a 2D matrix
*\param _this matrix being transformed. Once the function is called, _this contains the result matrix
*/
void gf_mx2d_inverse(GF_Matrix2D *_this);
/*!\brief matrix coordinate transformation
*
*Applies a 2D matrix transformation to coordinates
*\param _this transformation matrix
*\param x pointer to horizontal coordinate. Once the function is called, x contains the transformed horizontal coordinate
*\param y pointer to vertical coordinate. Once the function is called, y contains the transformed vertical coordinate
*/
void gf_mx2d_apply_coords(GF_Matrix2D *_this, Fixed *x, Fixed *y);
/*!\brief matrix point transformation
*
*Applies a 2D matrix transformation to a 2D point
*\param _this transformation matrix
*\param pt pointer to 2D point. Once the function is called, pt contains the transformed point
*/
void gf_mx2d_apply_point(GF_Matrix2D *_this, GF_Point2D *pt);
/*!\brief matrix rectangle transformation
*
*Applies a 2D matrix transformation to a rectangle, giving the enclosing rectangle of the transformed one
*\param _this transformation matrix
*\param rc pointer to rectangle. Once the function is called, rc contains the transformed rectangle
*/
void gf_mx2d_apply_rect(GF_Matrix2D *_this, GF_Rect *rc);
/*!\brief matrix decomposition
*
*Decomposes a 2D matrix M as M=Scale x Rotation x Translation if possible
*\param _this transformation matrix
*\param scale resulting scale part
*\param rotate resulting rotation part
*\param translate resulting translation part
*\return 0 if matrix cannot be decomposed, 1 otherwise
*/
Bool gf_mx2d_decompose(GF_Matrix2D *_this, GF_Point2D *scale, Fixed *rotate, GF_Point2D *translate);
/*! @} */
/*!
*\addtogroup math3d_grp math3d
*\ingroup math_grp
*\brief 3D Mathematics functions
*
*This section documents mathematic tools for 3D geometry operations
* @{
*/
/*!\brief 3D point or vector
*
*The 3D point object is used in all the GPAC framework for both point and vector representation.
*/
typedef struct __vec3f
{
Fixed x;
Fixed y;
Fixed z;
} GF_Vec;
/*base vector operations are MACROs for faster access*/
/*!\hideinitializer macro evaluating to 1 if vectors are equal, 0 otherwise*/
#define gf_vec_equal(v1, v2) (((v1).x == (v2).x) && ((v1).y == (v2).y) && ((v1).z == (v2).z))
/*!\hideinitializer macro reversing a vector v = v*/
#define gf_vec_rev(v) { (v).x = -(v).x; (v).y = -(v).y; (v).z = -(v).z; }
/*!\hideinitializer macro performing the minus operation res = v1 - v2*/
#define gf_vec_diff(res, v1, v2) { (res).x = (v1).x - (v2).x; (res).y = (v1).y - (v2).y; (res).z = (v1).z - (v2).z; }
/*!\hideinitializer macro performing the add operation res = v1 + v2*/
#define gf_vec_add(res, v1, v2) { (res).x = (v1).x + (v2).x; (res).y = (v1).y + (v2).y; (res).z = (v1).z + (v2).z; }
/*!
*\brief get 3D vector length
*
*Gets the length of a 3D vector
*\return length of the vector
*/
Fixed gf_vec_len(GF_Vec v);
/*!
*\brief get 3D vector square length
*
*Gets the square length of a 3D vector
*\return square length of the vector
*/
Fixed gf_vec_lensq(GF_Vec v);
/*!
*\brief get 3D vector dot product
*
*Gets the dot product of two vectors
*\return dot product of the vectors
*/
Fixed gf_vec_dot(GF_Vec v1, GF_Vec v2);
/*!
*\brief vector normalization
*
*Norms the vector, eg make its length equal to \ref FIX_ONE
*\param v vector to normalize
*/
void gf_vec_norm(GF_Vec *v);
/*!
