/usr/share/gir-1.0/GstFft-1.0.gir is in libgstreamer-plugins-base1.0-dev 1.4.4-2+deb8u1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 | <?xml version="1.0"?>
<!-- This file was automatically generated from C sources - DO NOT EDIT!
To affect the contents of this file, edit the original C definitions,
and/or use gtk-doc annotations. -->
<repository version="1.2"
xmlns="http://www.gtk.org/introspection/core/1.0"
xmlns:c="http://www.gtk.org/introspection/c/1.0"
xmlns:glib="http://www.gtk.org/introspection/glib/1.0">
<include name="Gst" version="1.0"/>
<package name="gstreamer-fft-1.0"/>
<c:include name="gst/fft/fft.h"/>
<namespace name="GstFft"
version="1.0"
shared-library="libgstfft-1.0.so.0"
c:identifier-prefixes="Gst"
c:symbol-prefixes="gst">
<record name="FFTF32" c:type="GstFFTF32" disguised="1">
<doc xml:space="preserve">#GstFFTF32 provides a FFT implementation and related functions for
32 bit float samples. To use this call gst_fft_f32_new() for
allocating a #GstFFTF32 instance with the appropriate parameters and
then call gst_fft_f32_fft() or gst_fft_f32_inverse_fft() to perform the
FFT or inverse FFT on a buffer of samples.
After use free the #GstFFTF32 instance with gst_fft_f32_free().
For the best performance use gst_fft_next_fast_length() to get a
number that is entirely a product of 2, 3 and 5 and use this as the
@len parameter for gst_fft_f32_new().
The @len parameter specifies the number of samples in the time domain that
will be processed or generated. The number of samples in the frequency domain
is @len/2 + 1. To get n samples in the frequency domain use 2*n - 2 as @len.
Before performing the FFT on time domain data it usually makes sense
to apply a window function to it. For this gst_fft_f32_window() can comfortably
be used.
Be aware, that you can't simply run gst_fft_f32_inverse_fft() on the
resulting frequency data of gst_fft_f32_fft() to get the original data back.
The relation between them is iFFT (FFT (x)) = x * nfft where nfft is the
length of the FFT. This also has to be taken into account when calculation
the magnitude of the frequency data.</doc>
<method name="fft" c:identifier="gst_fft_f32_fft">
<doc xml:space="preserve">This performs the FFT on @timedata and puts the result in @freqdata.
@timedata must have as many samples as specified with the @len parameter while
allocating the #GstFFTF32 instance with gst_fft_f32_new().
@freqdata must be large enough to hold @len/2 + 1 #GstFFTF32Complex frequency
domain samples.</doc>
<return-value transfer-ownership="none">
<type name="none" c:type="void"/>
</return-value>
<parameters>
<instance-parameter name="self" transfer-ownership="none">
<doc xml:space="preserve">#GstFFTF32 instance for this call</doc>
<type name="FFTF32" c:type="GstFFTF32*"/>
</instance-parameter>
<parameter name="timedata" transfer-ownership="none">
<doc xml:space="preserve">Buffer of the samples in the time domain</doc>
<type name="gfloat" c:type="const gfloat*"/>
</parameter>
<parameter name="freqdata" transfer-ownership="none">
<doc xml:space="preserve">Target buffer for the samples in the frequency domain</doc>
<type name="FFTF32Complex" c:type="GstFFTF32Complex*"/>
</parameter>
</parameters>
</method>
<method name="free" c:identifier="gst_fft_f32_free">
<doc xml:space="preserve">This frees the memory allocated for @self.</doc>
<return-value transfer-ownership="none">
<type name="none" c:type="void"/>
</return-value>
<parameters>
<instance-parameter name="self" transfer-ownership="none">
<doc xml:space="preserve">#GstFFTF32 instance for this call</doc>
<type name="FFTF32" c:type="GstFFTF32*"/>
</instance-parameter>
</parameters>
</method>
<method name="inverse_fft" c:identifier="gst_fft_f32_inverse_fft">
<doc xml:space="preserve">This performs the inverse FFT on @freqdata and puts the result in @timedata.
@freqdata must have @len/2 + 1 samples, where @len is the parameter specified
while allocating the #GstFFTF32 instance with gst_fft_f32_new().
@timedata must be large enough to hold @len time domain samples.</doc>
<return-value transfer-ownership="none">
<type name="none" c:type="void"/>
</return-value>
<parameters>
<instance-parameter name="self" transfer-ownership="none">
<doc xml:space="preserve">#GstFFTF32 instance for this call</doc>
<type name="FFTF32" c:type="GstFFTF32*"/>
</instance-parameter>
<parameter name="freqdata" transfer-ownership="none">
<doc xml:space="preserve">Buffer of the samples in the frequency domain</doc>
<type name="FFTF32Complex" c:type="const GstFFTF32Complex*"/>
</parameter>
<parameter name="timedata" transfer-ownership="none">
<doc xml:space="preserve">Target buffer for the samples in the time domain</doc>
<type name="gfloat" c:type="gfloat*"/>
</parameter>
</parameters>
</method>
<method name="window" c:identifier="gst_fft_f32_window">
<doc xml:space="preserve">This calls the window function @window on the @timedata sample buffer.</doc>
<return-value transfer-ownership="none">
<type name="none" c:type="void"/>
</return-value>
<parameters>
<instance-parameter name="self" transfer-ownership="none">
<doc xml:space="preserve">#GstFFTF32 instance for this call</doc>
<type name="FFTF32" c:type="GstFFTF32*"/>
</instance-parameter>
<parameter name="timedata" transfer-ownership="none">
<doc xml:space="preserve">Time domain samples</doc>
<type name="gfloat" c:type="gfloat*"/>
</parameter>
<parameter name="window" transfer-ownership="none">
<doc xml:space="preserve">Window function to apply</doc>
<type name="FFTWindow" c:type="GstFFTWindow"/>
</parameter>
</parameters>
</method>
<function name="new" c:identifier="gst_fft_f32_new" introspectable="0">
<doc xml:space="preserve">This returns a new #GstFFTF32 instance with the given parameters. It makes
sense to keep one instance for several calls for speed reasons.
@len must be even and to get the best performance a product of
2, 3 and 5. To get the next number with this characteristics use
gst_fft_next_fast_length().</doc>
<return-value>
<doc xml:space="preserve">a new #GstFFTF32 instance.</doc>
<type name="FFTF32" c:type="GstFFTF32*"/>
</return-value>
<parameters>
<parameter name="len" transfer-ownership="none">
<doc xml:space="preserve">Length of the FFT in the time domain</doc>
<type name="gint" c:type="gint"/>
</parameter>
<parameter name="inverse" transfer-ownership="none">
<doc xml:space="preserve">%TRUE if the #GstFFTF32 instance should be used for the inverse FFT</doc>
<type name="gboolean" c:type="gboolean"/>
</parameter>
</parameters>
</function>
</record>
<record name="FFTF32Complex" c:type="GstFFTF32Complex">
<doc xml:space="preserve">Data type for complex numbers composed of
32 bit float.</doc>
<field name="r" writable="1">
<doc xml:space="preserve">Real part</doc>
<type name="gfloat" c:type="gfloat"/>
</field>
<field name="i" writable="1">
<doc xml:space="preserve">Imaginary part</doc>
<type name="gfloat" c:type="gfloat"/>
</field>
</record>
<record name="FFTF64" c:type="GstFFTF64" disguised="1">
<doc xml:space="preserve">#GstFFTF64 provides a FFT implementation and related functions for
64 bit float samples. To use this call gst_fft_f64_new() for
allocating a #GstFFTF64 instance with the appropriate parameters and
then call gst_fft_f64_fft() or gst_fft_f64_inverse_fft() to perform the
FFT or inverse FFT on a buffer of samples.
After use free the #GstFFTF64 instance with gst_fft_f64_free().
For the best performance use gst_fft_next_fast_length() to get a
number that is entirely a product of 2, 3 and 5 and use this as the
@len parameter for gst_fft_f64_new().