*\brief vector scaling
*
*Scales a vector by a given amount
*\param v vector to scale
*\param f scale factor
*\return scaled vector
*/
GF_Vec gf_vec_scale(GF_Vec v, Fixed f);
/*!
*\brief vector cross product
*
*Gets the cross product of two vectors
*\param v1 first vector
*\param v2 second vector
*\return cross-product vector
*/
GF_Vec gf_vec_cross(GF_Vec v1, GF_Vec v2);
/*!\brief 4D vector
*
*The 4D vector object is used in all the GPAC framework for 4 dimension vectors, VRML Rotations and quaternions representation.
*/
typedef struct __vec4f
{
Fixed x;
Fixed y;
Fixed z;
Fixed q;
} GF_Vec4;
/*!\brief 3D matrix
*
*The 3D matrix object used in GPAC. The matrix is oriented like OpenGL matrices (column-major ordering), with
the translation part at the end of the coefficients list.
\note Unless specified otherwise, the matrix object is always expected to represent an affine transformation.
*/
typedef struct
{
Fixed m[16];
} GF_Matrix;
/*!\hideinitializer gets the len of a quaternion*/
#define gf_quat_len(v) gf_sqrt(gf_mulfix((v).q,(v).q) + gf_mulfix((v).x,(v).x) + gf_mulfix((v).y,(v).y) + gf_mulfix((v).z,(v).z))
/*!\hideinitializer normalizes a quaternion*/
#define gf_quat_norm(v) { \
Fixed __mag = gf_quat_len(v); \
(v).x = gf_divfix((v).x, __mag); (v).y = gf_divfix((v).y, __mag); (v).z = gf_divfix((v).z, __mag); (v).q = gf_divfix((v).q, __mag); \
} \
/*!\brief quaternion to rotation
*
*Transforms a quaternion to a Rotation, expressed as a 4 dimension vector with x,y,z for axis and q for rotation angle
*\param quat the quaternion to transform
*\return the rotation value
*/
GF_Vec4 gf_quat_to_rotation(GF_Vec4 *quat);
/*!\brief quaternion from rotation
*
*Transforms a Rotation to a quaternion
*\param rot the rotation to transform
*\return the quaternion value
*/
GF_Vec4 gf_quat_from_rotation(GF_Vec4 rot);
/*!inverses a quaternion*/
GF_Vec4 gf_quat_get_inv(GF_Vec4 *quat);
/*!\brief quaternion multiplication
*
*Multiplies two quaternions
*\param q1 the first quaternion
*\param q2 the second quaternion
*\return the resulting quaternion
*/
GF_Vec4 gf_quat_multiply(GF_Vec4 *q1, GF_Vec4 *q2);
/*!\brief quaternion vector rotating
*
*Rotates a vector with a quaternion
*\param quat the quaternion modelizing the rotation
*\param vec the vector to rotate
*\return the resulting vector
*/
GF_Vec gf_quat_rotate(GF_Vec4 *quat, GF_Vec *vec);
/*!\brief quaternion from axis and cos
*
*Constructs a quaternion from an axis and a cosinus value (shortcut to \ref gf_quat_from_rotation)
*\param axis the rotation axis
*\param cos_a the rotation cosinus value
*\return the resulting quaternion
*/
GF_Vec4 gf_quat_from_axis_cos(GF_Vec axis, Fixed cos_a);
/*!\brief quaternion interpolation
*
*Interpolates two quaternions using spherical linear interpolation
*\param q1 the first quaternion
*\param q2 the second quaternion
*\param frac the fraction of the interpolation, between 0 and \ref FIX_ONE
*\return the interpolated quaternion
*/
GF_Vec4 gf_quat_slerp(GF_Vec4 q1, GF_Vec4 q2, Fixed frac);
/*!\brief 3D Bounding Box
*
*The 3D Bounding Box is a 3D Axis-Aligned Bounding Box used to in various tools of the GPAC framework for bounds
estimation of a 3D object. It features an axis-aligned box and a sphere bounding volume for fast intersection tests.