The @len parameter specifies the number of samples in the time domain that
will be processed or generated. The number of samples in the frequency domain
is @len/2 + 1. To get n samples in the frequency domain use 2*n - 2 as @len.
Before performing the FFT on time domain data it usually makes sense
to apply a window function to it. For this gst_fft_f64_window() can comfortably
be used.
Be aware, that you can't simply run gst_fft_f32_inverse_fft() on the
resulting frequency data of gst_fft_f32_fft() to get the original data back.
The relation between them is iFFT (FFT (x)) = x * nfft where nfft is the
length of the FFT. This also has to be taken into account when calculation
the magnitude of the frequency data.</doc>
<method name="fft" c:identifier="gst_fft_f64_fft">
<doc xml:space="preserve">This performs the FFT on @timedata and puts the result in @freqdata.
@timedata must have as many samples as specified with the @len parameter while
allocating the #GstFFTF64 instance with gst_fft_f64_new().
@freqdata must be large enough to hold @len/2 + 1 #GstFFTF64Complex frequency
domain samples.</doc>
<return-value transfer-ownership="none">
<type name="none" c:type="void"/>
</return-value>
<parameters>
<instance-parameter name="self" transfer-ownership="none">
<doc xml:space="preserve">#GstFFTF64 instance for this call</doc>
<type name="FFTF64" c:type="GstFFTF64*"/>
</instance-parameter>
<parameter name="timedata" transfer-ownership="none">
<doc xml:space="preserve">Buffer of the samples in the time domain</doc>
<type name="gdouble" c:type="const gdouble*"/>
</parameter>
<parameter name="freqdata" transfer-ownership="none">
<doc xml:space="preserve">Target buffer for the samples in the frequency domain</doc>
<type name="FFTF64Complex" c:type="GstFFTF64Complex*"/>
</parameter>
</parameters>
</method>
<method name="free" c:identifier="gst_fft_f64_free">
<doc xml:space="preserve">This frees the memory allocated for @self.</doc>
<return-value transfer-ownership="none">
<type name="none" c:type="void"/>
</return-value>
<parameters>
<instance-parameter name="self" transfer-ownership="none">
<doc xml:space="preserve">#GstFFTF64 instance for this call</doc>
<type name="FFTF64" c:type="GstFFTF64*"/>
</instance-parameter>
</parameters>
</method>
<method name="inverse_fft" c:identifier="gst_fft_f64_inverse_fft">
<doc xml:space="preserve">This performs the inverse FFT on @freqdata and puts the result in @timedata.
@freqdata must have @len/2 + 1 samples, where @len is the parameter specified
while allocating the #GstFFTF64 instance with gst_fft_f64_new().
@timedata must be large enough to hold @len time domain samples.</doc>
<return-value transfer-ownership="none">
<type name="none" c:type="void"/>
</return-value>
<parameters>
<instance-parameter name="self" transfer-ownership="none">
<doc xml:space="preserve">#GstFFTF64 instance for this call</doc>
<type name="FFTF64" c:type="GstFFTF64*"/>
</instance-parameter>
<parameter name="freqdata" transfer-ownership="none">
<doc xml:space="preserve">Buffer of the samples in the frequency domain</doc>
<type name="FFTF64Complex" c:type="const GstFFTF64Complex*"/>
</parameter>
<parameter name="timedata" transfer-ownership="none">
<doc xml:space="preserve">Target buffer for the samples in the time domain</doc>
<type name="gdouble" c:type="gdouble*"/>
</parameter>
</parameters>
</method>
<method name="window" c:identifier="gst_fft_f64_window">
<doc xml:space="preserve">This calls the window function @window on the @timedata sample buffer.</doc>
<return-value transfer-ownership="none">
<type name="none" c:type="void"/>
</return-value>
<parameters>
<instance-parameter name="self" transfer-ownership="none">
<doc xml:space="preserve">#GstFFTF64 instance for this call</doc>
<type name="FFTF64" c:type="GstFFTF64*"/>
</instance-parameter>
<parameter name="timedata" transfer-ownership="none">
<doc xml:space="preserve">Time domain samples</doc>
<type name="gdouble" c:type="gdouble*"/>
</parameter>
<parameter name="window" transfer-ownership="none">
<doc xml:space="preserve">Window function to apply</doc>
<type name="FFTWindow" c:type="GstFFTWindow"/>
</parameter>
</parameters>
</method>
<function name="new" c:identifier="gst_fft_f64_new" introspectable="0">
<doc xml:space="preserve">This returns a new #GstFFTF64 instance with the given parameters. It makes
sense to keep one instance for several calls for speed reasons.