*/
typedef struct
{
/*!minimum x, y, and z of the object*/
GF_Vec min_edge;
/*!maximum x, y, and z of the object*/
GF_Vec max_edge;
/*!center of the bounding box.\note this is computed from min_edge and max_edge*/
GF_Vec center;
/*!radius of the bounding sphere for this box.\note this is computed from min_edge and max_edge*/
Fixed radius;
/*!the bbox center and radius are valid*/
Bool is_set;
} GF_BBox;
/*!updates information of the bounding box based on the edge information*/
void gf_bbox_refresh(GF_BBox *b);
/*!builds a bounding box from a 2D rectangle*/
void gf_bbox_from_rect(GF_BBox *box, GF_Rect *rc);
/*!builds a rectangle from a 3D bounding box.\note The z dimension is lost and no projection is performed*/
void gf_rect_from_bbox(GF_Rect *rc, GF_BBox *box);
/*!\brief bounding box expansion
*
*Checks if a point is inside a bounding box and updates the bounding box to include it if not the case
*\param box the bounding box object
*\param pt the 3D point to check
*/
void gf_bbox_grow_point(GF_BBox *box, GF_Vec pt);
/*!performs the union of two bounding boxes*/
void gf_bbox_union(GF_BBox *b1, GF_BBox *b2);
/*!checks if two bounding boxes are equal or not*/
Bool gf_bbox_equal(GF_BBox *b1, GF_BBox *b2);
/*!checks if a point is inside a bounding box or not*/
Bool gf_bbox_point_inside(GF_BBox *box, GF_Vec *p);
/*!\brief get box vertices
*
*Returns the 8 bounding box vertices given the minimum and maximum edge. Vertices are ordered to respect
"p-vertex indexes", (vertex from a box closest to plane) and so that n-vertex (vertex from a box farthest from plane)
is 7-p_vx_idx
*\param bmin minimum edge of the box
*\param bmax maximum edge of the box
*\param vecs list of 8 3D points used to store the vertices.
*/
void gf_bbox_get_vertices(GF_Vec bmin, GF_Vec bmax, GF_Vec *vecs);
/*!\brief matrix initialization
*\hideinitializer
*
*Inits the matrix to the identity matrix
*/
#define gf_mx_init(_obj) { memset((_obj).m, 0, sizeof(Fixed)*16); (_obj).m[0] = (_obj).m[5] = (_obj).m[10] = (_obj).m[15] = FIX_ONE; }
/*!\brief matrix copy
*\hideinitializer
*
*Copies the matrix _from to the matrix _obj
*/
#define gf_mx_copy(_obj, from) memcpy(&(_obj), &(from), sizeof(GF_Matrix));
/*!\brief matrix constructor from 2D
*
*Initializes a 3D matrix from a 2D matrix.\note all z-related coefficients will be set to default.
*/
void gf_mx_from_mx2d(GF_Matrix *mx, GF_Matrix2D *mat2D);
/*!\brief matrix identity testing
*
*Tests if two matrices are equal or not.