@len must be even and to get the best performance a product of
2, 3 and 5. To get the next number with this characteristics use
gst_fft_next_fast_length().</doc>
<return-value>
<doc xml:space="preserve">a new #GstFFTF64 instance.</doc>
<type name="FFTF64" c:type="GstFFTF64*"/>
</return-value>
<parameters>
<parameter name="len" transfer-ownership="none">
<doc xml:space="preserve">Length of the FFT in the time domain</doc>
<type name="gint" c:type="gint"/>
</parameter>
<parameter name="inverse" transfer-ownership="none">
<doc xml:space="preserve">%TRUE if the #GstFFTF64 instance should be used for the inverse FFT</doc>
<type name="gboolean" c:type="gboolean"/>
</parameter>
</parameters>
</function>
</record>
<record name="FFTF64Complex" c:type="GstFFTF64Complex">
<doc xml:space="preserve">Data type for complex numbers composed of
64 bit float.</doc>
<field name="r" writable="1">
<doc xml:space="preserve">Real part</doc>
<type name="gdouble" c:type="gdouble"/>
</field>
<field name="i" writable="1">
<doc xml:space="preserve">Imaginary part</doc>
<type name="gdouble" c:type="gdouble"/>
</field>
</record>
<record name="FFTS16" c:type="GstFFTS16" disguised="1">
<doc xml:space="preserve">#GstFFTS16 provides a FFT implementation and related functions for
signed 16 bit integer samples. To use this call gst_fft_s16_new() for
allocating a #GstFFTS16 instance with the appropriate parameters and
then call gst_fft_s16_fft() or gst_fft_s16_inverse_fft() to perform the
FFT or inverse FFT on a buffer of samples.
After use free the #GstFFTS16 instance with gst_fft_s16_free().
For the best performance use gst_fft_next_fast_length() to get a
number that is entirely a product of 2, 3 and 5 and use this as the
@len parameter for gst_fft_s16_new().
The @len parameter specifies the number of samples in the time domain that
will be processed or generated. The number of samples in the frequency domain
is @len/2 + 1. To get n samples in the frequency domain use 2*n - 2 as @len.
Before performing the FFT on time domain data it usually makes sense
to apply a window function to it. For this gst_fft_s16_window() can comfortably
be used.
Be aware, that you can't simply run gst_fft_s16_inverse_fft() on the
resulting frequency data of gst_fft_s16_fft() to get the original data back.
The relation between them is iFFT (FFT (x)) = x / nfft where nfft is the
length of the FFT. This also has to be taken into account when calculation
the magnitude of the frequency data.</doc>
<method name="fft" c:identifier="gst_fft_s16_fft">
<doc xml:space="preserve">This performs the FFT on @timedata and puts the result in @freqdata.
@timedata must have as many samples as specified with the @len parameter while
allocating the #GstFFTS16 instance with gst_fft_s16_new().
@freqdata must be large enough to hold @len/2 + 1 #GstFFTS16Complex frequency
domain samples.</doc>
<return-value transfer-ownership="none">
<type name="none" c:type="void"/>
</return-value>
<parameters>
<instance-parameter name="self" transfer-ownership="none">
<doc xml:space="preserve">#GstFFTS16 instance for this call</doc>
<type name="FFTS16" c:type="GstFFTS16*"/>
</instance-parameter>
<parameter name="timedata" transfer-ownership="none">
<doc xml:space="preserve">Buffer of the samples in the time domain</doc>
<type name="gint16" c:type="const gint16*"/>
</parameter>
<parameter name="freqdata" transfer-ownership="none">
<doc xml:space="preserve">Target buffer for the samples in the frequency domain</doc>
<type name="FFTS16Complex" c:type="GstFFTS16Complex*"/>
</parameter>
</parameters>
</method>
<method name="free" c:identifier="gst_fft_s16_free">
<doc xml:space="preserve">This frees the memory allocated for @self.</doc>
<return-value transfer-ownership="none">
<type name="none" c:type="void"/>
</return-value>
<parameters>
<instance-parameter name="self" transfer-ownership="none">
<doc xml:space="preserve">#GstFFTS16 instance for this call</doc>
<type name="FFTS16" c:type="GstFFTS16*"/>
</instance-parameter>
</parameters>
</method>
<method name="inverse_fft" c:identifier="gst_fft_s16_inverse_fft">
<doc xml:space="preserve">This performs the inverse FFT on @freqdata and puts the result in @timedata.