\return 1 if matrices are same, 0 otherwise
*/
Bool gf_mx_equal(GF_Matrix *mx1, GF_Matrix *mx2);
/*!\brief matrix translation
*
*Translates a matrix
*\param mx the matrix being transformed. Once the function is called, contains the result matrix
*\param tx horizontal translation
*\param ty vertical translation
*\param tz depth translation
*/
void gf_mx_add_translation(GF_Matrix *mx, Fixed tx, Fixed ty, Fixed tz);
/*!\brief matrix scaling
*
*Scales a matrix
*\param mx the matrix being transformed. Once the function is called, contains the result matrix
*\param sx horizontal translation scaling
*\param sy vertical translation scaling
*\param sz depth translation scaling
*/
void gf_mx_add_scale(GF_Matrix *mx, Fixed sx, Fixed sy, Fixed sz);
/*!\brief matrix rotating
*
*Rotates a matrix
*\param mx the matrix being transformed. Once the function is called, contains the result matrix
*\param angle rotation angle in radians
*\param x horizontal coordinate of rotation axis
*\param y vertical coordinate of rotation axis
*\param z depth coordinate of rotation axis
*/
void gf_mx_add_rotation(GF_Matrix *mx, Fixed angle, Fixed x, Fixed y, Fixed z);
/*!\brief matrices multiplication
*
*Multiplies a matrix with another one mx = mx*mul
*\param mx the matrix being transformed. Once the function is called, contains the result matrix
*\param mul the matrix to add
*/
void gf_mx_add_matrix(GF_Matrix *mx, GF_Matrix *mul);
/*!\brief 2D matrix multiplication
*
*Adds a 2D affine matrix to a matrix
*\param mx the matrix
*\param mat2D the matrix to premultiply
*/
void gf_mx_add_matrix_2d(GF_Matrix *mx, GF_Matrix2D *mat2D);
/*!\brief affine matrix inversion
*
*Inverses an affine matrix.\warning Results are undefined if the matrix is not an affine one
*\param mx the matrix to inverse
*/
void gf_mx_inverse(GF_Matrix *mx);
/*!\brief matrix point transformation
*
*Applies a 3D matrix transformation to a 3D point
*\param mx transformation matrix
*\param pt pointer to 3D point. Once the function is called, pt contains the transformed point
*/
void gf_mx_apply_vec(GF_Matrix *mx, GF_Vec *pt);
/*!\brief matrix rectangle transformation
*
*Applies a 3D matrix transformation to a rectangle, giving the enclosing rectangle of the transformed one.\note all depth information are discarded.
*\param _this transformation matrix
*\param rc pointer to rectangle. Once the function is called, rc contains the transformed rectangle
*/
void gf_mx_apply_rect(GF_Matrix *_this, GF_Rect *rc);
/*!\brief ortho matrix construction
*
*Creates an orthogonal projection matrix
*\param mx matrix to initialize
*\param left min horizontal coordinate of viewport
*\param right max horizontal coordinate of viewport
*\param bottom min vertical coordinate of viewport
*\param top max vertical coordinate of viewport
*\param z_near min depth coordinate of viewport
*\param z_far max depth coordinate of viewport
*/
void gf_mx_ortho(GF_Matrix *mx, Fixed left, Fixed right, Fixed bottom, Fixed top, Fixed z_near, Fixed z_far);
/*!\brief perspective matrix construction
*
*Creates a perspective projection matrix
*\param mx matrix to initialize
*\param foc camera field of view angle in radian
*\param aspect_ratio viewport aspect ratio
*\param z_near min depth coordinate of viewport
*\param z_far max depth coordinate of viewport
*/
void gf_mx_perspective(GF_Matrix *mx, Fixed foc, Fixed aspect_ratio, Fixed z_near, Fixed z_far);
/*!\brief creates look matrix
*
*Creates a transformation matrix looking at a given direction from a given point (camera matrix).
*\param mx matrix to initialize
*\param position position
*\param target look direction
*\param up_vector vector describing the up direction
*/
void gf_mx_lookat(GF_Matrix *mx, GF_Vec position, GF_Vec target, GF_Vec up_vector);
/*!\brief matrix box transformation
*
*Applies a 3D matrix transformation to a bounding box, giving the enclosing box of the transformed one
*\param mx transformation matrix
*\param b pointer to bounding box. Once the function is called, contains the transformed bounding box
*/
void gf_mx_apply_bbox(GF_Matrix *mx, GF_BBox *b);
/*!\brief matrix box sphere transformation
*
*Applies a 3D matrix transformation to a bounding box, computing only the enclosing sphere of the transformed one.