@freqdata must have @len/2 + 1 samples, where @len is the parameter specified
while allocating the #GstFFTS16 instance with gst_fft_s16_new().
@timedata must be large enough to hold @len time domain samples.</doc>
<return-value transfer-ownership="none">
<type name="none" c:type="void"/>
</return-value>
<parameters>
<instance-parameter name="self" transfer-ownership="none">
<doc xml:space="preserve">#GstFFTS16 instance for this call</doc>
<type name="FFTS16" c:type="GstFFTS16*"/>
</instance-parameter>
<parameter name="freqdata" transfer-ownership="none">
<doc xml:space="preserve">Buffer of the samples in the frequency domain</doc>
<type name="FFTS16Complex" c:type="const GstFFTS16Complex*"/>
</parameter>
<parameter name="timedata" transfer-ownership="none">
<doc xml:space="preserve">Target buffer for the samples in the time domain</doc>
<type name="gint16" c:type="gint16*"/>
</parameter>
</parameters>
</method>
<method name="window" c:identifier="gst_fft_s16_window">
<doc xml:space="preserve">This calls the window function @window on the @timedata sample buffer.</doc>
<return-value transfer-ownership="none">
<type name="none" c:type="void"/>
</return-value>
<parameters>
<instance-parameter name="self" transfer-ownership="none">
<doc xml:space="preserve">#GstFFTS16 instance for this call</doc>
<type name="FFTS16" c:type="GstFFTS16*"/>
</instance-parameter>
<parameter name="timedata" transfer-ownership="none">
<doc xml:space="preserve">Time domain samples</doc>
<type name="gint16" c:type="gint16*"/>
</parameter>
<parameter name="window" transfer-ownership="none">
<doc xml:space="preserve">Window function to apply</doc>
<type name="FFTWindow" c:type="GstFFTWindow"/>
</parameter>
</parameters>
</method>
<function name="new" c:identifier="gst_fft_s16_new" introspectable="0">
<doc xml:space="preserve">This returns a new #GstFFTS16 instance with the given parameters. It makes
sense to keep one instance for several calls for speed reasons.
@len must be even and to get the best performance a product of
2, 3 and 5. To get the next number with this characteristics use
gst_fft_next_fast_length().</doc>
<return-value>
<doc xml:space="preserve">a new #GstFFTS16 instance.</doc>
<type name="FFTS16" c:type="GstFFTS16*"/>
</return-value>
<parameters>
<parameter name="len" transfer-ownership="none">
<doc xml:space="preserve">Length of the FFT in the time domain</doc>
<type name="gint" c:type="gint"/>
</parameter>
<parameter name="inverse" transfer-ownership="none">
<doc xml:space="preserve">%TRUE if the #GstFFTS16 instance should be used for the inverse FFT</doc>
<type name="gboolean" c:type="gboolean"/>
</parameter>
</parameters>
</function>
</record>
<record name="FFTS16Complex" c:type="GstFFTS16Complex">
<doc xml:space="preserve">Data type for complex numbers composed of
signed 16 bit integers.</doc>
<field name="r" writable="1">
<doc xml:space="preserve">Real part</doc>
<type name="gint16" c:type="gint16"/>
</field>
<field name="i" writable="1">
<doc xml:space="preserve">Imaginary part</doc>
<type name="gint16" c:type="gint16"/>
</field>
</record>
<record name="FFTS32" c:type="GstFFTS32" disguised="1">
<doc xml:space="preserve">#GstFFTS32 provides a FFT implementation and related functions for
signed 32 bit integer samples. To use this call gst_fft_s32_new() for
allocating a #GstFFTS32 instance with the appropriate parameters and
then call gst_fft_s32_fft() or gst_fft_s32_inverse_fft() to perform the
FFT or inverse FFT on a buffer of samples.
After use free the #GstFFTS32 instance with gst_fft_s32_free().
For the best performance use gst_fft_next_fast_length() to get a
number that is entirely a product of 2, 3 and 5 and use this as the
@len parameter for gst_fft_s32_new().
The @len parameter specifies the number of samples in the time domain that
will be processed or generated. The number of samples in the frequency domain
is @len/2 + 1. To get n samples in the frequency domain use 2*n - 2 as @len.
Before performing the FFT on time domain data it usually makes sense
to apply a window function to it. For this gst_fft_s32_window() can comfortably
be used.
Be aware, that you can't simply run gst_fft_s32_inverse_fft() on the
resulting frequency data of gst_fft_s32_fft() to get the original data back.
The relation between them is iFFT (FFT (x)) = x / nfft where nfft is the
length of the FFT. This also has to be taken into account when calculation
the magnitude of the frequency data.</doc>
<method name="fft" c:identifier="gst_fft_s32_fft">
<doc xml:space="preserve">This performs the FFT on @timedata and puts the result in @freqdata.
@timedata must have as many samples as specified with the @len parameter while
allocating the #GstFFTS32 instance with gst_fft_s32_new().
@freqdata must be large enough to hold @len/2 + 1 #GstFFTS32Complex frequency
domain samples.</doc>
<return-value transfer-ownership="none">
<type name="none" c:type="void"/>
</return-value>
<parameters>
<instance-parameter name="self" transfer-ownership="none">
<doc xml:space="preserve">#GstFFTS32 instance for this call</doc>
<type name="FFTS32" c:type="GstFFTS32*"/>
</instance-parameter>
<parameter name="timedata" transfer-ownership="none">
<doc xml:space="preserve">Buffer of the samples in the time domain</doc>
<type name="gint32" c:type="const gint32*"/>
</parameter>
<parameter name="freqdata" transfer-ownership="none">
<doc xml:space="preserve">Target buffer for the samples in the frequency domain</doc>
<type name="FFTS32Complex" c:type="GstFFTS32Complex*"/>
</parameter>
</parameters>
</method>
<method name="free" c:identifier="gst_fft_s32_free">
<doc xml:space="preserve">This frees the memory allocated for @self.</doc>
<return-value transfer-ownership="none">
<type name="none" c:type="void"/>
</return-value>
<parameters>
<instance-parameter name="self" transfer-ownership="none">
<doc xml:space="preserve">#GstFFTS32 instance for this call</doc>
<type name="FFTS32" c:type="GstFFTS32*"/>
</instance-parameter>
</parameters>
</method>
<method name="inverse_fft" c:identifier="gst_fft_s32_inverse_fft">
<doc xml:space="preserve">This performs the inverse FFT on @freqdata and puts the result in @timedata.
@freqdata must have @len/2 + 1 samples, where @len is the parameter specified
while allocating the #GstFFTS32 instance with gst_fft_s32_new().