*\param mx transformation matrix
*\param box pointer to bounding box. Once the function is called, contains the transformed bounding sphere
*/
void gf_mx_apply_bbox_sphere(GF_Matrix *mx, GF_BBox *box);
/*!\brief non-affine matrix multiplication
*
*Multiplies two non-affine matrices mx = mx*mul
*/
void gf_mx_add_matrix_4x4(GF_Matrix *mat, GF_Matrix *mul);
/*!\brief non-affine matrix inversion
*
*Inverses a non-affine matrices
*\return 1 if inversion was done, 0 if inversion not possible.
*/
Bool gf_mx_inverse_4x4(GF_Matrix *mx);
/*!\brief matrix 4D vector transformation
*
*Applies a 3D non-affine matrix transformation to a 4 dimension vector
*\param mx transformation matrix
*\param vec pointer to the vector. Once the function is called, contains the transformed vector
*/
void gf_mx_apply_vec_4x4(GF_Matrix *mx, GF_Vec4 *vec);
/*!\brief matrix decomposition
*
*Decomposes a matrix into translation, scale, shear and rotate
*\param mx the matrix to decompose
*\param translate the decomposed translation part
*\param scale the decomposed scaling part
*\param rotate the decomposed rotation part, expressed as a Rotataion (axis + angle)
*\param shear the decomposed shear part
*/
void gf_mx_decompose(GF_Matrix *mx, GF_Vec *translate, GF_Vec *scale, GF_Vec4 *rotate, GF_Vec *shear);
/*!\brief matrix vector rotation
*
*Rotates a vector with a given matrix, ignoring any translation.
*\param mx transformation matrix
*\param pt pointer to 3D vector. Once the function is called, pt contains the transformed vector
*/
void gf_mx_rotate_vector(GF_Matrix *mx, GF_Vec *pt);
/*!\brief matrix initialization from vectors
*
*Inits a matrix to rotate the local axis in the given vectors
\param mx matrix to initialize
\param x_axis target normalized X axis
\param y_axis target normalized Y axis
\param z_axis target normalized Z axis
*/
void gf_mx_rotation_matrix_from_vectors(GF_Matrix *mx, GF_Vec x_axis, GF_Vec y_axis, GF_Vec z_axis);
/*!\brief matrix to 2D matrix
*
*Inits a 2D matrix by removing all depth info from a 3D matrix
*\param mx2d 2D matrix to initialize
*\param mx 3D matrix to use
*/
void gf_mx2d_from_mx(GF_Matrix2D *mx2d, GF_Matrix *mx);
/*!\brief Plane object*/
typedef struct
{
/*!normal vector to the plane*/
GF_Vec normal;
/*!distance from origin of the plane*/
Fixed d;
} GF_Plane;
/*!\brief matrix plane transformation
*
*Transorms a plane by a given matrix
*\param mx the matrix to use
*\param plane pointer to 3D plane. Once the function is called, plane contains the transformed plane
*/
void gf_mx_apply_plane(GF_Matrix *mx, GF_Plane *plane);
/*!\brief point to plane distance
*
*Gets the distance between a point and a plne
*\param plane the plane to use
*\param p pointer to ^point to check
*\return the distance between the place and the point
*/
Fixed gf_plane_get_distance(GF_Plane *plane, GF_Vec *p);
/*!\brief closest point on a line
*
*Gets the closest point on a line from a given point in space
*\param line_pt a point of the line to test
*\param line_vec the normalized direction vector of the line
*\param pt the point to check
*\return the closest point on the line to the desired point
*/
GF_Vec gf_closest_point_to_line(GF_Vec line_pt, GF_Vec line_vec, GF_Vec pt);
/*!\brief box p-vertex index
*
*Gets the p-vertex index for a given plane. The p-vertex index is the index of the closest vertex of a bounding box to the plane. The vertices of a box are always
*ordered in GPAC? cf \ref gf_bbox_get_vertices
*\param p the plane to check
*\return the p-vertex index value, ranging from 0 to 7
*/