@timedata must be large enough to hold @len time domain samples.</doc>
<return-value transfer-ownership="none">
<type name="none" c:type="void"/>
</return-value>
<parameters>
<instance-parameter name="self" transfer-ownership="none">
<doc xml:space="preserve">#GstFFTS32 instance for this call</doc>
<type name="FFTS32" c:type="GstFFTS32*"/>
</instance-parameter>
<parameter name="freqdata" transfer-ownership="none">
<doc xml:space="preserve">Buffer of the samples in the frequency domain</doc>
<type name="FFTS32Complex" c:type="const GstFFTS32Complex*"/>
</parameter>
<parameter name="timedata" transfer-ownership="none">
<doc xml:space="preserve">Target buffer for the samples in the time domain</doc>
<type name="gint32" c:type="gint32*"/>
</parameter>
</parameters>
</method>
<method name="window" c:identifier="gst_fft_s32_window">
<doc xml:space="preserve">This calls the window function @window on the @timedata sample buffer.</doc>
<return-value transfer-ownership="none">
<type name="none" c:type="void"/>
</return-value>
<parameters>
<instance-parameter name="self" transfer-ownership="none">
<doc xml:space="preserve">#GstFFTS32 instance for this call</doc>
<type name="FFTS32" c:type="GstFFTS32*"/>
</instance-parameter>
<parameter name="timedata" transfer-ownership="none">
<doc xml:space="preserve">Time domain samples</doc>
<type name="gint32" c:type="gint32*"/>
</parameter>
<parameter name="window" transfer-ownership="none">
<doc xml:space="preserve">Window function to apply</doc>
<type name="FFTWindow" c:type="GstFFTWindow"/>
</parameter>
</parameters>
</method>
<function name="new" c:identifier="gst_fft_s32_new" introspectable="0">
<doc xml:space="preserve">This returns a new #GstFFTS32 instance with the given parameters. It makes
sense to keep one instance for several calls for speed reasons.
@len must be even and to get the best performance a product of
2, 3 and 5. To get the next number with this characteristics use
gst_fft_next_fast_length().</doc>
<return-value>
<doc xml:space="preserve">a new #GstFFTS32 instance.</doc>
<type name="FFTS32" c:type="GstFFTS32*"/>
</return-value>
<parameters>
<parameter name="len" transfer-ownership="none">
<doc xml:space="preserve">Length of the FFT in the time domain</doc>
<type name="gint" c:type="gint"/>
</parameter>
<parameter name="inverse" transfer-ownership="none">
<doc xml:space="preserve">%TRUE if the #GstFFTS32 instance should be used for the inverse FFT</doc>
<type name="gboolean" c:type="gboolean"/>
</parameter>
</parameters>
</function>
</record>
<record name="FFTS32Complex" c:type="GstFFTS32Complex">
<doc xml:space="preserve">Data type for complex numbers composed of
signed 32 bit integers.</doc>
<field name="r" writable="1">
<doc xml:space="preserve">Real part</doc>
<type name="gint32" c:type="gint32"/>
</field>
<field name="i" writable="1">
<doc xml:space="preserve">Imaginary part</doc>
<type name="gint32" c:type="gint32"/>
</field>
</record>
<enumeration name="FFTWindow" c:type="GstFFTWindow">
<doc xml:space="preserve">The various window functions available.</doc>
<member name="rectangular"
value="0"
c:identifier="GST_FFT_WINDOW_RECTANGULAR">
<doc xml:space="preserve">Rectangular window</doc>
</member>
<member name="hamming" value="1" c:identifier="GST_FFT_WINDOW_HAMMING">
<doc xml:space="preserve">Hamming window</doc>
</member>
<member name="hann" value="2" c:identifier="GST_FFT_WINDOW_HANN">
<doc xml:space="preserve">Hann (sometimes also called Hanning) window</doc>
</member>
<member name="bartlett" value="3" c:identifier="GST_FFT_WINDOW_BARTLETT">
<doc xml:space="preserve">Bartlett window</doc>
</member>
<member name="blackman" value="4" c:identifier="GST_FFT_WINDOW_BLACKMAN">
<doc xml:space="preserve">Blackman window</doc>
</member>
</enumeration>
<function name="fft_next_fast_length"
c:identifier="gst_fft_next_fast_length">
<doc xml:space="preserve">Returns the next number to @n that is entirely a product
of 2, 3 and 5. Using this as the @len parameter for
the different GstFFT types will provide the best performance.</doc>
<return-value transfer-ownership="none">
<doc xml:space="preserve">the next fast FFT length.</doc>
<type name="gint" c:type="gint"/>
</return-value>
<parameters>
<parameter name="n" transfer-ownership="none">
<doc xml:space="preserve">Number for which the next fast length should be returned</doc>
<type name="gint" c:type="gint"/>
</parameter>
</parameters>
</function>
</namespace>
</repository>
|