u32 gf_plane_get_p_vertex_idx(GF_Plane *p);
/*!\brief plane line intersection
*
*Checks for the intersection of a plane and a line
*\param plane plane to test
*\param linepoint a point on the line to test
*\param linevec normalized direction vector of the line to test
*\param outPoint optional pointer to retrieve the intersection point, NULL otherwise
*\return 1 if line and plane intersect, 0 otherwise
*/
Bool gf_plane_intersect_line(GF_Plane *plane, GF_Vec *linepoint, GF_Vec *linevec, GF_Vec *outPoint);
/*!Classification types for box/plane position used in \ref gf_bbox_plane_relation*/
enum
{
/*!box is in front of the plane*/
GF_BBOX_FRONT,
/*!box intersects the plane*/
GF_BBOX_INTER,
/*!box is back of the plane*/
GF_BBOX_BACK
};
/*!\brief box-plane relation
*
*Gets the spatial relation between a box and a plane
*\param box the box to check
*\param p the plane to check
*\return the relation type
*/
u32 gf_bbox_plane_relation(GF_BBox *box, GF_Plane *p);
/*!\brief 3D Ray
*
*The 3D ray object is used in GPAC for all collision and mouse interaction tests
*/
typedef struct
{
/*!origin point of the ray*/
GF_Vec orig;
/*!normalized direction vector of the ray*/
GF_Vec dir;
} GF_Ray;
/*!\brief ray constructor
*
*Constructs a ray object
*\param start starting point of the ray
*\param end end point of the ray, or any point on the ray
*\return the ray object
*/
GF_Ray gf_ray(GF_Vec start, GF_Vec end);
/*!\brief matrix ray transformation
*
*Transforms a ray by a given transformation matrix
*\param mx the matrix to use
*\param r pointer to the ray. Once the function is called, contains the transformed ray
*/
void gf_mx_apply_ray(GF_Matrix *mx, GF_Ray *r);
/*!\brief ray box intersection test
*
*Checks if a ray intersects a box or not
*\param ray the ray to check
*\param min_edge the minimum edge of the box to check
*\param max_edge the maximum edge of the box to check
*\param out_point optional location of a 3D point to store the intersection, NULL otherwise.
*\return retuns 1 if the ray intersects the box, 0 otherwise
*/
Bool gf_ray_hit_box(GF_Ray *ray, GF_Vec min_edge, GF_Vec max_edge, GF_Vec *out_point);
/*!\brief ray sphere intersection test
*
*Checks if a ray intersects a box or not
*\param ray the ray to check
*\param center the center of the sphere to check. If NULL, the origin (0,0,0)is used
*\param radius the radius of the sphere to check
*\param out_point optional location of a 3D point to store the intersection, NULL otherwise
*\return retuns 1 if the ray intersects the sphere, 0 otherwise
*/
Bool gf_ray_hit_sphere(GF_Ray *ray, GF_Vec *center, Fixed radius, GF_Vec *out_point);
/*!\brief ray triangle intersection test
*
*Checks if a ray intersects a triangle or not
*\param ray the ray to check
*\param v0 first vertex of the triangle
*\param v1 second vertex of the triangle
*\param v2 third vertex of the triangle
*\param dist optional location of a fixed number to store the intersection distance from ray origin if any, NULL otherwise
*\return retuns 1 if the ray intersects the triangle, 0 otherwise
*/
Bool gf_ray_hit_triangle(GF_Ray *ray, GF_Vec *v0, GF_Vec *v1, GF_Vec *v2, Fixed *dist);
/*same as above and performs backface cull (solid meshes)*/
/*!\brief ray triangle intersection test
*
*Checks if a ray intersects a triangle or not, performing backface culling. For parameters details, look at \ref gf_ray_hit_triangle_backcull
*/
Bool gf_ray_hit_triangle_backcull(GF_Ray *ray, GF_Vec *v0, GF_Vec *v1, GF_Vec *v2, Fixed *dist);
/*! @} */
/*! @} */
#ifdef __cplusplus
}
#endif
#endif /*_GF_MATH_H_*/
|